
 International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108  
 

 
 

 
 

Contents lists available at Science-Gate  

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science-gate.com/IJAAS.html 

 

 

100 

 

Convergence time aware switch migration algorithm for SDN (CTSMA) 
cloud datacenter 
 

 

S. R. Deepu *, B. S. Shylaja, R. Bhaskar  
 
Department of Information Science and Engineering, Dr. Ambedkar Institute of Technology, Bangalore, India 
 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 
Received 18 February 2022 
Received in revised form 
15 May 2022 
Accepted 19 May 2022 

Multi-controller deployment in a software-defined network improves the 
system's stability and scalability. However, since network traffic fluctuates, it 
presents a new problem for balancing loads on remote controllers. Controller 
Adaption and Migration Decision (CAMD) and Dynamic and Adaptive Load 
Balancing (DALB) frameworks are developed for efficient balancing of load 
on the controller to solve the problem of controller overload due to dynamic 
network traffic. CAMD was considered to be more efficient than DALB, but 
when the network is more dynamic, and the incoming traffic flow is elephant 
flow this leads to the overall reduction in system performance. This study 
proposed a Convergence Time aware Switch Migration Algorithm (CTSMA) 
that solved the network challenge when the network is more dynamic and 
incoming traffic flow is more. This research developed an enhanced switch 
migration algorithm to address the network difficulty of dynamically 
changing incoming load. Because of the imbalanced distribution of load on 
the controllers, processing flows will have longer response times and the 
controllers' throughput will be reduced. Switch migration is the best method 
of resolving the issue. Present techniques, on the other hand, focus solely on 
load balancing performance while ignoring migration efficiency, thereby 
leading to large migration costs and excessive control overheads. To increase 
the load and migration efficiency of controllers, this research work 
developed a convergence time aware switch migration method. To find the 
group of underloaded controllers in the network, the improved framework 
looked at controller volatility and average load status. Performance 
comparison indicators included controller throughput, reaction time, and 
convergence time. According to simulation studies, CTSMA outperforms 
CAMD by cutting controller reaction time by roughly 6.1%, increasing 
controller throughput by 8.0% on average, keeping a decent load balancing 
rate, lowering migration costs, and maintaining the best load balancing rate. 
 

Keywords: 
Datacenter network 
Topology aware 
Switch migration 
Convergence time 
Response time 

© 2022 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction 

*The software-defined network (SDN) (Yan et al., 
2015; Hu et al., 2018) which separates the data, 
control plane, and moved control plane to a 
centralized controller, is the next phase of network 
architecture. The "Network Operating System" is the 
controller, which has a complete picture of the 
network topology as well as complete control over 
network resources. In the data plane, devices such as 

                                                 
* Corresponding Author.  
Email Address: deepusrd@gmail.com (S. R. Deepu) 

https://doi.org/10.21833/ijaas.2022.08.013 
 Corresponding author's ORCID profile:  

https://orcid.org/0000-0002-6104-3149 
2313-626X/© 2022 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

routers and switches serve only as forwarding 
devices. 

In a traditional IP network, the hardware and 
software are purchased as a package from a vendor 
and configured as needed. Any extra features that 
need to be introduced or any software bugs that 
need to be fixed must be handled by the vendor. 
Because vendor software is proprietary, it has 
slowed the development and deployment of new 
services. SDN removes vendor dependency. The 
hardware and software are offered separately, and 
users can load their preferred network operating 
system. The controller determines how data flows in 
the data plane (Canini et al., 2022). 

SDN is a networking technology, i.e., still in its 
infancy. The basic goal of SDN architecture is to 
make it simple to program networks and control 
network hardware via software. The components of 
the SDN framework are: 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:deepusrd@gmail.com
https://doi.org/10.21833/ijaas.2022.08.013
https://orcid.org/0000-0002-6104-3149
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2022.08.013&amp;domain=pdf&amp


Deepu et al/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108 

101 
 

1. OpenFlow switches (Data plane) 
2. Controller (Control plane) 
3. SDN applications 
 

The data plane is made-up of forwarding devices 
like switches and routers that are linked together 

using wired and wireless radio channels. These 
devices include flow rules that allow them to do 
actions on incoming packets such as dropping or 
forwarding packets or sending them to a particular 
port. Fig. 1 shows the SDN controller. 

 

SDN 
Controller

Master 
Table

Group 
Table

Secure 
Channel

Flow Table Flow Table Flow Table

Open Flow Switch

Hardware/Firmware

Open Flow Switches

Open Flow 
Protocol 
Over SSL

End 
Systems

 
Fig. 1: SDN controller 

 

An incoming packet is matched to a certain flow, 
and the function to be executed is specified in the 
flow table. A flow table sends a flow to a group table, 
which causes various actions to be triggered. Flow 
performance is triggered by the meter table. 

The controller establishes connections with the 
OpenFlow switches and makes flow forwarding 
decisions. Network intelligence is centered on the 
controller of a software-defined network, which 
maintains a global perspective of the network. SDN 
increases resource utilization and efficiency of the 
network by resolving varied application 
requirements, the network's programmability, and 
multi-tenant capabilities. Despite all these 
outstanding advances, the controllers' main 
challenge is managing a high quantity of control 
messages. Huge data transfer occurs in a mature 
software-defined system, causing a bottleneck at the 
switch. The controller becomes unstable because of 
the large volume of control requests (Lakhani and 
Kothari, 2020). 

Load balancing is a network operation in 
computer networks that distributes traffic evenly 

across numerous servers and connections. It aids in 
the optimization of network performance and 
efficiency by boosting throughput and reducing 
reaction time and latency. Load balancers are used 
by all web organizations to manage incoming 
network traffic, ensuring that all servers are evenly 
loaded, and congestion is avoided. The present load 
balancers are entirely hardware-based, resulting in a 
single point of failure, and making scaling difficult. 
Load balancers in SDN are software programs that 
run on top of SDN controllers to give flexibility (Ali et 
al., 2018). 

In today's internet environment, networks must 
handle a tremendous volume of traffic, which is 
generated only by client requests. It's quite tough for 
a single server to handle a huge amount of traffic. As 
a result, we have many copies of the same server. As 
a front end, a network load balancer will be used. 
When a request comes in, it will be routed to the 
least loaded server based on the load strategy. The 
load balancer is a major flaw in traditional networks 
since it is hardware-based, inflexible, and vendor-
specific. Because it is not programmable, network 



Deepu et al/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108 

102 
 

managers are unable to build their own code. As a 
result, we've switched to SDN load balancers, which 
are configurable and don't require any special 
hardware. 

Static or dynamic load balancing strategies are 
available. The static mapping b/w controllers and 
switches generate reliability concerns and, as a 
result, reduces network performance due to the not 
equal load distribution within controllers. Dynamic 
approaches are always more successful than static 
solutions since the load assignment procedure is 
based on the network traffic pattern. In SDN, packets 
in control messages sent by switches overburden a 
controller. SDN load balancing considers several 
aspects, such as throughput, utilization of resources, 
energy usage, time of execution, and peak load ratio 
(Sufiev et al., 2019). 

Authors have utilized both approaches to solving 
load balancing concerns in the literature. However, 
research on switch migration-based load balancing 
has dominated in recent years since it allows for 
dynamic load control and flexible deployment (Xue 
et al., 2019). A novel switch migration approach is 
described and developed in this work, along with an 
elaborated process for the load balancing of the 
control plane. 

The rest of the paper is organized as follows: 
Section 2 describes the Background, section 3 
describes the system architecture, section 4 
describes the results and discussion, and section 5 
describes the conclusion. 

2. Background 

This part examines recent load-balancing and 
distributed controller research accomplishments 
which supports the depiction of our research 
background and theoretical foundation. 

To balance loads of all controllers, a super 
controller is used in a centralized approach to 
network load balancing, such as the system designs 
proposed in ElastiCon (Dixit et al., 2013). ElastiCon 
introduced the architecture of a flexible distributed 
controller in which the controller pool is dynamically 
enlarged or reduced in response to changing traffic 
conditions. ElastiCon automatically balances the load 
among controllers to resolve load imbalances caused 
by geographical and temporal oscillations in traffic 
conditions, ensuring consistent performance 
regardless of traffic dynamics. 

The improved Switch Migration Decision 
Algorithm (ISMDA) framework was also suggested in 
Adekoya et al. (2020). When the incoming load is 
elephant flow, this framework solved the network 
challenge. During the controller load imbalance 
phase, the switch migration framework's balancing 
module, which operates on each controller, is 
started. To determine the set of underloaded 
controllers in the network, the enhanced framework 
evaluated controller variance and controller average 
load status. The created efficient migration model 
was utilized to determine both the migration cost 

and load-balancing variation for the best controller 
selection among the underloaded controllers. 

The Controller Adaption and Migration Decision 
(CAMD) framework is a switch migration-based load 
balancing technique that efficiently picks both switch 
and target controller while minimizing reaction time 
(Sahoo and Sahoo, 2019). This effective switch 
migration method offers better load balancing, faster 
response times, and higher end-user service quality. 
CAMD chooses appropriate switches to migrate from 
the present controller to a lightly loaded controller, 
lowering migration costs, and increasing controller 
resource usage. 

Cui et al. (2019) explained a load balancing 
technique using a Software-Defined Wireless Sensor 
Network (SDWSN). This study created a 
mathematical model that employs multi-path routing 
methods to reduce the usage of a maximum link of 
wireless sensor networks. The recommended 
technique uses the benefits of the global perspective 
of the WSN provided by SDN to implement the best 
and most flexible traffic scheduling. The concentrate 
was on how to manage wireless sensor networks in a 
smart city intelligently. 

Because traffic is unpredictable, networks such as 
data centers are dynamic, and traffic congestion can 
occur at any time. Chiang et al. (2021) offered an 
SDN-based server cluster with a dynamic load 
balancing scheme that can be applied to a variety of 
data center network topologies. During flow 
transmissions, the recommended approach enables 
path changes. This ensures that traffic load balancing 
works across many communication pathways in SDN 
data center networks, preventing congestion. 

3. System architecture 

In the previous research work developed, the AC* 
algorithm (Shylaja et al., 2021) is an SDN routing 
system based on TPDL. Its main goal is to reduce 
topology discovery overheads by replacing the 
traditional shortest path approach with a more 
robust route selection scheme. One of the basic 
concepts in AC* is the usage of TPDL as prior 
knowledge. By leveraging the knowledge in TPDL, 
the controller will offer a simple environment for 
ensuring that the entire network works. With the 
addition of additional components, AC* can 
accommodate topological changes and failures. The 
controller has been critical in balancing the 
network's overall load. It does this by keeping track 
of the states of switches and connections 
(Chakravarthy and Amutha, 2019). 

As the network's central authority, the controller 
has made global routing decisions. It’s responsible 
for the network's overall management. The 
controller has made its routing decision after 
receiving the first inbound packet. All other packets 
in the flow are subject to this rule. Every flow table 
of switch has the relevant rule changed. The demand 
on the network to make routing decisions is 
increasing as the number of packets grows. 



Deepu et al/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108 

103 
 

This method is based on a centralized design that 
ensures centralized networking system control and 
monitoring. To acquire connection state information, 
this technique requires NIB to be updated on a 
regular basis. 

The packet transmission path for the SDN is made 
up of many switches and links. A single switch and 
numerous controllers can be connected, and vice 
versa. By transferring multiple messages, a 

centralized controller is responsible for balancing 
the network's total load (Hamdan et al., 2021). There 
are two elements to it: (a) With the help of NIB, load 
measurement is utilized to gather the load of the 
network's entities. It oversees deciding whether a 
highly overloaded entity should be shut down by 
comparing its overall load to a threshold value 
(Mokhtar et al., 2021). Fig. 2 shows the system 
architecture. 

 

Open 

Open Flow 
Switch

Open Flow 
Switch

Open Flow 
Switch

Open Flow 
Switch

Open Flow 
Switch

Host Host Host

CTSMA Network Service
Network Traffic Load and Server

Selected Path
CTSMA Network 

Service

Application Layer

North API

Contr
ol 

Layer

Open Flow 
Protocol

Southbound API

Data 
Forwarding 

Layer

 
Fig. 2: System architecture 

 

By moving the weight of this overloaded 
controller to other switches in the network via 
alternate path routing, the decision-maker has 
balanced the load of this overloaded controller. The 
state information for all network entities is updated 
on a regular basis by the NIB. 

SDN design uses a finite number of controllers, 
C=c1, c2, ..., cm, |C|=m. Each controller is capable of 
processing1, 2, ..., n packets per second. The 
forwarding plane is made up of a finite number of 
switches, S=s1, s2, ..., sm, |S|=m. Each controller in 
such an architecture oversees numerous switches in 
its domain. Table 1 shows important notations. 

We define a boolean variable 𝑥𝑖
𝑘 0, 1 in a 

master/slave SDN model, with 𝑥𝑖
𝑘=1 if ck refers to 

the master controller of the switch si. Otherwise, 𝑥𝑖
𝑘 

equals 0. 
 

Table 1: Important notations 
No. Notation Description 

1 𝑊𝑐𝑚 
The switches set handled by the mth 

controller 
2 𝑡𝑚 mth controller 
3 𝑤𝑖 ith switch 
4 𝛪𝑖

𝑚 Switch 𝑤𝑖time t load 
5 𝛪𝑡

𝑚 time t load for Controller 𝑡𝑚 
6 𝛪∗ The controller average load o 

7 𝜌𝑡
𝑚 

mth controller Response time of at 
time t 

 

The centralized controller gathered the load of 
each controller in the network during the Load 
measurement step to identify the overloaded one. 
The num of messages sent from the switches per unit 
time is used to calculate the controller's load. Hello 
messages, packet in messages, and Echo messages 
are examples of message types (Sahoo et al., 2020). 
The message's packet takes up most of the space. 



Deepu et al/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108 

104 
 

The load statistics from this step include the 
message arrival rate from the switch (Ar), the total 
number of flow table entries (Nf), and the round-trip 
time (RTT) from the switch to the controller (Rtt). 
The load factor for each controller is determined by 
the switch load. 

The switch must be carefully managed in order 
for the load factor of an overloaded controller to be 
perfectly balanced. The entries in the flow table, 
message arrival rate, and round trip duration are the 
three characteristics used to select the switch. 
Because of the enormous flow table, the controller is 
under a lot of strain. If the message arrival rate is 
high, the controller is most likely overwhelmed by 
the switch load. 𝐶𝑙 is used to calculate controller 
load, as shown in the following equation. 
 
𝐶𝑙 = 𝑤1 × 𝑁𝑓 + 𝑤2 × 𝐴𝑟 + 𝑤3 × 𝑅𝑡𝑡 

 

The weight coefficients w1, w2, and w3 added 
together equal 1.0. The NIB database, which is 
administered by the centralized controller, collects 
and updates all of this data about the switch load 
factor. The first phase's output supplied information 
on the overloaded controller. To balance the system, 
the load must be balanced efficiently. 
 

𝛪𝑡
𝑚 = ∑ 𝛪𝑡

𝑖  X 𝑥𝑖
𝑚𝑘

𝑖=1                                                                          (1) 
 

Minimizing the load disparity between 
controllers ensures load balancing. As a result, the 
following optimization issue has been formulated: 
 

𝛪𝑡
𝑚 = 𝑚𝑖𝑛 {

1

𝑛
∑ |𝛪𝑡

𝑚 − 𝛪∗|𝑛
𝑚=1 }                                                     (2) 

𝛪∗ =
1

𝑛
∑ 𝛪𝑡

𝑚               𝑛
𝑚=1                                                                (2a) 

∑ 𝑥𝑎
𝑚𝑏

𝑚=1 = 1, ∀1 ≤ 𝑎 ≤ 𝑏                                                        (2b) 
𝑥𝑎

𝑚 ∈ {0,1}, ∀1 ≤ 𝑎 ≤ 𝑏, 𝑎𝑛𝑑, ∀1 ≤ 𝑚 ≤ 𝑛                          (2c) 
 

Each switch must be connected to a single master 
controller, according to constraint (2b). The binary 
nature of the variable 𝑥𝑎

𝑚 is guaranteed by constraint 
(2c). To maintain optimum network performance, 
each controller must have almost the same load. 
However, if traffic flow variance is significant, a 
controller load can be uneven in comparison to the 
other. Some switches must be relocated if the load is 
unbalanced. However, waiting until the controller 
load reaches its maximum capacity before migrating 
switches can result in a loss in system performance 
and traffic flow processing capability. A primitive 
switch migration is required to avoid these problems 
before an overload develops. Unnecessary switch 
migration can, of course, degrade system 
performance, necessitating the use of a good load 
prediction model. 
 
Algorithm 1: Switch migration scheduling 
algorithm 
𝐼𝑛𝑝𝑢𝑡𝑠: 
∀𝑐𝑘 ∈  𝐶, ∀𝑠𝑖 ∈  𝑆, ∀𝛼𝑘 ∈  𝛼 
𝑂𝑢𝑡𝑝𝑢𝑡𝑠: 
𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒: 

𝐶𝑀: 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠 
𝐶𝐴: 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠 
𝑇𝑜𝑙: 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 
𝐿𝑖𝑠𝑡𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑛𝑢𝑙𝑙 
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑘 ∈  𝐶𝐴 
{ 
𝑃𝑜𝑙 = 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝐶𝑘, 𝑇);  
[𝐶𝑘 − −>  𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟, 𝑇 − −> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑] 
𝑖𝑓 𝑃𝑜𝑙 =  −1  
{ 
𝑓𝑙𝑎𝑔11 =  0 
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑖 ∈  𝑆𝑐𝑘 
{ 
𝑖𝑓 𝐿𝑘𝑡 + 𝑃𝑜𝑙 −  𝑙𝑖𝑡 + 𝑃𝑜𝑙 ≤  𝑇𝑜𝑙 
𝑎𝑛𝑑 𝑓𝑙𝑎𝑔1 =  0  
{ 
𝑎𝑑𝑑 𝑠𝑖 𝑡𝑜 𝐿𝑖𝑠𝑡𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛. 
𝑓𝑙𝑎𝑔1 =  1 
} 
} 
𝑖𝑓 𝑓𝑙𝑎𝑔1 ==  0 
{ 
𝑐ℎ𝑜𝑜𝑠𝑒 𝑡ℎ𝑒 𝑠𝑤𝑖𝑡𝑐ℎ 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑙𝑜𝑎𝑑 𝑎𝑛𝑑  
𝑎𝑑𝑑 𝑖𝑡 𝑡𝑜 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝐿𝑖𝑠𝑡. 
} 
} 
} 
𝑤ℎ𝑖𝑙𝑒 𝐿𝑖𝑠𝑡𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑛𝑢𝑙𝑙 
{ 
𝑠𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑠𝑤𝑖𝑡𝑐ℎ 𝑠𝑖 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑃𝑜𝑙. 
𝑠𝑜𝑟𝑡 𝑡ℎ𝑒 𝐶𝐴 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠 𝑖𝑛 𝑎𝑛 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔  
𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒𝑖𝑟 𝑙𝑜𝑎𝑑 𝐿𝑘𝑡. 
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑘 ∈  𝐶𝐴  
{ 
𝑖𝑓 𝑙𝑖𝑡 +  𝐿𝑘𝑡 <  𝛼𝑘  
{ 
𝑎𝑑𝑑 (𝑠𝑖 −→  𝑐𝑘) 𝑖𝑛𝑡𝑜 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒. 
𝑚𝑜𝑣𝑒 𝑐𝑘 𝑡𝑜 𝐶𝑀. 
𝑑𝑒𝑙𝑒𝑡𝑒 𝑠𝑖 𝑓𝑟𝑜𝑚 𝐿𝑖𝑠𝑡𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛. 
} 
} 
} 

 
Algorithm 2: Prediction overload 
Inputs: 
𝑐𝑘 ∈  𝐶𝐴. 
𝑇: 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟. 
𝑂𝑢𝑡𝑝𝑢𝑡𝑠: 
𝑃𝑜𝑙: 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑐𝑘 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 𝑠𝑡𝑒𝑝. 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒: 𝑊𝑜𝑙

𝑐𝑘  =  −1 
𝑇ℎ𝑒 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 𝑠𝑒𝑡 ℎ𝑎𝑛𝑑𝑙𝑒𝑑 𝑏𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑐𝑘 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑆𝑐𝑘 
𝑇ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑙𝑜𝑎𝑑 𝑏𝑦 𝑠𝑤𝑖𝑡𝑐ℎ 𝑠𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑙𝑖𝑡. 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑙𝑜𝑎𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑒𝑝 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑙𝑖𝑡
+ 𝑤 
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑖 ∈ 𝑆𝑐𝑘   
{ 
𝑓𝑜𝑟 𝑤 =  1, 𝑤 ≤  𝑊, 𝑤 + +  
{ 

𝛪𝑡
𝑚 = ∑ 𝛪𝑡

𝑖 ∗ 𝑥𝑖
𝑚

𝑘

𝑖=1

  

} 
} 

 
𝑓𝑜𝑟 𝑤 =  1, 𝑤 ≤  𝑊, 𝑤 + +  
{ 

𝛪𝑡+𝑤
𝑚 = ∑ 𝑙𝑡+𝑤

𝑖

𝑖∈𝑤𝑐𝑚

 

𝑖𝑓 𝐿𝑘𝑡 + 𝑤 ≥  𝑇 



Deepu et al/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108 

105 
 

{ 
𝑊𝑜𝑙

𝑐𝑘  =  𝑤 
𝑏𝑟𝑒𝑎𝑘 
} 
} 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑊𝑜𝑙

𝑐𝑘   

 
For migration purposes, the switch selection 

module takes the highest load switch from the 
overloaded controller. The load judgment module 
provided useful statistics such as roundtrip duration, 
switch flow table entries, and rate of packet arrival. 
For controller selection and threshold estimations, 
the average arrival rate of messages is used, 
although roundtrip time and flow table entries are 
used for the selection of controller, 
 

𝑆𝑙𝑚𝑖𝑔𝑟𝑎𝑡𝑒 ≤
𝐶𝑙𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑−𝐶𝑙𝑡 𝑎𝑟𝑔 𝑒𝑡 

2
                                                  (3) 

 

where, 𝐶𝑙𝑡 𝑎𝑟𝑔 𝑒𝑡  indicates a load of the appropriate 

controller, 𝐶𝑙𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑indicates overloaded controller 
load and which is the target controller. 𝑆𝑙𝑚𝑖𝑔𝑟𝑎𝑡𝑒 

indicates the overloaded controller load for the 
migrated switch. A switch should be able to connect 
to more controllers concurrently in this work. A 
master controller, on other hand, is completely 
operational and responds to the switch's requests at 
any one moment, while others can be in slave or 
equal mode. A messaging library protocol, such as 
ZeroMQ (ZMQ) or Zookeeper, is used to alter the 
role, and HATCP is utilized to ensure the delivery of 
messages between switch and controller. 

4. Results and discussion 

In this section, the study's experimentation is 
detailed. For the performance evaluation, this 
research work considers a simulation approach and 

assessed throughput, packet loss, number of 
migrations, and response time. 

The experiment is conducted on a computer with 
an Intel Core i7-6800HQ processor running at 
3.0GHz, 32GB of 1800MHz memory, Windows 11 
operating system. The Simulation is carried out 
using the Jupyter notebook compiler which is an 
open-source (FOSS) software that permits the users 
to write code. In the algorithm, the controller 
threshold was supposed to be set at 3000p/s. 
Present load on controllers A1-D1 is set to 600p/s, 
processing rate to 72%, and a total sum of load 
incoming generated starts at (10000-27000) p/s 
with a size of 30 before any migration phase. 

For each iteration, the generated CTSMA used a 
predefined Controller Threshold (CT) of 3000p/s on 
all simulated controllers. The load on controllers A1, 
B1, C1, and D1 was set at 600p/s before any 
migration phase. The processing rate is reduced to 
70% to simulate a real-world control environment. 
In each iteration, the experiment was repeated 1800 
times with a total incoming load of (10000-27000) 
p/s. 

The results of this experiment are compared to 
two other similar studies Sahoo and Sahoo (2019) 
and Mokhtar et al. (2021) in the literature. The 
throughput of a controller indicates the number of 
packets it can successfully process. The average 
controller throughput is computed using the traffic 
generated during the simulation procedure. Overall 
load incoming in this experiment is between 10000 
p/s and 27000 p/s. Controller throughput for each of 
investigated studies, as well as CTSMA, is shown in 
Fig. 3. The graph demonstrates that the CTSMA's 
number of successfully processed flow requests is 
higher than the number of successfully processed 
flow requests by the reviewed works. The CTSMA 
throughput is 7.4 % higher than the CAMD and 
around 1.1% higher than the DALB. 

 

 
Fig. 3: Comparison of controller throughput 

 

380

390

400

410

420

430

440

450

460

470

10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000

A
ve

ra
ge

 T
h

ro
u

gh
p

u
t(

p
/s

) 

Incoming Load (Kbps)

Comparision of Controller Throughput

CAMD DALB CTSMA



Deepu et al/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108 

106 
 

When there is an imbalance in the controller load, 
reaction time in a network is likely to increase. In 
this study, the response time was calculated using 
Eq. 4 developed by the Net forecast. 

In this equation, all variables are fixed throughout 
the estimate because this study is primarily 
concentrated on studying the influence of loss of 
packet on response time. The packets which are 
rejected are used to evaluate packet-loss values.  

The formula that has been employed is, 
 
𝑇𝑅 =  𝑅𝑑 +  𝑅𝑡                                                                            (4) 
 

where, 
 

𝑅𝑑𝑒𝑙𝑎𝑦 = 2[𝐷 + 𝐶𝑝 + 𝐶𝑡𝑐𝑝] + [𝐷 +
[𝐶𝑝+𝐶𝑠𝑒𝑟𝑣𝑒𝑟]

2
]

𝐴𝑇−2

𝑚𝑓
+

𝐷𝑙𝑛𝑟 [
𝐴𝑇−2

𝑚𝑓
+ 1] + 𝐺𝑇 (

𝐿1

1−𝐿1
)                                                      (5) 

 

and, 
 

𝑅𝑡 =
𝑀𝐴𝑋[8𝑝

1+𝑂𝐻𝑅

𝐵𝑊
∗𝐷

𝑃𝐿

𝑊𝑆
]

1−√𝐿
                                                                  (6) 

 

In Eq. 4, TR represents response time, Rdelay 
represents delay time of propagation, and Rt 
represents the delay time of transmission. 

In Eq. 5, D represents the delay in the round trip; 
Cp represents present processing time; Ctcp 
represents processing of server TCP; Cserver 
represents processing time of server; AT represents 
application turns; mf represents multiplex factor; 
Dlnr represents the ratio of packet loss and G 
represents TCP timeout. Similarly, in Eq. 6, PL 
represents the length of payload; OHR represents the 
ratio of overhead; BW represents minimum path 
bandwidth and WS represents effective window size. 
CTSMA performs better than Controller Adaption 
and Migration Decision(CAMD) and DALB with about 
5.8%. 

To compare the 3 methods in the simulation 
analysis, this research employed average response 
time. The average response time of the 3 methods 
increases as the incoming load grows. The suggested 
CTSMA outperforms the Controller Adaption and 
Migration Decision(CAMD) and DALB in terms of 
response time, with roughly 5.7% and 1% less, 
respectively, as shown in Fig. 4. 

 

 
Fig. 4: Comparison of average response time 

 

Convergence Time: The system consists of one or 
more routers located in a cloud environment and 
when the link failure takes place within a system, the 
break is noticed, and traffic is re-routed.  

Time taken to reroute the packet is the measure 
of convergence time. Convergence time is calculated 
using the following Eq. 7: 
 
𝐶𝑜𝑛𝑣𝑡𝑖𝑚𝑒 = 𝑁𝑟𝑝 ∗ ℎ𝑐 ∗ 𝛼                                                             (7) 

 

where, 𝑁𝑟𝑝 represents the number of routing packets. 

ℎ𝑐 represents the hop counts from router to target 
and 𝛼 represents the ratio of the number of sent 
packets and the number of received packets. 

In the simulation analysis CAMD, CTSMA, and 
DALB methods are considered for research 
employed convergence time. 

The convergence time for CTSMA decreases 
compared to existing Controller Adaption and 
Migration Decision (CAMD) and DALB as shown in 
Fig. 5. 

5. Conclusion 

This research presented CTSMA as a solution to 
the problem of SDN load imbalance caused by 
changes in network scale dynamically. This work 
developed a convergence time aware switch 
migration approach for balancing multi-controller 
loads and seeks to optimize the convergence time 
and switch migration process by introducing 
migration efficiency. The simulation results show 
that CTSMA achieves low controller response time 

0

100000

200000

300000

400000

500000

600000

700000

14500 15500 16500 17500 18500 19500 20500 21500 22500 23500 24500 25500 26500

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e 
in

 (
m

s)
 

Incoming Load (Kbps)

Comparision of Average Response Time

CAMD DALB CTSMA



Deepu et al/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108 

107 
 

and high controller throughput when the network scale changes. 
 

 
Fig. 5: Comparison of convergence time 

 

Acknowledgment 

The authors would like to thank Dr. Ambedkar 
Institute of Technology, Bangalore, and Visvesvaraya 
Technological University (VTU), Belagavi, Karnataka. 

Compliance with ethical standards 

Conflict of interest 

The author(s) declared no potential conflicts of 
interest with respect to the research, authorship, 
and/or publication of this article. 

References  

Adekoya O, Aneiba A, and Patwary M (2020). An improved switch 
migration decision algorithm for SDN load balancing. IEEE 
Open Journal of the Communications Society, 1: 1602-1613. 
https://doi.org/10.1109/OJCOMS.2020.3028971 

Ali TE, Morad AH, and Abdala MA (2018). Load balance in data 
center SDN networks. International Journal of Electrical and 
Computer Engineering, 8(5): 3086-3092.  
https://doi.org/10.11591/ijece.v8i5.pp3084-3091 

Canini M, Salem I, Schiff L, Schiller EM, and Schmid S (2022). 
Renaissance: A self-stabilizing distributed SDN control plane 
using in-band communications. Journal of Computer and 
System Sciences, 127: 91-121.  
https://doi.org/10.1016/j.jcss.2022.02.001 

Chakravarthy VD and Amutha B (2019). Path based load balancing 
for data center networks using SDN. International Journal of 
Electrical and Computer Engineering (IJECE), 9(4): 3279-
3285.                       
https://doi.org/10.11591/ijece.v9i4.pp3279-3285 

Chiang ML, Cheng HS, Liu HY, and Chiang CY (2021). SDN-based 
server clusters with dynamic load balancing and performance 
improvement. Cluster Computing, 24(1): 537-558.  
https://doi.org/10.1007/s10586-020-03135-w 

Cui X, Huang X, Ma Y, and Meng Q (2019). A load balancing routing 
mechanism based on SDWSN in smart city. Electronics, 8(3): 
273. https://doi.org/10.3390/electronics8030273 

Dixit A, Hao F, Mukherjee S, Lakshman TV, and Kompella R (2013). 
Towards an elastic distributed SDN controller. ACM SIGCOMM 

Computer Communication Review, 43(4): 7-12.  
https://doi.org/10.1145/2534169.2491193 

Hamdan M, Hassan E, Abdelaziz A, Elhigazi A, Mohammed B, Khan 
S, and Marsono MN (2021). A comprehensive survey of load 
balancing techniques in software-defined network. Journal of 
Network and Computer Applications, 174: 102856.  
https://doi.org/10.1016/j.jnca.2020.102856 

Hu T, Guo Z, Yi P, Baker T, and Lan J (2018). Multi-controller based 
software-defined networking: A survey. IEEE Access, 6: 
15980-15996. 
https://doi.org/10.1109/ACCESS.2018.2814738 

Lakhani G and Kothari A (2020). Fault administration by load 
balancing in distributed SDN controller: A review. Wireless 
Personal Communications, 114(4): 3507-3539.  
https://doi.org/10.1007/s11277-020-07545-2 

Mokhtar H, Di X, Zhou Y, Hassan A, Ma Z, and Musa S (2021). 
Multiple-level threshold load balancing in distributed SDN 
controllers. Computer Networks, 198: 108369.  
https://doi.org/10.1016/j.comnet.2021.108369 

Sahoo KS and Sahoo B (2019). CAMD: A switch migration based 
load balancing framework for software defined networks. IET 
Networks, 8(4): 264-271.                        
https://doi.org/10.1049/iet-net.2018.5166 

Sahoo KS, Tiwary M, Sahoo B, Mishra BK, RamaSubbaReddy S, and 
Luhach AK (2020). RTSM: Response time optimisation during 
switch migration in software-defined wide area network. IET 
Wireless Sensor Systems, 10(3): 105-111.  
https://doi.org/10.1049/iet-wss.2019.0125 

Shylaja BS, Deepu SR, and Bhaskar R (2021). Topology dependent 
ant colony based routing scheme for software defined 
networking in cloud. In: Nayak J, Behera H, Naik B, Vimal S, 
and Pelusi D (Eds.), Computational intelligence in data mining. 
Smart Innovation, Systems and Technologies, 281. Springer, 
Singapore. https://doi.org/10.1007/978-981-16-9447-9_26 

Sufiev H, Haddad Y, Barenboim L, and Soler J (2019). Dynamic 
SDN controller load balancing. Future Internet, 11(3): 75.  
https://doi.org/10.3390/fi11030075 

Xue H, Kim KT, and Youn HY (2019). Dynamic load balancing of 
software-defined networking based on genetic-ant colony 
optimization. Sensors, 19(2): 311-322.  
https://doi.org/10.3390/s19020311                          
PMid:30646575 PMCid:PMC6358931 

Yan Q, Yu FR, Gong Q, and Li J (2015). Software-defined 
networking (SDN) and distributed denial of service (DDoS) 
attacks in cloud computing environments: A survey, some 

0

1

2

3

4

5

6

7

8

13500 14500 15500 16500 17500 18500 19500 20500 21500 22500 23500 24500 25500

N
et

w
o

rk
 C

o
n

v
er

ge
n

ce
 D

u
ra

ti
o

n
 

Simulation time (ms)

Comparision of Convergence  Time

CAMD DALB CTSMA

https://doi.org/10.1109/OJCOMS.2020.3028971
https://doi.org/10.11591/ijece.v8i5.pp3084-3091
https://doi.org/10.1016/j.jcss.2022.02.001
https://doi.org/10.11591/ijece.v9i4.pp3279-3285
https://doi.org/10.1007/s10586-020-03135-w
https://doi.org/10.3390/electronics8030273
https://doi.org/10.1145/2534169.2491193
https://doi.org/10.1016/j.jnca.2020.102856
https://doi.org/10.1109/ACCESS.2018.2814738
https://doi.org/10.1007/s11277-020-07545-2
https://doi.org/10.1016/j.comnet.2021.108369
https://doi.org/10.1049/iet-net.2018.5166
https://doi.org/10.1049/iet-wss.2019.0125
https://doi.org/10.1007/978-981-16-9447-9_26
https://doi.org/10.3390/fi11030075
https://doi.org/10.3390/s19020311


Deepu et al/International Journal of Advanced and Applied Sciences, 9(8) 2022, Pages: 100-108 

108 
 

research issues, and challenges. IEEE Communications 
Surveys & Tutorials, 18(1): 602-622.  

https://doi.org/10.1109/COMST.2015.2487361 

 

https://doi.org/10.1109/COMST.2015.2487361

	Convergence time aware switch migration algorithm for SDN (CTSMA) cloud datacenter
	1. Introduction
	2. Background
	3. System architecture
	4. Results and discussion
	5. Conclusion
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References

