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Captive power plants usually operate parallel to the gridline to overcome the 
losses associated with power failures. While the connectivity of the power 
plant and gridline highly depends on the functioning of the electrical breaker. 
This study reveals the importance of connecting device breakers in a captive 
power plant to operate the system at full or reduced capacity and safer it 
from reverse feeding. Using semi-Markov processes reliability model is 
developed for steam turbine generators interconnected with gridline by an 
electric breaker. The expressions are formed for reliability measures like 
mean time to system failure, availability, busy period, and profit using 
regenerative point techniques. Also, these measures are evaluated 
numerically using an actual dataset belonging to a captive power plant. 
Graphical plotting shows a decline in profit with increasing the failure rates 
of turbine generators, gridline, and working probability of breaker. The 
revenue per unit uptime of the system is forecasted to get productive profit 
with different failure rates of the power generator. 
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1. Introduction 

*Every production industry focus on ancillary 
activities for making a flexible and reliable power 
supply for the industry. These activities play a 
crucial role in decreasing operating costs for the 
system. Also, it necessitates the concept of 
redundancy for power sources available for industry. 
Parashar and Taneja (2007) and Mathew et al. 
(2010) have worked on different types of redundant 
systems. Huang and Xu (2010) formed a closed-form 
expression to evaluate the lifetime reliability of k out 
of n load-sharing redundant systems. Rizwan et al. 
(2013) presented a reliability analysis of a seven-
unit desalination plant with shutdown during the 
winter season. Various authors like Singh and Taneja 
(2014) and Naithani et al. (2017) have worked on 
the performance enhancement of the system 
subjected to different constraints. Sharma and Kaur 
(2016) have studied a two-unit standby system with 
an essential unit generator that increased its 
availability. Taneja and Prasad (2020) have carried 
out the reliability analysis for three-unit gas turbine 
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power generating system with FCFS repair priority, 
where the system goes downstate when the turbine 
fails. Rajesh and Prasad (2018) have given the 
provision of redundancy in power-generating 
turbines. Bhardwaj et al. (2021) studied the MTSF 
and profit analysis of a redundant system having an 
unstable switch. But, the literature on reliability 
doesn’t have a single attempt on the reliability of 
devices connecting redundant electrical sources. 
Observing this gap in literature present research 
elevates the importance of the reliability of electrical 
breakers. 

Present paper concentrate on the profit analysis 
of the captive power plant of National Fertilizer 
Limited, Bathinda, India where the working of the 
grid-line depends on breakers on turbine failures. 
The system consists of two Steam Turbine 
Generators (STGs), gridlines (GL), and breakers. 
Initially, as shown in Fig. 1, the system fully functions 
on two steam turbine generators where the grid-line 
is on standby mode. On failure of any one of the STG, 
the breaker interconnects the supply of the grid line 
and for a small amount of time system goes to a halt 
state. But if the breaker fails, the safety relays would 
cut-off load from operating STG leading to system 
failure. If the breaker operates successfully on the 
grid failure, the system works at reduced capacity on 
one STG. Moreover, the breaker cuts off the 
connection with the gridline to prevent the reverse 
feeding of electricity that damages the steam turbine 
generators. Using the data in Table 1, various system 
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measures such as Meantime to system failure, 
Availability, Busy period of a repairman, number of 
repairs, and profit analysis have been calculated 
numerically in Table 2 and presented graphically 
(Figs. 2-5) using semi-Markov processes and 
regenerative point techniques assuming the 
following assumptions. 

1.1. Assumptions 

• Failure times are assumed to follow an exponential 
distribution. 

• Units work as well as new after every repair. 
• Among two steam turbine generators repair 

priority is given to the recently failed unit. 
• In case of breaker failure, it is repaired 

immediately among all units. 
• In case of failure of two steam turbine generators 

and gridline, repair priority is given to gridline. 

2. Nomenclature and model description 

λ1: Constant failure rate of identical units steam 
turbine generators. 

λ2: Constant failure rate of gridline. 
p: The probability that breaker will work. 
q: The probability that breaker fails to shift the load. 
β: Rate with breaker shifts the load. 
G1(t), g1(t): c.d.f. and p.d.f. of repair time of Steam 
Turbine generators. 
G2(t), g2(t): c.d.f. and p.d.f. of repair time of gridline. 
G3(t), g3(t): c.d.f. and p.d.f. of repair time of breakers. 

2.1. Symbols for the states of the system 

Si: States of the system with number i. 
STO, PO: Steam turbine generators, gridline in the 
operating state. 
BKs, BKo: Breaker is in the standby state, Breaker is 
in the operating state. 
STr, Pr, BKr: STG, gridline, and breaker are under 
repair. 
PR: Gridline under repair from the previous state. 
STwr, Pwr: Failed Units Steam turbine generators 
and gridline waiting for repair. 
PS: Gridline in Standby state. 
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Fig. 1: State transition diagram 

 

2.2. Transition probabilities 

The State Transition Diagram is as shown in Fig. 
1. the epochs of entry into the states S0, S1, S2, S3, S4, 
S5, S6, S7, S8, S10 are regenerative points so these are 

regenerative states, and states S2, S5, S9 are failed 
state. 
 

𝑑𝑄01(𝑡) = 𝑝𝜆1𝑒−(𝜆1)𝑡 𝑑𝑡 

𝑑𝑄02(𝑡) = 𝑞𝜆1𝑒−(𝜆1)𝑡 𝑑𝑡 
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𝑑𝑄13(𝑡) = 𝛽𝑒−(𝛽)𝑡𝑑𝑡 
dQ23(t) = g3(t)dt 

𝑑𝑄30(𝑡) = 𝑒−(𝜆1+𝜆2)𝑡 g1(t)dt 

𝑑𝑄34(𝑡) = 𝜆1𝑒−(𝜆1+𝜆2)𝑡 𝐺1(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡   

𝑑𝑄35(𝑡) = 𝑞𝜆2𝑒−(𝜆1+𝜆2)𝑡 𝐺1(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡 

𝑑𝑄36(𝑡) = 𝑝𝜆2𝑒−(𝜆1+𝜆2)𝑡 𝐺1(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡 

𝑑𝑄43(𝑡) = 𝑒−(𝜆2)𝑡𝑔1(𝑡)𝑑𝑡 

𝑑𝑄47(𝑡) = 𝜆2𝑒−(𝜆2)𝑡 𝐺1(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡 
dQ58(t) = g3(t)dt 

𝑑𝑄68(𝑡) = 𝛽𝑒−(𝛽)𝑡𝑑𝑡 
dQ7,10(t) = g2(t)dt 

𝑑𝑄83(𝑡) = 𝑒−(𝜆1)𝑡𝑔2(𝑡)𝑑𝑡 

𝑑𝑄89(𝑡) = 𝜆1𝑒−(𝜆1)𝑡 𝐺2(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡 

𝑑𝑄8,10
(9) (𝑡) = [𝜆1𝑒−(𝜆1)𝑡©1]𝐺2(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡 

dQ10,3(t) = g1(t)dt 

 

The non-zero elements pij’s are given as: 
 
𝑝01 = 𝑝   
𝑝02 = 𝑞 
𝑝13 = 𝑝23 = 1 
𝑝30 = 𝑔1

∗(𝜆1 + 𝜆2) 

𝑝35 = 𝑞
𝜆2

(𝜆1 + 𝜆2)
[1 − 𝑔1

∗(𝜆1 + 𝜆2)] 

𝑝36 = 𝑝
𝜆2

(𝜆1 + 𝜆2)
[1 − 𝑔1

∗(𝜆1 + 𝜆2)] 

𝑝34 =
𝜆2

(𝜆1 + 𝜆2)
[1 − 𝑔1

∗(𝜆1 + 𝜆2)] 

𝑝43 = 𝑔1
∗(𝜆2) 

𝑝47 = 1 − 𝑔1
∗(𝜆2) 

𝑝58 = 𝑝68 = 1 
𝑝7,10 = 𝑝10,3 = 1 
𝑝83 = 𝑔2

∗(𝜆2) 
 

The state transition probabilities can be verified 
in the way that: 
 
𝑝01 + 𝑝02 + 𝑝03 = 1 
𝑝30 + 𝑝35 + 𝑝36 + 𝑝34 = 1 
𝑝43 + 𝑝47 = 1 
𝑝83 + 𝑝89 = 1 

𝑝83 + 𝑝8,10
(9)

= 1 

 

and the mean sojourn time 𝜇𝑖  corresponding to 
regenerative state ′i′ is given as:  
 

µ0 =
1

𝜆1
   

µ1 =
1

𝛽
     

µ2 = −𝑔3
∗′

(0)  

µ3 =
1

𝜆1+𝜆2
[1 − 𝑔1

∗(𝜆1 + 𝜆2)]   

µ4 =
1

𝜆2
[1 − 𝑔1

∗(𝜆2)]  

µ5 = −𝑔3
∗′

(0) 

µ6 =
1

𝛽
 

µ7 = −𝑔2
∗′

(0)   

µ8 =
1

𝜆1
[1 − 𝑔2

∗(𝜆1)] 

µ7 = −𝑔2
∗′

(0)  
 

The unconditional mean time required by the 
system to transit from state ′i′ to any regenerative 
state ′j′ when time is counted from the epoch of 
entrance in the state ′i′ is mathematically stated as: 

𝑚𝑖𝑗 = ∫ 𝑡𝑑𝑄𝑖𝑗(𝑡) = −𝑞𝑖𝑗
∗,

(0)

𝑏

𝑎

 

 

So we have, 
 
𝑚01 + 𝑚02 = 𝜇0 
𝑚13 = 𝜇1 
𝑚23 = 𝜇2 
𝑚30 + 𝑚34 + 𝑚35 + 𝑚36 = 𝜇3 
𝑚43 + 𝑚47 = 𝜇4 
𝑚58 = 𝜇5 
𝑚68 = 𝜇6 
𝑚7,10 = 𝜇7 

𝑚83 + 𝑚89 = 𝜇8 

𝑚83 + 𝑚8,10
(9)

= 𝑘8 

𝑚10,3 = 𝜇10 
 

where, 
 

𝑘8 = ∫ 𝑡𝑔2(𝑡)𝑑𝑡
∞

0
                                                                          (1) 

2.3. Mean time to system failure 

The mean time to system failure is determined by 
considering the failed states as absorbing states. The 
mean time to system failure (MTSF), when the 
system starts from the initial state So, is given by, 
 

𝑇0 = lim
𝑠→0

1 − 𝜙0
∗∗(𝑠)

𝑠
 

 

Using L′ Hospital Rule and putting the value of 
𝜙0

∗∗(𝑠) we have, 
 

𝑇0 =
𝑁

𝐷
 

 

where, 
 
𝑁 = 𝜇0(1 − 𝑝34𝑝43) 
 

and, 
 
𝐷 = 1 − 𝑝34𝑝43 
 

2.4. Availability at full capacity 

Using the theory of regenerative processes, the 
availability at full capacity 𝐴𝐹0 of the system is given 
by, 
 

𝐴𝐹0 = lim
𝑠→0

(𝑠𝐴0
∗ (𝑠)) =

𝑁1

𝐷1
 

 

where, 
 

𝑁1 = 𝜇1𝑝30 + 𝜇3 + 𝜇4𝑝34 + 𝜇10[𝑝34𝑝8,10
(9) (𝑝35 + 𝑝36)] 

 

and, 
 
𝐷1 = 𝜇0𝑝30 + 𝜇1𝑝01𝑝30 + 𝜇2𝑝02𝑝30 + 𝜇3 + 𝜇4𝑝34 
+𝜇5𝑝35 + 𝜇6𝑝36 + 𝜇7𝑝47𝑝34 + 𝑘8(𝑝35 + 𝑝36) 

+𝜇10[𝑝47𝑝34 + 𝑝8,10
(9) (𝑝35 + 𝑝36)]                                              (2) 
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where 𝑘8 is already specified in Eq. 1. 

2.5. Availability at reduced capacity 

Using the theory of regenerative processes, the 
availability at reduced capacity 𝐴𝐹0 of the system is 
given by, 
 

𝐴𝑅0 = lim
𝑠→0

(𝑠𝐴0
∗ (𝑠)) =

𝑁2

𝐷1
 

 

where, 
 
𝑁2 = 𝜇8(𝑝35 + 𝑝36) 
 

and 𝐷1 is already specified in Eq. 2. 

2.6. Busy period analysis of repairman 

Using the theory of regenerative processes, a 
busy period analysis of a repairman is given by, 
 

𝐵0 = lim
𝑠→0

(𝑠𝐵0
∗(𝑠)) =

𝑁3

𝐷1
 

 

where,  
 
𝑁3 = 𝜇1𝑝01𝑝30 + 𝜇2𝑝02𝑝30 + 𝜇3 + 𝜇4𝑝34 
+𝜇5𝑝35 + 𝜇6𝑝36 + 𝜇7𝑝47𝑝34 + 𝑘8(𝑝35 + 𝑝36) 
 

and 𝐷1 is already specified in Eq. 2. 

2.7. Expected number of repairs 

Using the theory of regenerative processes, 
expected number of repairs are given by, 
 

𝑉0 = lim
𝑠→0

(𝑠𝑉0
∗∗(𝑠)) =

𝑁4

𝐷1
 

where, 𝑁4 = 𝑝30 and 𝐷1 is already specified in Eq. 2. 

2.8. Profit analysis 

The expected total profit incurred to the system 
in steady-state is given by, 
 
𝑃𝐹 = 𝐶0𝐴𝐹0 + 𝐶1𝐴𝑅0 − 𝐶2𝐵0 − 𝐶3𝑉0 
 

C0 = revenue per unit up time at full capacity. 
C1 = revenue per unit up time at reduced capacity. 
C2 = cost per unit time when the repairman is busy. 
C3 = cost per repair. 

2.9. Particular cases 

The following specific cases are considered for 
Graphical representation, where repair times are 
distributed exponentially. Let us assume that 
𝑔1(t)=𝛼1𝑒−𝛼1(𝑡), 𝑔2(t)=𝛼2𝑒−𝛼2(𝑡), 𝑔3(t)=𝛼3𝑒−𝛼3(𝑡) and 
remaining distributions same as in the general case. 
Therefore, we have: 
 
𝑝01 = 𝑝                              𝑝02 = 𝑞 

𝑝30 =
𝛼1

(𝜆1+𝜆2+𝛼1)
             𝑝34 =

1

(𝜆1+𝜆2+𝛼1)
 

𝑝35 = 𝑞
2

(𝜆1+𝜆2+𝛼1)
          𝑝36 = 𝑝

2

(𝜆1+𝜆2+𝛼1)
 

𝑝43 =
𝛼1

(𝜆2+𝛼1)
                   𝑝47 =

2

(𝜆2+𝛼1)
  

𝑝8,10
(9)

=
1

(𝜆2+𝛼1)
                µ0 =

1

(𝜆1)
  

µ2 = µ5 =
1

(𝛼3)
               µ3 =

1

(𝜆1+𝜆2+𝛼1)
 

µ4 =
1

(𝜆2+𝛼1)
                   µ6 =

1

(𝛽1)
 

µ7 = 𝑘8 =
1

(𝛼2)
              µ8 =

1

(𝜆1+𝛼2)
    

µ10 =
1

(𝛼1)
   

 
Table 1: Various rates calculated from the data gathered from Industry 

Failure rate of STG (λ1) 0.00043/hour 
Failure rate of Gridline (λ2) 0.00043/hour 

Probability that generator will work (p) 0.87 
Repair rate of STG (α1) 0.0065/hour 

Repair rate of Gridline (α2) 0.34/hour 
Revenue per unit uptime of the system (C0) 1462990 INR. 

Revenue per unit up time at reduced capacity of the system (C1) 1028997 INR. 

 
Table 2: Various reliability measures calculated for the system 

Meantime to System Failure 148 hours 
Availability of System at full capacity 0.998698/hour 

Availability of System at Reduced Capacity 0.001144/hour 
Busy Period of Repairman 0.065217/hour 

Expected number of Repairs 0.000402/hour 

 
3. Results and discussion 

Fig. 2 reveals the behavior of MTSF w.r.t. failure 
rate of steam turbine generator (λ1) for different 
values of the failure rate of gridline (λ2). The MTSF 
curve lowers with a hike in the failure rate of the 
generator (λ1). It has lowered values for the raising 
failure rates of the grid line. Fig. 3 interpreted that 
the profit decreases with increasing the failure rate 
of the STG and gives greater values for lesser values 

of the failure rate of the gridline. Fig. 4 interpreted 
that the profit increases as the probability of 
working of the breaker (connecting unit) increases 
and gives greater values for lesser values of the 
failure rate of the steam turbine generator (STG). Fig. 
5 interpreted that the profit increases with 
increasing the cost per unit uptime of the system and 
decreases when the failure rate of the generator 
increases. 
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Fig. 2: MTSF 

 

 
Fig. 3: Profit vs. failure rate of STG 

 

 
Fig. 4: Profit vs. prob. of working of breaker 
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Fig. 5: Profit vs. cost per unit uptime of system 

 

4. Conclusion 

The above-discussed model reveals the reliability 
behavior of the system working on two steam 
turbine generators connected to a gridline with the 
help of a breaker. The availability, as well as profit 
procured by the system, varies inversely to the 
failure rate of the STG. Also, the system functions 

adequately when the breaker successfully connects 
the gridline to the system. The engineers and system 
designers can use the proposed model and 
calculations performed in Table 3 in the same way 
for their industries. The expressions developed can 
be used to find out the practical reliability of similar 
mechanism-type systems. 

 
Table 3: Profit vs. revenue per unit up-time for variation in the failure rate of STG 

Failure rate of STG (per hour) Revenue per unit up time (Rs.) Profit (Rs) 

λ1 = .043 C0 < or = or >457895 
Negative (Loss) or Zero or Positive 

respectively 

λ1 = .0043 C0 < or = or >338807 
Negative (Loss) or Zero or Positive 

respectively 

λ1 = .00043 C0 < or = or >230680 
Negative (Loss) or Zero or Positive 

respectively 
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