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In this study, a generalized solution for the helical motion of a charged 
particle in uniform electric and magnetic fields is obtained using a powerful 
fractional derivative approach. Using this approach, the differential 
equations that describe the helical motion of a charged particle in the fields 
were obtained. The solution for the fractional differential equations is 
presented in great detail in terms of a series solution using the Mittag-Leffler 
function. The Laplace transform technique was used to solve the differential 
equations in the regular form and in the fractional form (with fractional 
parameter 𝛾). Two and three-dimensional plots were presented for the 
trajectory of the particle before and after introducing the fractional operator 
for different values of 𝛾. Features of delay in the motion and dissipation in 
the medium have been observed in the fractional solution too. The 
importance of our work stems from the two- and three-dimensional 
visualization of the obtained generalized helical trajectories that can be 
applied to similar types of motions in nature and the universe. 
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1. Introduction 

*When studying the motion of an object under the 
influence of a net force, usually Newton’s second law 
is used to find the position, the velocity, and the 
acceleration at any time. To use Newton’s second 
law, a set of second-order differential equations 
along with initial conditions must be established. 
After solving the set of differential equations, the 
exact trajectory of the moving object can be found in 
great detail (Morin, 2008). Recently, there is an 
increasing interest in employing fractional calculus 
when solving differential equations that describe a 
wide range of motions (Bokhari et al., 2022; Elzahar 
et al., 2020; Rosales et al., 2014). The motivation for 
using fractional calculus is not limited to building 
mathematical simulations for dynamical systems 
only but also looking for new potential applications 
(Sun et al., 2018; Lorenzo and Hartley, 2016; 
Shishkina and Sitnik, 2020). However, while 
differential equations with integer orders provide 
exact solutions for motions, fractional differential 
equations do not provide meaningful solutions that 
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describe motions in most cases so far (Baleanu et al., 
2012). In fact, fractional differential equations 
provide general solutions and exact solutions can be 
obtained only as a special case of the general 
fractional solutions (Morales-Delgado et al., 2017). 

The helical motion is a common type of motion 
that can be witnessed in many physical systems, for 
example, the motion of charged particles emitted 
from the sun (solar wind) into the earth’s magnetic 
field (Uddin et al., 2021; Somov, 2013). When the 
radius of the helical trajectory is increasing or 
decreasing with time the trajectory can be developed 
into a helical cone trajectory. A helical cone can be 
observed in weather phenomena systems too (e. g., 
wind motion in hurricanes and tornadoes) and in 
two dimensions it can be observed in galactic motion 
in the universe (Abdelhady et al., 2021; Bryant and 
Krabbe, 2021). 

When attempting to module such motion and to 
study how its solution evolves with time, fractional 
calculus provides a powerful tool to achieve this 
task. In general, solving fractional differential 
equations for any kind of motion enables us to 
observe the time evolution of the solution, delays, 
and what resembles a dissipation behavior in the 
medium where the particle is moving (Gómez-
Aguilar et al., 2015; Koksal, 2019; Martínez et al., 
2018; Nasrolahpour, 2013; Pskhu and Rekhviashvili, 
2018). In the helical motion particularly, in a three-
dimension (3D) picture, we expect  the circular part 
of the solution to be vulnerable to delays and 
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dissipations when fractional differentiation is 
introduced. Also, one would expect delays and 
dissipation in the direction perpendicular to the 
circular part of the trajectory too. 

The main goal of this work is to obtain 
generalized solutions to the differential equations 
that describe the motion of a charged particle in 
uniform electric and magnetic fields using a simple 
fractional operator. Finding the generalized 
solutions of the differential equations enables us to 
build a 3D picture of the motion’s trajectories and 
visualize them numerically, which were not 
considered in previous works (Morales-Delgado et 
al., 2017). Building such 3D pictures helps in 
modeling similar types of motions in nature and the 
universe that are driven by different types of forces  

(Lorenzo and Hartley, 2016). This supports the 
ongoing effort to bridge the gap between the real 
systems and generalized solutions obtained for 
different fractional orders.  

In this work, the differential equations that 
describe the helical motion of a charged particle in 
electric and magnetic fields will be introduced and 
solved exactly using the Laplace transform, the final 
solution will be plotted in 3D. To introduce the 
fractional approach for the helical motion, a 
fractional operator will be applied to the differential 
equations describing the motion of the charged 
particle in a uniform electric field parallel to a 
uniform magnetic field along the z-axis. The new set 
of fractional differential equations will be solved 
using the Laplace transform and the final solutions 
will be plotted for different orders of fractional 
differentiation (𝛾). At the end of this work, a 
conclusion that summarizes our findings will be 
presented.  

2. The helical trajectory equations 

To get the helical trajectory for a charged particle 
of mass 𝑚 and charge 𝑞, an electric field should be 

applied so that �⃗� = 𝐸𝑟 �̂� + 𝐸𝑧�̂� in cylindrical 
coordinates with a magnetic field pointing along the 

z-axis as �⃗� = 𝐵�̂� too. In this case, the magnetic field 
is responsible for the circular path of the trajectory, 
and the electric field component along the �̂� 
direction is responsible for increasing or decreasing 
the radius of the trajectory (depending on charge) 
and the 𝐸𝑧 component is responsible about the drift 
along the z-axis. 

For simplicity, in this study, we will consider an 
electric field with a component along the z-direction 

only so that �⃗� = 𝐸�̂�. Such consideration leads to a 
trajectory with a fixed radius (helical path). Also, 
assuming the particle has an initial velocity along the 
x-axis equal to 𝑣0 as in Fig. 1. 

Starting from the electromagnetic force acting on 
a charged particle placed in an electric and magnetic 

field �⃑� = 𝑞(�⃑⃗� + �⃑� × �⃗⃑�) (Griffiths, 2005), the 
differential equations that describe the motion along 
the 𝑥, 𝑦 and 𝑧 can be written as following:  
 

𝑚�̈�(𝑡) = 𝑞𝐵𝑦 ̇ (t)                                                                           (1) 
𝑚�̈�(𝑡) = −𝑞𝐵�̇�(𝑡)                                                                         (2) 
𝑚�̈�(𝑡) = 𝑞𝐸                                                                                     (3) 
 

 
Fig. 1: A particle of mass 𝑚 and charge 𝑞 with an initial 

velocity 𝑣 0 in electric field �⃑⃗� and magnetic field vector �⃗⃑� 
at 𝑡 = 0 

 
Rewriting Eqs. 1, 2, and 3 as third-order 

differential equations in terms of time and by 

setting 𝜔0 =
𝑞𝐵

𝑚
, Eqs. 1, 2, and 3 are rewritten as 

follows: 
 
𝑥(𝑡) + 𝜔0

2 �̇�(𝑡) = 0                                                                       (4) 
𝑦(𝑡) + 𝜔0

2�̇�(𝑡) = 0                                                                        (5) 

�̈�(𝑡) − 𝜔0
𝐸

𝐵
= 0                                                                              (6) 

 

Starting with the motion along the x-axis and by 
applying the Laplace transform for Eq. 4 as: 
 
𝐿{𝑥(𝑡)} + 𝐿{𝜔0

2�̇�(𝑡)} = 0                                                           (7) 
 

where the terms 𝐿{𝑥(𝑡)} and 𝐿{𝜔0
2�̇�(𝑡)} are defined 

as (Kimeu, 2009; Arfken et al., 2013): 
 
𝐿{𝑥(𝑡)} =  𝑠3𝑋(𝑠) − 𝑠2𝑥(𝑡)|𝑡=0 
−𝑠�̇�(𝑡)|𝑡=0 − �̈�(𝑡)|𝑡=0                                                                  (8) 
𝐿{𝜔0

2 �̇�} = 𝜔0
2(𝑠𝑋(𝑠) − 𝑥(𝑡)|𝑡=0)                                              (9) 

 

Using Eq. 8 and Eq. 9, then Eq. 7 is rewritten as: 
 
𝑠3𝑋(𝑠) − 𝑠2𝑥(𝑡)|𝑡=0 − 𝑠�̇�(𝑡)|𝑡=0 − �̈�(𝑡)|𝑡=0 +
                               𝜔0

2(𝑠𝑋(𝑠) − 𝑥(𝑡)|𝑡=0)  = 0                        (10) 
 

By applying the initial conditions suggested for 
this motion along the x-axis as 𝑥(0) = 0, �̇�(0) =
𝑣0  and �̈�(0) = 0, Eq. 10 can be: 
 
 
  

𝑋(𝑠) =  
𝑣0

𝑠2+𝜔0
2                                                                               (11) 

 

Applying the inverse of Laplace transform so that: 
 
𝑥(𝑡) = 𝐿−1{𝑋(𝑠)}                                                                        (12) 

𝑥(𝑡) = 𝑣0 𝐿
−1 {

1

𝑠2+𝜔0
2}                                                                (13) 

 

Then the solution along the x-axis is written as 
(Kimeu, 2009; Arfken et al., 2013): 
 

𝑥(𝑡) =
𝑣0

𝜔0
sin(𝜔0𝑡)                                                                     (14) 
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In the Mittag-Leffler function format the above 
solution can be written as: 
 
𝑥(𝑡) = 𝑣0𝑡 𝐸2,2(−𝜔0

2𝑡2)                                                            (15) 

 

where 𝐸2,2(−𝜔0
2𝑡2)  is the Mittag-Leffler function 

which has the general form (Duan and Chen, 2018): 
 

𝐸𝛼,𝛽(−𝜔0
2𝑡2) = ∑

(−𝜔0
2𝑡2)

𝑘

𝛤(𝛼𝑘+𝛽)
∞
𝑘=0      𝛼 > 0, 𝛽 > 0                   (16) 

 

In the same way, applying the Laplace transform 
for Eq. 5 is as follows: 
 
𝐿{𝑦(𝑡)} + 𝐿{𝜔0

2�̇�(𝑡)} = 0                                                         (17) 
 

Using the definition of Laplace transform for the 
 𝑦(𝑡) and for 𝜔0

2�̇�(𝑡) as: 
 
𝐿{𝑦(𝑡)} =  𝑠3𝑌(𝑠) − 𝑠2𝑦(𝑡)|𝑡=0 − 𝑠�̇�(𝑡)|𝑡=0 − �̈�(𝑡)|𝑡=0 (18) 
 

𝐿{𝜔0
2 �̇�} = 𝜔0

2(𝑠𝑌(𝑠) − 𝑦(𝑡)|𝑡=0)                                           (19) 
 

By using the above definitions, Eq. 17 can be 
written as: 
 
𝑠3𝑌(𝑠) − 𝑠2𝑦(𝑡)|𝑡=0 − 𝑠�̇�(𝑡)|𝑡=0 − �̈�(𝑡)|𝑡=0 +
                  𝜔0

2(𝑠𝑌(𝑠) − 𝑦(𝑡)|𝑡=0) = 0                                      (20) 
 

After applying the initial conditions (𝑦(0) =
�̇�(0) = 0, �̈�(0) = −𝜔0𝑣0), Eq. 17 is resulted as: 
 
𝑠3𝑌(𝑠) + 𝜔0

2 𝑠𝑌(𝑠) + 𝜔0𝑣0 = 0                                              (21) 

𝑌(𝑠) =
−𝜔0𝑣0

𝑠(𝑠2+𝜔0
2)
                                                                            (22) 

 

Rewriting Eq. 22 as a sum of two fractions, we 
found the following: 
 

𝑌(𝑠) = −𝜔0𝑣0 (

1

𝜔0
2

𝑠
− 

1

𝜔0
2𝑠

𝑠2+𝜔0
2)                                                  (23) 

𝑌(𝑠) =
−𝑣0

𝜔0
(
1

𝑠
−

𝑠

𝑠2+𝜔0
2)                                                              (24) 

 

Now taking the inverse of 𝑌(𝑠) Laplace transform 
as: 

𝐿−1{𝑌(𝑠)} = −
𝑣0

𝜔0
𝐿−1 {

1

𝑠
−

𝑠

𝑠2+𝜔0
2}                                           (25) 

 
The solution on the y-axis is found to be (Duan and 
Chen, 2018): 
 

𝑦(𝑡) = −
𝑣0

𝜔0
(1 − cos𝜔0𝑡)                                                        (26) 

 

In the Mittag-Leffler function format the above 
solution can be written as: 
 

𝑦(𝑡) = −
𝑣0

𝜔0
(1 − 𝐸2,1(−𝜔0

2𝑡2))                                              (27) 

 

For the motion along the 𝑧-axis by applying the 
Laplace transform for Eq. 6, it can be found that: 
 

𝐿{�̈�(𝑡)} − 𝐿 {𝜔0
𝐸

𝐵
} = 0                                                              (28) 

 

Writing the definition of Laplace transform for 

the �̈�(𝑡) and for 𝜔0
𝐸

𝐵
 as (Kimeu, 2009; Arfken et al., 

2013): 
 
𝐿{�̈�} = 𝑠2𝑍(𝑠) − 𝑠𝑧(𝑡)|𝑡=0 − 𝑠�̇�(𝑡)|𝑡=0                                 (29) 

𝐿 {𝜔0
𝐸

𝐵
} = 𝜔0

𝐸

𝐵𝑠
                                                                          (30) 

 

Using the initial conditions along the z-axis 𝑧(𝑡) =
�̇�(0) = 0, Eq. 28 is written as: 
 

𝑠2𝑍(𝑠) − 𝜔0
𝐸

𝐵𝑠
= 0                                                                    (31) 

𝑍(𝑠) = 𝜔0
𝐸

𝐵

1

𝑠3
                                                                              (32) 

 

Using 𝐿−1 {
1

𝑠𝛼
} =

𝑡𝛼−1

Γ(𝛼)
  the solution along the 𝑧 −

axis is: 
 

𝑧(𝑡) = 𝜔0
𝐸

𝐵
 
𝑡2

2
                                                                              (33) 

 

Plotting the final solutions for 𝑥, 𝑦, and 𝑧 in Eq. 15, 
Eq. 27, and Eq. 33, the motion trajectory is found to 
be a helical trajectory as in Fig. 2. 

 

 
Fig. 2: a) The trajectory of the charged particle in 3D and b) 2D in the XY-plane as the values of 𝜔0, 𝐸, 𝐵 and 𝑣0 are set to 1 

unit  
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3. Fractional approach 

To obtain the fractional solution for the equations 
Eq. 4-Eq. 6, the ordinary time derivative operator 
will be modified to a fractional time derivative 
operator as follows (Gómez-Aguilar et al., 2015; 
Lorenzo and Hartley, 2016; Martínez et al., 2018; 
Pskhu and Rekhviashvili, 2018): 
 

 
𝑑

𝑑𝑡
 
𝑃𝑃𝑃𝑃
→     

1

𝜎1−𝛾
 
𝑑𝛾

𝑑𝑡𝛾
        1 <  𝛾 ≤ 𝑛                                           (34) 

 

where, the order of the time derivative is 𝛾 (an 
arbitrary parameter). The parameter 𝜎 is equal to 𝑇0 
(where 𝑇0 is the periodic time of the motion, 𝑇0 =
1/𝜔0) and it is introduced so that the dimension of 
the differential equations is consistent (Shishkina 
and Sitnik, 2020). As can be seen below for 𝛾 = 1, the 
fractional operator in Eq. 34 converts into an 
ordinary derivative in time as: 
 
1

𝜎1−𝛾
 
𝑑𝛾

𝑑𝑡𝛾
|
𝛾=1
 =   

𝑑

𝑑𝑡
                                                                      (35) 

 

There are many definitions that could be used to 
find the fractional derivatives e.g., the Riemann–
Liouville fractional derivative definition and the 
Caputo fractional derivative definition. However, in 
this work, the Caputo definition of the fractional 
derivative will be used since it has the value of zero 
when 𝑓(𝑡) is constant and since its Laplace 
Transform can be expressed in terms of the initial 
values. The Caputo definition has the following 
integral form (Gómez-Aguilar et al., 2015): 
 
𝑑𝑞

𝑑𝑡𝑞
 𝑓(𝑡) =

1

Γ(𝑛−𝑞)
∫

𝑓(𝑛)(𝜂)

(𝑡−𝜂)𝑞−𝑛+1
𝑑𝜂

𝑡

0
                                           (36) 

 

where,  𝑛 = 1, 2, … ∈ 𝑁 and 𝑛 − 1 <  𝑞 ≤ 𝑛 , 𝑞 is the 
order of derivative and can have non-integer values. 
Since 𝑛 = 3, the value of 𝛾 is limited by the condition 
 2 < 3𝛾 < 3 or  2/3 <  𝛾 ≤ 1. 

The motion of the charged particle on the x-axis 
(represented by Eq. 4) can be rewritten into the 
fractional differential form as: 
 
𝐷3𝛾𝑥(𝑡) + 𝜎2(1−𝛾)𝜔0

2𝐷𝛾𝑥(𝑡) = 0                                           (37) 
 

where, 𝐷3𝛾 =
𝑑3𝛾

𝑑𝑡3𝛾
 ,   𝐷𝛾 =

𝑑𝛾

𝑑𝑡𝛾
 , and 𝜔2 = 𝜎2(1−𝛾)𝜔0

2 . 

Taking the Laplace transform of Eq. 37, we get: 
 
𝐿{𝐷3𝛾𝑥(𝑡)} + 𝐿{𝜔2𝐷𝛾𝑥(𝑡)} = 0                                             (38) 
 

The Laplace transform for the first and second 
terms in Eq. 38 can be written respectively as 
(Kimeu, 2009): 
 
𝐿{𝐷3𝛾𝑥(𝑡)} = 𝑠3𝛾𝑋(𝑠) 
−∑ 𝑠𝑛−𝑘−1𝑛−1

𝑘=0  𝐷𝑘−(𝑛−3𝛾)𝑥(0)                                                (39) 
𝐿{𝐷𝛾𝑥(𝑡)} = 𝑠𝛾𝑋(𝑠) 

−∑ 𝑠𝑛−𝑘−1𝑛−1
𝑘=0 𝐷𝑘−(𝑛−𝛾)𝑥(0)                                                   (40) 

 

That can be simplified as follow: 
 

𝐿{𝐷3𝛾𝑥(𝑡)} = 𝑠3𝛾𝑋(𝑠) − 𝑠2𝐷3(𝛾−1)𝑥(0) −
                                        𝑠𝐷3𝛾−2𝑥(0) − 𝐷3𝛾−1𝑥(0)                 (41) 
𝐿{𝐷𝛾𝑥(𝑡)} =  𝑠𝛾𝑋(𝑠) − 𝐷𝛾−1𝑥(0)                                         (42) 
 

The initial conditions along the x-axis on the 
fractional form are written as: 
 
𝐷3𝛾−3𝑥(0) = 0 
𝐷3𝛾−1𝑥(0) = 0  
𝐷3𝛾−2𝑥(0) = 𝑐 
 𝐷𝛾−1𝑥(0) = 0                                                                             (43) 
 

where c is a constant that is reduced to 𝑣0 for 𝛾 = 1. 
After inserting the initial conditions for the 

fractional form, Eq. 38 can be rewritten as: 
 
𝑠3𝛾𝑋(𝑠) − 𝑐 𝑠 + 𝜔2𝑠𝛾𝑋(𝑠) = 0                                              (44) 
 

Solving for 𝑋(𝑠)as: 
 

𝑋(𝑠) =
𝑐𝑠

𝑠3𝛾+𝜔2𝑠𝛾
                                                                           (45) 

 

Rewriting the Eq. 45 in a form that can be found 
in Laplace transform tables, Eq. 45 can have the form 
(Kimeu, 2009): 
 

𝑋(𝑠) =
𝑐𝑠1−𝛾

𝑠2𝛾+𝜔2
                                                                               (46) 

 

Taking the Laplace inverse transform of Eq. 46, 
we get: 
 

𝐿−1{𝑋(𝑠)} = 𝑐𝐿−1 {
𝑠1−𝛾

𝑠2𝛾+𝜔2
}                                                       (47) 

 

The constant 𝑐 easily can be verified to be equal 

to 𝜔0
(3−3𝛾)

𝑣0. The solution of the above inverse 

Laplace transform in terms of the Mittag-Leffler 
function can be written as: 
 

𝑥(𝑡) = 𝜔0
(3−3𝛾)

𝑣0𝑡
3𝛾−2𝐸2𝛾,3𝛾−1(−𝜔

2𝑡2𝛾)                           (48) 

 

where,  2 3⁄ < 𝛾 ≤ 1. Eq. 48 represents a generalized 
solution on the 𝑥 −axis. Also, it can be verified that 
the fractional solution obtained in Eq. 48 for 𝛾 = 1 is 
equivalent to Eq. 15 which has been obtained by 
ordinary differential derivatives.  

The same procedure above can be followed for 
the ordinary equation on the y-axis part of the 
motion. The initial conditions for the motion on the 
y-axis at 𝑡 = 0 used earlier for the ordinary 
differential equations can be rewritten in the 
fractional form as: 
 
𝐷3𝛾−3𝑦(0) = 0 
𝐷3𝛾−2𝑦(0) = 0 
𝐷3𝛾−1𝑦(0) = 𝑐0 
𝐷𝛾−1𝑦(0) = 0                                                                              (49) 
 

where, 𝑐0 is a constant that is reduced to 𝜔0𝑣0for 𝛾 =
1. 

Performing the same task and rewriting Eq. 22 in 
the fractional form and after inserting the initial 
conditions and using 𝜔2 = 𝜎2(1−𝛾)𝜔0

2 the following 
equation can be found: 
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𝑠3𝛾𝑌(𝑠) + 𝜔2𝑠𝛾𝑌(𝑠) − 𝑐0 = 0                                                (50) 
 

Solving for 𝑌(𝑠) it can be found that 𝑌(𝑠) can be 
written as: 
 

𝑌(𝑠) =
𝑐0

𝑠3𝛾+𝜔2𝑠𝛾
                                                                            (51) 

          =
𝑐1

𝑠𝛾
+

𝑐2

𝑠2𝛾+𝜔2
                                                                      (52) 

 

From Eqs. 51 and 52, it can be verified that 𝑐2 =
−𝑐1𝑠

𝛾  and 𝑐0 = 𝑐1𝜔
2, which means Eq. 52 can be 

rewritten as: 
 

𝑌(𝑠) =
𝑐1

𝑠𝛾
−

𝑐1𝑠
𝛾

𝑠2𝛾+𝜔2
                                                                      (53) 

 

Taking the inverse Laplace transform of Eq. 53 
we get (Kimeu, 2009; Arfken et al., 2013): 
 

𝐿−1{𝑌(𝑠)} = 𝑐1 𝐿
−1 {

1

𝑠𝛾
} − 𝑐1 𝐿

−1 {
𝑠𝛾

𝑠2𝛾+𝜔2
}                           (54) 

 

The solution of the above inverse Laplace 
transform is: 
 

  𝑦(𝑡) = 𝑐1
𝑡𝛾−1

Γ(𝛾)
− 𝑐1 𝑡

𝛾−1𝐸2𝛾,𝛾(− 𝜔
2𝑡2𝛾)                             (55) 

 

Using 𝑐0 = 𝑐1𝜔
2 and   𝜔2 = 𝜎2(1−𝛾)𝜔0

2 and 

comparing with Eq. 27, the constant 𝑐1 = 𝜎
(1−𝛾)𝐸/𝐵. 

Finally, Eq. 55 can be written as: 
 

𝑦(𝑡) = −𝜔0
(𝛾−2)𝑣0 (

𝑡𝛾−1

Γ(𝛾)
− 𝑡𝛾−1𝐸2𝛾,𝛾(− 𝜔

2𝑡2𝛾))             (56) 

 

where again  2/3 < 𝛾 ≤ 1. Eq. 56 represents the 
general solution on the y-axis which is reduced to 
the solution presented in Eq. 27 for 𝛾 = 1. 

Now, the differential equation that describes the 
motion along the z-axis (Eq. 6) can be rewritten in 
terms of the fractional derivative as follows: 
 

𝐷2𝛾𝑧(𝑡) −
𝜎2(1−𝛾)𝜔0𝐸

𝐵
= 0                                                           (57) 

 

Taking 𝜔 = 𝜎2(1−𝛾)𝜔0 and taking the Laplace 
transform, Eq. 57 is rewritten as: 
 

𝐿{𝐷2𝛾𝑧(𝑡)} − 𝐿 {𝜔
𝐸

𝐵
} = 0                                                         (58) 

 

Using the definition (Kimeu, 2009; Arfken et al., 
2013): 
 
𝐿{𝐷2𝛾𝑧(𝑡)} = 𝑠2𝛾𝑍(𝑠) 

−∑ 𝑠𝑛−𝑘−1𝑛−1
𝑘=0 𝐷𝑘−(𝑛−2𝛾)𝑍(0)                                                (59) 

𝐿{𝐷2𝛾𝑧(𝑡)} = 𝑠2𝛾𝑍(𝑠) 
−𝑠𝐷2𝛾−2𝑧(0) − 𝐷2𝛾−1𝑧(0)                                                      (60) 
 

Inserting the initial conditions in the fractional 
form so that 𝐷2𝛾−2𝑧(0) = 0 and 𝐷2𝛾−1𝑧(0) = 0 and 

by using 𝐿 {𝜔
𝐸

𝐵
} = 𝜔

𝐸

𝐵𝑠
, the result of applying the 

Laplace transform for Eq. 58. has the following form: 
 

𝑠2𝛾𝑍(𝑠) − 𝜔
𝐸

𝐵𝑠
= 0                                                                    (61) 

 

The function 𝑍(𝑠) can be rewritten as: 

𝑍(𝑠) =
𝜔𝐸

𝐵

1

𝑠2𝛾+1
                                                                             (62) 

 

The inverse Laplace transform for 𝑍(𝑠) can be 
found as: 
 

𝐿−1{𝑍(𝑠)} = 𝜔
𝐸

𝐵
𝐿−1 {

1

𝑠2𝛾+1
}                                                      (63) 

 

Using 𝐿−1 {
1

𝑠𝑛+1
} =

𝑡𝑛

Γ(𝑛−1)
 and 𝑛 = 2𝛾, the time-

dependent general solution along the z-axis can be 
obtained as:  
 

𝑧(𝑡) = 𝜔
𝐸

𝐵

𝑡2𝛾

Γ(2𝛾−1)
                                                                       (64) 

 

Using 𝜔 = 𝜔0
2𝛾−1

, the above solution will have the 

following form: 
 

𝑧(𝑡) = 𝜔0
2𝛾−1 𝐸

𝐵

𝑡2𝛾

Γ(2𝛾−1)
                                                               (65) 

 

The general solution along the z-axis at 𝛾 = 1 is 
reduced to the solution obtained from the ordinary 
differential equations in Eq. 33. 

Now, having found the fractional solution 
(generalized solutions) of 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) as in 
Eq. 48, Eq. 56, and Eq. 65, the trajectory for different 
values of 𝛾 can be plotted as in Fig. 3. 

From Fig. 3, it can be seen that for 𝛾 = 1 the 
trajectory is a helical trajectory which is identical to 
what has been seen in Fig. 2 before introducing the 
fractional approach. Also, it’s clear from Fig. 3 that as 
𝛾 is reduced by 0.01 the helical trajectory started to 
be affected as a reduction in the radius of the motion 
with a small delay when compared to the path 
for 𝛾 = 1. As the 𝛾 value is decreased the dissipation 
and delay behaviors become clearer in the particle 
trajectory until 𝛾 = 2/3 at which the main features 
of helical trajectory totally disappeared. The resulted 
trajectory of the particle due to the application of the 
fractional approach on the ordinary differential 
equations of the helical trajectory is a cyclone 
trajectory. It is interesting to observe the time 
evolution of the cyclone motion as it developed to a 
helical motion as the 𝛾 value is increased from 2/3 to 
1. The time evolution of the trajectory and the 
dissipation of the motion in the xy-plane can be too 
observed as in Fig. 4. 

For different values of 𝛾 when the fractional 
approach is used. For the motion projection in XY-
plane, the same phenomena of delay and dissipation 
are observed too, and they become clearer as the 
value of 𝛾 is decreased toward 2/3.  It is important to 
draw the reader’s attention to the point that the 
cyclone trajectory was mathematically the result of 
using the fractional approach to helical trajectory. 

When considering the XY-trajectory of the 
motion, it can be noted that the trajectory of the 
motion is spiral. Such spiral  trajectory solution could 
be used to build mathematical modules for other 
natural phenomena e.g., hurricanes, tornados, and 
whirlpools (Lorenzo and Hartley, 2016). 
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Fig. 3: The helical–cyclone trajectory of a charged particle moving in electric and magnetic fields pointing in the z-direction 

for different values of  𝛾. For simplicity, the values of 𝜔0, 𝐸, 𝐵 and 𝑣0 are set to 1 
 

4. Conclusion 

The fractional derivative approach was applied 
for the differential equations that describe the 
motion of a charged particle in uniform electric and 
magnetic fields and a helical trajectory was obtained. 
After introducing the fractional operator in terms of 
𝛾 ( where 2/3 < 𝛾 ≤ 1), the obtained general 
solution describes a trajectory of a cyclone. The 
general solution which is written in terms of a series 

solution (Mittag-Leffler function) shows the 
behavior of delay in time and dissipation in the 
medium in an equivalent real system. A small change 
in the value of 𝛾 (e.g., from 1 down to 0.99) changes 
the trajectory from a helical to cyclone trajectory in 
3D and to a spiral trajectory in 2D plots. The spiral 
trajectory obtained in this work can be generalized 
to build modules for similar scenario forces. 
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Fig. 4: The motion of the charged particle as observed in the XY-plane for different values of 𝛾 (all plots for the same time 

interval). For simplicity, the values of 𝜔0, 𝐸, 𝐵 and 𝑣0 are set to 1 
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