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1. Introduction 

*Like fractional derivatives, fractional integral 
equations have recently attracted the interest of 
many researchers and scientists. Both linear and 
nonlinear Volterra integral equations of the second 
kind have become necessary and essential in 
modeling real-life (world) problems and physical 
phenomena in applied Mathematics, Physics, 
Sciences, and Engineering (Berenguer et al., (2010). 
Particularly, the fractional integral equations have 
often found their applications in heat 
transformations and heat radiation, population 
growth models, biological species living together, 
porous media, rheology, control, electrochemistry, 
viscoelasticity, electromagnetism fluid structure, 
coupling, and particle mechanics (Agarwal et al., 
2015; Hamdan et al., 2019). In addition, they have 
been applied in stochastic fractional differential and 
integral equations (Omaba, 2021a; 2021b; Omaba 
and Enyi, 2021). 

Motivated by the above numerous modeling 
applications of fractional Volterra integral equations, 
we consider the following stochastic fractional 
nonlinear Volterra integral equations of the second 
kind: 
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𝜑(𝑡) = 𝜃(𝑡) +
𝛿

𝛤(α)
∫(𝑡 − 𝑠)𝛼−1

𝑡

𝑎

𝑘(𝑡, 𝑠)𝜗(𝑠, 𝜑(𝑠))�̇�(𝑠)𝑑𝑠 

= 𝜃(𝑡) +
𝛿

𝛤(α)
∫ (𝑡 − 𝑠)𝛼−1𝑡

𝑎
𝑘(𝑡, 𝑠)𝜗(𝑠, 𝜑(𝑠))𝑑𝑤(𝑠),            (1) 

0 < 𝛼 < 1, 0 < 𝑎 ≤ 𝑡 ≤ 𝑏 < ∞,  
 
where, 𝑘(𝑡, 𝑠) is assumed to be a convolution kernel 
(also called a displacement kernel) given by 𝑘(𝑡, 𝑠) =

𝑘(𝑡 − 𝑠) = 𝑒−(𝑡−𝑠), 𝜗: [𝑎, 𝑏] × ℝ → ℝ is Lipschitz 
continuous on the second variable, 𝜃: [𝑎, 𝑏] → ℝ is 
continuous, �̇� is a Gaussian white noise process and 
𝛿 is a positive parameter called the level of the noise 
term; and, 
 

𝜑(𝑡) = 𝜃(𝑡) +
𝛿

𝛤(α)
∫ (𝑡 − 𝑠)𝛼−1𝑡

𝑎
𝑘(𝑡, 𝑠, 𝜑(𝑠))�̇�(𝑠)𝑑𝑠  

= 𝜃(𝑡) +
𝛿

𝛤(α)
∫ (𝑡 − 𝑠)𝛼−1𝑡

𝑎
𝑘(𝑡, 𝑠, 𝜑(𝑠))𝑑𝑤(𝑠),                     (2) 

 

with 0 < 𝛼 < 1, 0 < 𝑎 ≤ 𝑡 ≤ 𝑏 < ∞,  and 𝑘: [𝑎, 𝑏] ×

[𝑎, 𝑏] × ℝ → ℝ assumed to be Lipschitz continuous on 
the third variable. Here, 𝜑 is the unknown function. 
 
Remark 1.1: Though the integral Eqs. in 1, and 2 are 
defined for all 0 < 𝛼 < 1, their existence and 
uniqueness and growth moment bound results to 

hold only for 𝛼 ∈  (
1

2
, 1). This is because, in the proofs 

of the main results we have the gamma function 
𝛤(2𝛼 − 1), which is defined only for 2𝛼 − 1 > 0 and 

hence 𝛼 ∈  (
1

2
, 1); and also, Proposition 2.10 and 

Proposition 2.13 apply only for 𝜌 = 2𝛼 − 1 > 0. Thus, 

for 𝛼 ∈  (0,
1

2
), the solution(s) will fail to exist, and 

consequently, no moment bounds. 
 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mcomaba@uhb.edu.sa
https://doi.org/10.21833/ijaas.2022.08.019
https://orcid.org/0000-0002-5163-229X
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2022.08.019&amp;domain=pdf&amp


McSylvester Ejighikeme Omaba/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 152-157 

153 
 

Definition 1.2: The unknown function {𝜑(𝑡),   𝑎 ≤ 𝑡 ≤

𝑏}  is called a mild solution if almost surely, 
𝜑 satisfies Eq. 1, and Eq. 2 respectively. 

If in addition, {𝜑(𝑡),   𝑎 ≤ 𝑡 ≤ 𝑏} satisfies the 
following sup

𝑡∈[𝑎,𝑏]
𝑬|𝜑(𝑡)|2 < ∞, then we say that 

{𝜑(𝑡),   𝑎 ≤ 𝑡 ≤ 𝑏} is a random field solution to Eq. 1, 
and Eq. 2 respectively. 

The organization of the paper is as follows. 
Section 2 contains the preliminaries and in Section 3, 
we gave the main results: Proofs of results for Eq. 1 
in Subsection 3.1 and proofs of results for Eq. 2 in 
Subsection 3.2. Section 4 contains a short summary 
of the paper. 

2. Preliminaries 

In general, the Volterra integral equation can be 
written, 
 

𝑣(𝑡)𝑢(𝑡) = 𝜔(𝑡) + 𝜇 ∫ 𝑘(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠.
𝑡

𝑎
  

 

It is the first kind when 𝑣(𝑡) = 0 and the second 
kind when 𝑣(𝑡) = 1 (Wazwaz, 2011). In this paper, 
we will be considering the Volterra integral equation 
of the second kind. The general form of the second 
kind linear Volterra integral equation is given by, 
 

𝑢(𝑡) = 𝜔(𝑡) + 𝜇 ∫ 𝑘(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠,    𝑎 ≤ 𝑡 ≤ 𝑏,
𝑡

𝑎
                    (3) 

 

where 𝑘(𝑡, 𝑠) is called the kernel or the nucleus or the 
free term of the integral equation, 𝜇 is a constant 
parameter and 𝑢(𝑡) is the unknown function to be 
determined. 
 
Theorem 2.1: (Wazwaz, 2011) If the function 𝑘(𝑡, 𝑠) 
is continuous in 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏 and the function 𝜔(𝑡) is 
continuous in 𝑎 ≤ 𝑡 ≤ 𝑏, then there is a unique 
continuous solution of the integral Eq. 3. 

Now, we define a generalized derivative for a 
deterministic function 𝑤: 
 
Definition 2.2: Suppose 𝑓(𝑡) is any smooth and 
compactly supported function. Then the generalized 
derivative �̇�(𝑡) of 𝑤(𝑡) (not necessarily 
differentiable) is given by, 
 

∫ 𝑓(𝑡)�̇�(𝑡)𝑑𝑡 = − ∫ 𝑓̇(𝑡)𝑤(𝑡)𝑑𝑡.
∞

0

∞

0
  

 

Therefore, 
 

∫ 𝑓(𝑠)�̇�(𝑠)𝑑𝑠 = 𝑓(𝑡)𝑤(𝑡) − ∫ 𝑓̇(𝑠)𝑤(𝑠)𝑑𝑠.
𝑡

0

𝑡

0
  

 

Next, we present the following estimates 
(bounds) on an incomplete gamma function: 
 
Theorem 2.3: (Neuman, 2013) Let 𝑥 > 0, then the 
following inequalities: 
 

𝑒𝑥𝑝 (
−𝑎 𝑥

𝑎+1
) ≤

𝑎

𝑥𝑎 𝛾(𝑎, 𝑥) ≤ ₁𝐹1(𝑎; 𝑎 + 1; −𝑥) ≤
1

𝑎+1
(1 +

𝑎𝑒−𝑥),  
 

hold, where ₁𝐹1(𝑎; 𝑎 + 1; −𝑥) is a confluent 
hypergeometric (Kummer) function. 

More so, for 0 < 𝑎 ≤ 1,  
 
1−𝑒−𝑥

𝑥
≤

𝑎

𝑥𝑎 𝛾(𝑎, 𝑥).  

 

Lemma 2.4: (Natalini and Palumbo, 2000) For 𝑎 > 1,

𝐵 > 1 and 𝑥 >
𝐵

𝐵−1
(𝑎 − 1) we have, 

 
𝑥𝑎−1𝑒−𝑥 < |𝛤(𝑎, 𝑥)| < 𝐵𝑥𝑎−1𝑒−𝑥 .  
 
Remark 2.5: From the above results, 𝛾(𝑧, 𝑥) is the 
incomplete gamma function and 𝛤(𝑧, 𝑥) is the 
complement of the incomplete gamma function 
satisfying the relation, 
 
𝛾(𝑧, 𝑥) = 𝛤(𝑧) − 𝛤(𝑧, 𝑥),  
 

with 𝛤(𝑧) the Euler’s gamma function.  

3. Main results 

Here, we make global Lipschitz continuity 
conditions on 𝜗(. , 𝜑) and 𝑘(, . 𝜑) as follows: 
 

Condition 3.1: Let 0 < 𝐿𝑖𝑝𝜗 < ∞. Then for all 𝑥, 𝑦 ∈ ℝ 
and 𝑡 ∈ [𝑎, 𝑏], 
 
|𝜗(𝑡, 𝑥) − 𝜗(𝑡, 𝑦)| ≤ 𝐿𝑖𝑝𝜗|𝑥 − 𝑦|. 
 

We set 𝜗(𝑡, 0) = 0 for convenience only. 
 

Condition 3.2: Suppose 0 < 𝑀 < ∞. Then for all 𝑥, 𝑦 ∈

ℝ and 𝑡, 𝑠 ∈ [𝑎, 𝑏], 
 
|𝑘(𝑡, 𝑠, 𝑥) − 𝑘(𝑡, 𝑠, 𝑦)| ≤ 𝑀|𝑥 − 𝑦|. 
 

Also, set 𝜗(𝑡, 0) = 0 for the purpose of 
convenience. 

Next, we define the 𝐿2(𝑃) norm of 𝜑 by ||𝜑||
2

2
=

sup
𝑡∈[𝑎,𝑏]

𝐸|𝜑(𝑡)|2. 

3.1. Proofs of results for Eq. 1 

Theorem 3.3: Suppose 𝛼 >
1

2
 and Condition 3.1 

holds. Then for some positive constants 𝑐2, 𝛿, 𝐿𝑖𝑝𝜗  

such that 𝑐2 <
1

(𝛿 𝐿𝑖𝑝𝜗)2, there exists a unique solution 

to Eq. 1. 
The proof of the above is via the Banach fixed 

point theorem. First, define the operator: 
 

Ω𝜑(𝑡) = 𝜃(𝑡) +
𝛿

𝛤(α)
∫(𝑡 − 𝑠)𝛼−1

𝑡

𝑎

𝑒−(𝑡−𝑠)𝜗(𝑠, 𝜑(𝑠))𝑑𝑤(𝑠).  

 

Then the solution of Eq. 1 will be obtained as a 
fixed point of the operator Ω. 
 
Lemma 3.4: Let 𝜑 be a mild solution of Eq. 1 
satisfying ||𝜑||2 < ∞. Suppose Condition 3.1 holds, 

then for 𝛼 >
1

2
, 
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||Ω𝜑||2
2 ≤ 𝑐1 + 𝑐2𝛿2𝐿𝑖𝑝𝜗

2||𝜑||2
2, 

 

where, 𝑐2: =
(𝑏−𝑎)2𝛼−1

(2𝛼−1)𝛤2(𝛼)
.  

 
Proof. Applying It�̂� isometry and Condition 3.1, we 
obtain: 
 

𝑬|Ω𝜑(𝑡)|2 ≤ |𝜃(𝑡)|2 +
𝛿2

𝛤2(α)
∫ (𝑡 −

𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝑬|𝜗(𝑠, 𝜑(𝑠))|2𝑑𝑠  

≤ |𝜃(𝑡)|2 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
∫(𝑡 − 𝑠)2𝛼−2

𝑡

𝑎

𝑒−2(𝑡−𝑠)𝑬|𝜑(𝑠)|2𝑑𝑠 

≤ |𝜃(𝑡)|2 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
||𝜑||2

2 ∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑒−2(𝑡−𝑠)𝑑𝑠  

                                    ≤ |𝜃(𝑡)|2 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
||𝜑||2

2 1

22𝛼−1
[𝛤(2α − 1) − 𝛤(2α − 1, 2(t − a))]  

≤ |𝜃(𝑡)|2 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
||𝜑||

2

2 1

22𝛼−1
𝛾(2α − 1, 2(t − a)), ℜ(α) >

1

2
.  

 

Using the estimate of Theorem 2.3 for α >
1

2
 and 

t > a, one gets: 
 

𝐸|Ω𝜑(𝑡)|2 ≤ |𝜃(𝑡)|2 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
||𝜑||

2

2 1

22𝛼−1

22𝛼−1(𝑡−𝑎)2𝛼−1

2𝛼(2𝛼−1)
(1 +

(2𝛼 − 1)𝑒−2(𝑡−𝑎))  

= |𝜃(𝑡)|2 +
𝛿2𝐿𝑖𝑝𝜗

2

2𝛼(2𝛼−1)𝛤2(α)
||𝜑||

2

2
(𝑡 − 𝑎)2𝛼−1(1 +

(2𝛼 − 1)𝑒−2(𝑡−𝑎)). 
 

Now, take supremum over 𝑡 ∈ [𝑎, 𝑏] of both sides 
to obtain: 
 

||Ω𝜑||2
2 ≤ 𝑐1 +

𝛿2𝐿𝑖𝑝𝜗
2

2𝛼(2𝛼−1)𝛤2(α)
||𝜑||

2

2
(𝑡 − 𝑎)2𝛼−1(1 +

(2𝛼 − 1),  
 

and the result readily follows. The last inequality 
follows because 𝑒−2(𝑡−𝑎) ≤ 1 since 𝑡 − 𝑎 ≥ 0. 
 
Lemma 3.5: Suppose 𝜑 and ф are mild solutions of 
Eq. 1 satisfying ||𝜑||2 + ||ф||2 < ∞. Given that 

Condition 3.1 holds, then for 𝛼 >
1

2
, 

 
||Ω𝜑 − Ωф||2

2 ≤ 𝑐2𝛿2𝐿𝑖𝑝𝜗
2||𝜑 − ф||2

2. 
 

Proof. The proof follows the steps of proof of 
Theorem 3.4. 
 
Proof of Theorem 3.3: Let 𝜑(𝑡) = Ω𝜑(𝑡). Then by 
Lemma 3.4, we have: 
 
||𝝋||𝟐

𝟐 = ||Ω𝝋||𝟐
𝟐 ≤ 𝑐1 + 𝑐2𝛿2𝐿𝑖𝑝𝜗

2||𝜑||2
2  

 

This gives ||𝜑||2
2[1 − 𝑐2𝛿2𝐿𝑖𝑝𝜗

2] ≤ 𝑐1 and ||𝜑||2 < ∞ 

for all 𝑐2 <
1

(𝐿𝑖𝑝𝜗)2. 

Similarly, from Lemma 3.5, one has: 
 
||𝜑 − ф||2

2 = ||Ω𝜑 − Ωф||2
2 ≤ 𝑐2𝛿2𝐿𝑖𝑝𝜗

2||𝜑 − ф||2
2, 

 

and ||𝜑 − ф||2
2[1 − 𝑐2𝛿2𝐿𝑖𝑝𝜗

2] ≤ 0. Thus, for 𝑐2 <
1

(𝐿𝑖𝑝𝜗)2, 

we have ||𝜑 − ф||2 ≤ 0 and the uniqueness result 
follows by the Banach contraction principle. 

Remark 3.6: Next, we extend the above results to 

𝑝th moment for all 𝑝 ≥ 2. For 𝑝 ≥ 2, define   ||𝜑||
𝑝

𝑝
=

sup
𝑡∈[𝑎,𝑏]

𝐸|𝜑(𝑡)|𝑝. 

We follow the same line of argument of proofs of 
Lemma 3.3 and Lemma 3.4 in Foondun and 
Khoshnevisan (2009). 
 
Lemma 3.7: For 𝑝 ≥ 2, let 𝜑 be a mild solution of Eq. 
1 such that ||𝜑||𝑝 < ∞. Suppose Condition 3.1 holds, 

then for 𝛼 >
1

2
, 

 

||Ω𝜑||𝑝
𝑝

≤ 𝑐𝑝 + 𝑐𝛼,𝑝||𝜑||
𝑝

𝑝
,  

 

where, 𝑐𝑝 ≔ 2𝑝−1𝑐 and 𝑐𝛼,𝑝 ≔ 2𝑝−1 (
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

𝑝 (𝑏−𝑎)𝑝(𝛼−
1
2)

(2𝛼−1)
𝑝
2

 

with 𝑧𝑝 the optimal constant in the Burkholder-

Davis-Gundy (BDG) inequality. 
 
Proof. Applying BDG inequality, we have: 
 

𝐸|Ω𝜑(𝑡)|𝑝 ≤ 2𝑝−1|𝜃(𝑡)|𝑝 + 2𝑝−1 (
𝛿𝑧𝑝

𝛤(𝛼)
)

𝑝

𝐸 |∫ (𝑡 −
𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)|𝜗(𝑠, 𝜑(𝑠))|2𝑑𝑠|

𝑝

2
  

≤ 2𝑝−1|𝜃(𝑡)|𝑝 + 2𝑝−1 (
𝛿𝑧𝑝

𝛤(𝛼)
)

𝑝

[∫ (𝑡 −
𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝑬|𝜗(𝑠, 𝜑(𝑠))|2𝑑𝑠]

𝑝

2  

≤ 2𝑝−1|𝜃(𝑡)|𝑝 + 2𝑝−1 (
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

𝑝

[∫ (𝑡 −
𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝑬|𝜑(𝑠)|2𝑑𝑠]

𝑝

2
  

≤ 2𝑝−1|𝜃(𝑡)|𝑝 + 2𝑝−1 (
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

𝑝

( sup
𝑎≤𝑠≤𝑡

𝑬|𝜑(𝑠)|2)

𝑝

2
[∫ (𝑡 −

𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝑑𝑠]

𝑝

2
  

≤ 2𝑝−1|𝜃(𝑡)|𝑝 + 2𝑝−1 (
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

𝑝

||𝜑||
𝑝

𝑝
[

1

22𝛼−1
𝛾(2α −

1, 2(t − a))]

𝑝

2
,   ℜ(α) >

1

2
.  

   

Let sup
𝑡∈[𝑎,𝑏]

|𝜃(𝑡)|𝑝 ≤ 𝑐. Now, take supremum over 𝑡 ∈

[𝑎, 𝑏] and apply the estimate of Theorem 2.3 for α >
1

2
 

and t > a, to get: 
 
||Ω𝜑||𝑝

𝑝
≤ 2𝑝−1 sup

𝑡∈[𝑎,𝑏]
|𝜃(𝑡)|𝑝 +

2𝑝−1 (
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

𝑝 (𝑏−𝑎)𝑝(𝛼−
1
2)

(2𝛼−1)
𝑝
2

||𝜑||
𝑝

𝑝
,  

 

and the result follows. 
 
Lemma 3.8: For 𝑝 ≥ 2, let 𝜑 and ф be mild solutions 
of Eq. 1 satisfying ||𝜑||𝑝 + ||ф||𝑝 < ∞. Suppose 

Condition 3.1 holds, then for 𝛼 >
1

2
, 

 

||Ω𝜑 − Ωф||𝑝
𝑝

≤ 𝑐𝛼,𝑝||𝜑 − ф||
𝑝

𝑝
. 

 

Using the above Lemma 3.4 and Lemma 3.5, we 
obtain the existence and uniqueness theorem. 
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Theorem 3.9: Let 𝛼 >
1

2
 and suppose Condition 3.1 

holds. Then for a positive constant 𝑐𝛼,𝑝 such that 

𝑐𝛼,𝑝 < 1, there exists a unique solution to Eq. 1.  

3.1.1. Upper moment bound 

For the growth moment result, we present the 
following renewable inequality: 
 
Proposition 3.10: (Foondun and Khoshnevisan, 
2009) Let 𝜌 > 0 and suppose that 𝑓(𝑡) is a locally 
integrable function satisfying. 
 

𝑓(𝑡) ≤ 𝑐1 + 𝜖 ∫ (𝑡 − 𝑠)𝜌−1𝑡

0
𝑓(𝑠)𝑑𝑠, ∀  𝑡 > 0,  

 

where,  𝑐1 > 0. Then we have: 
 

𝑓(𝑡) ≤ 𝑐2𝑒𝑥𝑝 (𝑐3(𝛤(𝜌))
1

𝜌𝜖
1

𝜌𝑡), for all 𝑡 > 0  

 

for some positive numbers 𝑐2 and 𝑐3. 
Here, is the upper moment growth bound result 

Assume that the function 𝜃(𝑡) is bounded above. 
 
Theorem 3.11: Suppose Condition 3.1 holds. Then 
for all 𝑡 ∈ [𝑎, 𝑏] we obtain: 
 

𝐸|𝜑(𝑡)|2 ≤ 𝑐4𝑒𝑥𝑝 (𝑐6𝛿
2

2𝛼−1(𝑡 − 𝑎) − 2𝑡),  

 

for some positive constants 𝑐4, 𝑐5 and, 
 

𝑐6 = 𝑐5 (
𝛤(2𝛼−1)𝐿𝑖𝑝𝜗

2

𝛤2(α)
)

1

2𝛼−1
, α >

1

2
.  

 

Proof. Given that sup
𝑡∈[𝑎,𝑏]

|𝜃(𝑡)|2 ≤ 𝑐1, then we have: 

 

𝐸|𝜑(𝑡)|2 ≤ 𝑐1 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
∫(𝑡 − 𝑠)2𝛼−2

𝑡

𝑎

𝑒−2(𝑡−𝑠)𝑬|𝜑(𝑠)|2𝑑𝑠. 

 

Multiply through by 𝑒2𝑡 and let 𝑓(𝑡) = 𝑒2𝑡𝐸|𝜑(𝑡)|2 
to obtain: 
 

𝑓(𝑡) ≤ 𝑒2𝑡𝑐1 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑓(𝑠)𝑑𝑠  

≤ 𝑒2𝑏𝑐1 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑓(𝑠)𝑑𝑠  

= 𝑐3 +
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑓(𝑠)𝑑𝑠.  

 
Then by Proposition 3.10 for 𝜌 = 2𝛼 − 1 > 0 and 

𝜖 =
𝛿2𝐿𝑖𝑝𝜗

2

𝛤2(α)
, we have: 

 

𝑓(𝑡) ≤  𝑐4𝑒𝑥𝑝 (𝑐5 𝛤
1

2𝛼−1(2𝛼 − 1)
𝛿

2
2𝛼−1 𝐿𝑖𝑝𝜗

2
2𝛼−1

𝛤
2

2𝛼−1(𝛼)
(𝑡 − 𝑎)) , 𝑡 >

𝑎,                                                                                                        (4) 
 

and the result follows: 
 
Remark 3.12: The best growth bound estimate 
obtained is the second moment bound. Now, let 0 <

𝑞 < 1, and the following elementary inequality holds: 
 

(𝑎 + 𝑏)𝑞 < 𝑎𝑞 + 𝑏𝑞                                                                      (5) 
 

Thus, following the proof of Lemma 3.7, 
 

𝐸|𝜑(𝑡)|𝑝 ≤ 𝑐𝑝 + 2𝑝−1 (
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

𝑝

[∫ (𝑡 −
𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝑬|𝜑(𝑠)|2𝑑𝑠]

𝑝

2
.  

 

Raise both sides to the power of 
2

𝑝
≤ 1 and apply 

Eq. 5 to obtain: 
 

(𝐸|𝜑(𝑡)|𝑝)
2

𝑝 ≤ 𝑐𝑝

2

𝑝 + 2
2(1−

1

𝑝
)

(
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

2

∫ (𝑡 −
𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝐸|𝜑(𝑠)|2𝑑𝑠.  
 

It follows that:  
 

𝐸|𝜑(𝑡)|2 ≤ (𝐸|𝜑(𝑡)|𝑝)
2

𝑝 ≤ 𝑐𝑝

2

𝑝 + 2
2(1−

1

𝑝
)

(
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

2

∫ (𝑡 −
𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝐸|𝜑(𝑠)|2𝑑𝑠.  
 

Therefore, by following the proof of Theorem 
3.11, one gets: 
 

𝑓(𝑡) ≤ 𝑐𝑝

2
𝑝𝑒2𝑏 + 2

2(1−
1
𝑝

)
(

𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

2

∫(𝑡 − 𝑠)2𝛼−2𝑓(𝑠)𝑑𝑠,

𝑡

𝑎

 

 

and a similar estimate in Eq. 4 easily follows. 
Therefore,  
 

𝑓(𝑡) ≤  �̃�4𝑒𝑥𝑝 (�̃�5 𝛤
1

2𝛼−1(2𝛼 −

1)2
2

2𝛼−1
(1−

1

𝑝
)

(
𝛿𝑧𝑝𝐿𝑖𝑝𝜗

𝛤(𝛼)
)

2

2𝛼−1
(𝑡 − 𝑎)) , 𝑡 > 𝑎,    

 

for some positive constants �̃�4, �̃�5; and consequently, 
we have:  
 

𝐸|𝜑(𝑡)|2 ≤ �̃�4𝑒𝑥𝑝 (�̃�6𝛿
2

2𝛼−1(𝑡 − 𝑎) − 2𝑡),  

 
where, 
 

�̃�6 = �̃�52
2

2𝛼−1
(1−

1

𝑝
)

(
𝛤(2𝛼−1)𝑧𝑝

2 𝐿𝑖𝑝𝜗
2

𝛤2(α)
)

1

2𝛼−1
>0 

3.1.2. Lower moment bound 

For the lower growth bound, we use the converse 
of Proposition 3.10. 
 
Proposition 3.13: (Foondun and Khoshnevisan, 
2009) Let 𝜌 > 0 and suppose that 𝑓(𝑡) is a 
nonnegative locally integrable function satisfying. 
 

𝑓(𝑡) ≥ 𝑐1 + 𝜖 ∫ (𝑡 − 𝑠)𝜌−1𝑡

0
𝑓(𝑠)𝑑𝑠, ∀  𝑡 > 0,  

 

where,  𝑐1 > 0. Then we have: 
 

𝑓(𝑡) ≥ 𝑐2𝑒𝑥𝑝 (𝑐3(𝛤(𝜌))
1

𝜌𝜖
1

𝜌𝑡),   
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for all 
 

𝑡 >
𝑒

𝜌
(𝛤(𝜌)𝜖)

−
1

𝜌  

 

for some positive numbers 𝑐2 and 𝑐3. 
Instead of Condition 3.1, we have the following: 
 
Condition 3.14: Let 0 < 𝐿𝜗 < ∞. Then for all 𝑥 ∈ ℝ 
and 𝑡 ∈ [𝑎, 𝑏], we have: 
 
|𝜗(𝑡, 𝑥)| ≤ 𝐿𝜗|𝑥|. 
 

Thus, we have the lower bound estimate by 
assuming that the function 𝜃(𝑡) > 𝑐7 for 𝑐7 > 0 to 
obtain: 
 
Theorem 3.15: Given that Condition 3.1 holds. Then 
for all 𝑡 ∈ [𝑎, 𝑏] we obtain: 
 

𝐸|𝜑(𝑡)|2 ≥ 𝑐8𝑒𝑥𝑝 (𝑐10𝛿
2

2𝛼−1(𝑡 − 𝑎) − 2𝑡),  

 

for some positive constants 𝑐8, 𝑐9 and,  
 

𝑐10 = 𝑐9 (
𝛤(2𝛼−1)𝐿𝜗

2

𝛤2(α)
)

1

2𝛼−1
, α >

1

2
.  

 

Proof. Assume that 𝜃(𝑡) is bounded below, then by 
Ito isometry, we have: 
 

𝐸|𝜑(𝑡)|2 ≥ |𝜃(𝑡)|2 +
𝛿2

𝛤2(α)
∫ (𝑡 −

𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝐸|𝜗(𝑠, 𝜑(𝑠))|
2

𝑑𝑠 ≥ 𝑐7 +
𝛿2𝐿𝜗

2

𝛤2(α)
∫ (𝑡 −

𝑡

𝑎

𝑠)2𝛼−2 𝑒−2(𝑡−𝑠)𝐸|𝜑(𝑠)|2𝑑𝑠.  
 

Let 𝑓(𝑡) = 𝑒2𝑡𝐸|𝜑(𝑡)|2 
 

to obtain: 
 

𝑓(𝑡) ≥ 𝑐7 +
𝛿2𝐿𝜗

2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑓(𝑠)𝑑𝑠.  

 

Apply Proposition 3.13 for 𝜌 = 2𝛼 − 1 > 0 and 𝜖 =
𝛿2𝐿𝜗

2

𝛤2(α)
 to obtain the required estimate. 

3.2. Proof of results for Eq. 2 

Theorem 3.16: Let 𝛼 >
1

2
 and suppose Condition 3.2 

holds. Then for some positive constants 𝑐2, 𝛿, 𝑀 such 

that 𝑐2 <
1

(𝛿 𝑀)2, there exists a unique solution to Eq. 2. 

Define the operator: 
 

𝔅𝜑(𝑡) = 𝜃(𝑡) +
𝛿

𝛤(α)
∫ (𝑡 − 𝑠)𝛼−1𝑡

𝑎
𝑘(𝑡, 𝑠, 𝜑(𝑠))𝑑𝑤(𝑠).   

 

The fixed point of the operator 𝔅 gives the 
solution of Eq. 2. 
 
Lemma 3.17: Let 𝜑 be a mild solution of Eq. 2 
satisfying ||𝜑||2 < ∞. Suppose Condition 3.2 holds, 

then for 𝛼 >
1

2
, 

 
||𝔅𝜑||2

2 ≤ 𝑐1 + 𝑐2𝛿2𝑀2||𝜑||2
2, 

 

with, 𝑐2: =
(𝑏−𝑎)2𝛼−1

(2𝛼−1)𝛤2(𝛼)
. 

 

Proof. Take second moment of both sides with 
Condition 3.2 to obtain: 
 

𝐸|𝔅𝜑(𝑡)|2 ≤ |𝜃(𝑡)|2 +
𝛿2

𝛤2(α)
∫ (𝑡 −

𝑡

𝑎

𝑠)2𝛼−2 𝑬|𝑘(𝑡, 𝑠, 𝜑(𝑠))|2𝑑𝑠  

≤ |𝜃(𝑡)|2 +
𝛿2𝑀2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑬|𝜑(𝑠)|2𝑑𝑠  

≤ |𝜃(𝑡)|2 +
𝛿2𝑀2

𝛤2(α)
||𝜑||2

2 ∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑑𝑠  

≤ |𝜃(𝑡)|2 +
𝛿2𝑀2

𝛤2(α)
||𝜑||

2

2 (𝑡 − 𝑎)2𝛼−1

2𝛼 − 1
, ℜ(α) >

1

2
 .   

 

Taking supremum over 𝑡 ∈ [𝑎, 𝑏] one obtains: 
 

||𝔅𝜑||2
2 ≤ 𝑐1 +

𝛿2𝑀2

(2𝛼−1)𝛤2(α)
(𝑏 − 𝑎)2𝛼−1||𝜑||

2

2
,  

 

and the result follows immediately.  
 
Lemma 3.18: Let 𝜑 and ф be mild solutions of Eq. 2 
satisfying ||𝜑||2 + ||ф||2 < ∞. Suppose Condition 3.2 

holds, then for 𝛼 >
1

2
, 

 
||𝔅𝜑 − 𝔅ф||2

2 ≤ 𝑐2𝛿2𝑀2||𝜑 − ф||2
2. 

 

Remark 3.19: The proof of Theorem 3.16 follows 
readily as the proof of Theorem 3.3.  
 
Remark 3.20: Extending the results in this section 
to all 𝑝 ≥ 2, we state (without proof) the following 
results: 
 
Lemma 3.21: Let 𝑝 ≥ 2, and 𝜑 a mild solution of Eq. 
2 such that ||𝜑||𝑝 < ∞. Suppose Condition 3.2 holds, 

then for 𝛼 >
1

2
, 

 

||𝔅𝜑||𝑝
𝑝

≤ 𝑐𝑝 + �̃�𝛼,𝑝||𝜑||
𝑝

𝑝
,  

 

where, 𝑐𝑝 ≔ 2𝑝−1𝑐 and, 
 

�̃�𝛼,𝑝 ≔ 2𝑝−1 (
𝛿 𝑧𝑝 𝑀

𝛤(𝛼)
)

𝑝 (𝑏−𝑎)𝑝(𝛼−
1
2)

(2𝛼−1)
𝑝
2

. 

 

Lemma 3.22: For 𝑝 ≥ 2, let 𝜑 and ф be mild 
solutions of Eq. 2 satisfying ||𝜑||𝑝 + ||ф||𝑝 < ∞. 

Suppose Condition 3.2 holds, then for 𝛼 >
1

2
, 

 

||𝔅𝜑 − 𝔅ф||𝑝
𝑝

≤ �̃�𝛼,𝑝||𝜑 − ф||
𝑝

𝑝
.  

 

and the existence and uniqueness theorem: 
 

Theorem 3.23: Let 𝛼 >
1

2
 and suppose Condition 3.2 

holds. Then for a positive constant �̃�𝛼,𝑝 such that 

�̃�𝛼,𝑝 < 1, there exists a unique solution to Eq. 2.  

3.2.1. Upper moment growth bound 

Next, we give the upper moment growth bound 
by assuming that the function 𝜃(𝑡) is bounded 
above: 
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Theorem 3.24: Given that Condition 3.2 holds. Then 
for all 𝑡 ∈ [𝑎, 𝑏] we obtain: 
 

𝐸|𝜑(𝑡)|2 ≤ 𝑐11𝑒𝑥𝑝 (𝑐13𝛿
2

2𝛼−1(𝑡 − 𝑎))  

 

for some positive constants 𝑐11, 𝑐12 and, 
 

𝑐13 = 𝑐12 (
𝛤(2𝛼−1)𝑀2

𝛤2(α)
)

1

2𝛼−1
, α >

1

2
.  

 

Proof. Let |𝜃(𝑡)|2 ≤ 𝑐1 for 𝑡 ∈ [𝑎, 𝑏], then we have: 
 

𝐸|𝜑(𝑡)|2 ≤ 𝑐1 +
𝛿2𝑀2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑬|𝜑(𝑠)|2𝑑𝑠.  

 
Let 𝑔(𝑡) ≔ 𝐸|𝜑(𝑡)|2, 
 

to obtain: 
 

𝑔(𝑡) ≤ 𝑐1 +
𝛿2𝑀2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑔(𝑠)𝑑𝑠.  

 
Thus, the result follows by Proposition 3.10 for 

𝜌 = 2𝛼 − 1 > 0 and 𝜖 =
𝛿2𝑀2

𝛤2(α)
. 

3.2.2. Lower moment bound 

Now, instead of Condition 3.2, we use: 
 
Condition 3.25: Suppose 0 < 𝑚 < ∞. Then for all 𝑥 ∈

ℝ and 𝑡, 𝑠 ∈ [𝑎, 𝑏], 
 
|𝑘(𝑡, 𝑠, 𝑥)| ≥ 𝑚|𝑥|. 
 

Suppose the function 𝜃(𝑡) > 𝑐14 for 𝑐14 > 0: 
 
Theorem 3.24: Given that Condition 3.2 holds. Then 
for some 𝑡 ∈ [𝑎, 𝑏] we have: 
 

𝐸|𝜑(𝑡)|2 ≥ 𝑐15𝑒𝑥𝑝 (𝑐17𝛿
2

2𝛼−1(𝑡 − 𝑎)),  

 

for some positive constants 𝑐15, 𝑐16 and, 
 

𝑐17 = 𝑐16 (
𝛤(2𝛼−1)𝑚2

𝛤2(α)
)

1

2𝛼−1
, α >

1

2
.  

 

Proof. Since 𝜃(𝑡) is bounded below, then by Ito 
isometry, we have: 
 

𝐸|𝜑(𝑡)|2 ≥ |𝜃(𝑡)|2 +
𝛿2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝐸|𝑘(𝑡, 𝑠𝜑(𝑠))|

2
𝑑𝑠   

≥ 𝑐14 +
𝛿2𝑚2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝐸|𝜑(𝑠)|2𝑑𝑠.  

 

Let 𝑔(𝑡) ≔ 𝐸|𝜑(𝑡)|2,  
 

to obtain: 
 

𝑔(𝑡) ≥ 𝑐14 +
𝛿2𝑚2

𝛤2(α)
∫ (𝑡 − 𝑠)2𝛼−2𝑡

𝑎
𝑔(𝑠)𝑑𝑠,  

 

and the result readily follows by Proposition 3.13 for 

𝜌 = 2𝛼 − 1 > 0 and 𝜖 =
𝛿2𝑚2

𝛤2(α)
. 

4. Conclusion 

We studied some stochastic nonlinear fractional 
Volterra integral equations. The existence and 
uniqueness of results were given under some 
continuity conditions on 𝜎 and 𝑘. The second 
moment upper and lower growth bounds were 
obtained, and their exponential growth bounds 
compared. Further research is to study some 
asymptotic behaviors of the solutions. 
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