
 International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

159

A two-part multi-algorithm concurrency control optimization strategy for
distributed database systems

Nasser Shebka 1, 2, *

1Department of Computer Science, Northern Border University, Arar, Saudi Arabia
2Computer Science College, Al Neelian University, Khartoum, Sudan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 19 January 2022
Received in revised form
23 April 2022
Accepted 24 April 2022

In this paper, we propose a novel holistic approach to address the issues of
concurrency control after an exhaustive examination of the problem and the
various forms it can transpire. The proposed strategy was formulated
depending on different perspectives that are based on exploring a wide range
of algorithms, methods, and strategies proposed in practice and theory that
attempted to address the problem and its forms, but only partially succeeded
in doing so. Here we proposed a two-part holistic strategy to optimize
concurrency control in distributed environments that address a wide range
of concurrency control anomalies by taking advantage of several
concurrency control algorithms' strengths while minimizing their
weaknesses. The novelty of our approach transpires from two
interconnected parts that can be applied regardless of the type of distributed
database environment. The first is a structured tier-based data classification
system based on data sensitivity with respect to serializability requirements
and ranges from strict to very relaxed forms of serializability constraints. The
second is a concurrency management algorithm that allocates the
appropriate concurrency control algorithm to each transaction depending on
the type of transaction and/or type of data being accessed from the
aforementioned tier-based classification method. Our proposed method also
incorporates a priority allocation mechanism within the concurrency
management algorithm. Priority is allocated to different tier transactions
depending on the tier's level, which in turn reflects data importance and
sensitivity. Although our proposed strategy remains an algorithmic approach
as we encountered various challenges regarding performance testing of a
novel multi-algorithm approach for handling concurrency control in
distributed database systems. However, future work involves testing the
performance of our proposed strategy either through real-time systems after
considerable adjustments or by constructing an appropriate customized
simulation framework. Finally, the potentials of the strategy presented here
are very promising, hence, we recommend as we are also optimistic that
other scholars are encouraged to further exploit the concept of using
multiple concurrency control algorithms within the same distributed
database environment.

Keywords:
Concurrency control
Distributed database systems
Serializability
Tier-based structure

© 2022 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Database systems (DBSs) became ubiquitous
since every aspect of daily life activities became
highly dependent on accessing some sort of database
system. The magnitude upon which our life became

* Corresponding Author.
Email Address: nshebka2004@gmail.com (N. Shebka)

https://doi.org/10.21833/ijaas.2022.07.016
 Corresponding author's ORCID profile:

https://orcid.org/0000-0002-2582-1150
2313-626X/© 2022 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

increasingly dependent on databases led to their
natural development in size and complexity. DBSs
evolved coherently with the emergence of the
internet and networking technologies as the
necessity for geographically extended databases
increased exponentially replacing conventional
centralized databases. Databases allow multiple
users to access data items residing in the DBS
simultaneously. This feature is the fundamental
characteristic of databases and one of the strong
points that lead to the explosive spread of databases
known as ‘concurrency’. Concurrency is one of the
most prominent characteristic of DBSs. Concurrency

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nshebka2004@gmail.com
https://doi.org/10.21833/ijaas.2022.07.016
https://orcid.org/0000-0002-2582-1150
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2022.07.016&domain=pdf&

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

160

control is a concept that can be easily explained but
is difficult to manage. The main concern of
concurrency control is to efficiently manage
simultaneous transactions performed on the
database with the objective of maintaining the
validity and integrity of data while ensuring the
ability of all authorized transactions access to all
data entities and to perform their required
operations. Ironically, the very same feature that
signified a forte of DBSs became a main source of
concern. And despite the evolvement of distributed
database systems (DDBSs) from federate to the grid
and then cloud computing, the problem still persists
because of the very nature of the concept of
concurrent access. However, several forms of
anomalies occur as a result of this characteristic.
Various methods, algorithms, and strategies have
been proposed to efficiently manage concurrent
access to DDBSs data resources, yet the problem
persists. Moreover, each of these propositions has its
own strengths and deficiencies depending on various
parameters, such as; type of accessed data items,
type of environment in terms of transaction type
intensity, design and structure of the DDBS in terms
of; site distribution, number of sites, used method of
data replication and duplication, etc. Weaknesses of
a specific concurrency control algorithm affect the
entire DDBS since there is only one. The handling of
multiple users’ transactions interface with the DBS
through intermediary database management system
(DBMS) software is achieved by a dedicated
concurrency control mechanism. Multiple users’
simultaneous access to the same data items can
result in problems and discrepancies that we refer to
as anomalies (rather than problems) since they are a
natural result of the DBS operations. Concurrency
control anomalies are not just associated with DDBS
but started with centralized DBSs and escalated with
DDBS as the geographically spread DBS began
growing in terms of scalability and complexity, as did
the anticipated problem scenarios that are likely to
occur as a result of the simultaneous transactions
performed by on the same data. Centralizing
concurrency control is very expensive and can even
be unfeasible in some cases due to the need to use
expensive high processing capacity servers and
depend on the traffic state of the transferring
network. These requirements in turn translate to
concerns about performance and availability.
Moreover, operating systems and DBMSs have many
similar related characteristics such as concurrency
control and deadlocks. Consequently, concurrency
control is concerned basically with maintaining
database consistency and deadlock avoidance
through efficient transaction management and
termination respectively. Additionally, It is worth
mentioning that an important aspect that
contributed greatly to our method design is derived
from operating system deadlocks detection and
avoidance strategies (Menasce and Muntz, 1979).

Optimization deals with performance
measurement and comparisons with other
concurrency control algorithms under the same

conditions and measuring and comparing
concurrency control algorithms' performance based
on various parameters, but initially, we can
emphasize the followings:

 Each and every algorithm can be suitable and,

hence, successful for a particular set of transaction
types and scenarios of interferences but fails in
managing concurrency for other types of
transactions or scenarios.

 The ever-changing states of a DDBS and
transactions are hard to replicate and change
instantaneously.

Moreover, there are many proposed hybrid

concurrency algorithms that combine two or more of
the main concurrency control methods, example
include algorithms such as two-phase lock multi-
version, timestamp multi-versions, and Hybrid Wait-
Die (Rosenkrantz et al., 1978), and many more
variants (Batra and Kapil, 2010). Hybridization
attempts to harvest the strength points of all
involved entities while minimizing or eliminating
their weaknesses. This motivated us to start
considering using several concurrency control
algorithms within the same DDBS, which are
managed by a Controlling algorithm that assigns
algorithms to transactions depending on a
categorization system, built on a tier-based structure
of data items classification method according to the
sensitivity level of data items with a respect to
serializability requirements. In addition, another
motivating factor is the fact that concurrency control
algorithms are difficult to compare since each is
designed to address a specific number of scenarios.
Hence, considering a method that combines several
different types of these algorithms in order to
minimize the weaknesses and increase the efficiency
of each of the used concurrency control algorithms.
We argue that the anomalies resulting from
interfering concurrent transactions in a DDBS cannot
be eliminated, although they can be scaled back or
optimized.

In our work, we propose a two-part strategy for
optimizing the DDBS concurrency control
mechanism by using several concurrency control
algorithms within the same DDBS. The objective of
this strategy is to take advantage of each of the used
concurrency control algorithms' strengths and
minimize their weaknesses. This is achieved through
limiting their effect to specific clusters of data
entities, which are also classified; as we also
propose; into a tier-based structure system
depending on various parameters such as data
sensitivity with respect to serializability
requirements, type of transactions intensively
performed on the specified data entities, etc… The
first part is concerned with the following processes:

 Classifying concurrency control algorithms

according to the level of serializability they
provide.

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

161

 Categorizing data entities into a tier-based
structuring system according to their importance
and sensitivity.

Both processes are interrelated since each

algorithm is assigned the task of managing relevant
tier sites that contain data entity types and
transaction types that reflect that algorithm's
strengths and limit its weaknesses to that specific
tier data items.

Finally, we demonstrate our proposed strategy by
using an example of a DDBS that combines four
known concurrency control algorithms and examine
whether the proposed algorithm minimizes failure
rate and, hence, optimizes concurrency control
functionality.

The paper is organized as follows. In section 2, we
presented a literature review for comparatively
related work regarding various methods and
approaches proposed to handle concurrency control
issues and anomalies. In section 3, we introduced a
brief review of the concept of concurrency control,
definitions, types of problems and anomalies, and
the ACID rules. We also presented a brief review of
some proposed categorization and classification of
concurrency control algorithms, as well as
introduced the main types of concurrency control
algorithms. In section 4, we discussed some
problematic issues of concurrency control by raising
a few questions. We also questioned some of the
proposed methods and strategies to handle it by re-
introducing the problem from different angles. In
section 5, we presented our proposed two-part
strategy for optimizing concurrency control in
distributed environments. In the final section, we
discussed challenges hindering performance testing
of the proposed strategy either in real-time systems
or construction of simulation frameworks, future
work to be achieved, and finally, our work's
conclusion.

2. Related works

Research regarding methods, algorithms, and
strategies addressing the problem of concurrency
control can be traced back to the emergence of the
concept and technology of DBS in the late 1970s (Liu
and Özsu, 2009). Various methods were proposed to
handle concurrency control and to address the
numerous anomalies that can result from different
scenarios of concurrent access to DDBSs. These
anomalies are second nature to modern DDBSs.
Moreover, new forms of anomalies can emerge in
contemporary DDBSs as a result of technological
developments. Scientists as early as 1981, such as
Bernstein and Goodman (1981), for example,
introduced and discussed more than 48 principle
methods and 20 concurrency control algorithms.
Recent work regarding various algorithms, methods,
and strategies targeting concurrency control issues
can be found in a wide range of research such as
Moiz (2015), Akintola et al. (2005), Bakura and
Mohammed (2014), Batra and Kapil (2010),

Haapasalo et al. (2008), and Herlihy and Weihl
(1991). Works such as Batra and Kapil (2010), Carey
and Livny (1988), Geschwent (1994), and Kanungo
and Rustom (2015) conducted surveys of
concurrency algorithms and compared them against
various parameters.

Furthermore, our investigation of related work
extended to some commercial DDBMSs concurrency
control mechanisms and related literature such as
Microsoft's Azure, Apache's Hadoop, Oracle, and
Amazon's EC2 (AlKhatib and Labban, 2002; Dean
and Ghemawat, 2007; Li and He, 2010), despite the
scarcity of information due to proprietary rights.

Likewise, examples of concurrency control
algorithms classification research are also numerous.
Examples of such work can be derived from works in
which comparisons were conducted between
various concurrency control algorithms depending
on many factors such as serializability and type of
transaction type intensity. Examples of such results
are; the suitability of locking-based algorithms for
update-intensive applications (Geschwent, 1994),
the suitability of multi-version-based and
certification-based algorithms for read-intensive
environments (Kanungo and Rustom, 2015), and the
suitability of timestamp-based algorithms for
transactions' potential conflict-based environments
(Silberschatz et al., 2002). While other researchers
discussed a combined classification of concurrency
control algorithms in the form of performance
advantages of hybrid concurrency control algorithms
such as the suitability of the multi-version two-phase
locking algorithm for environments that are in-
between update and read intensities (Carey and
Muhanna, 1986). Hybrid algorithmic approaches
that combine advantageous characteristics of
optimistic and pessimistic approach strategies for
concurrency control are presented by Moiz (2015)
and Sheikhan and Ahmadluei (2013). The former
paper introduces a hybrid concurrency control
algorithm for mobile DBSs in which concurrency
access anomalies are addressed depending on a
variable transactions priority parameter. This
parameter is maintained by the transaction manager
for potentially conflicting concurrent transactions, it
can be increased to maintain data consistency by
reducing the request starvation resulting from
conflict resolution strategies. The latter research
introduced a hybrid intelligent concurrency control
algorithm for centralized DBSs that alternates
between the optimistic and pessimistic approaches
to manage concurrency depending on the conflict
rate value. Another hybrid locking-based
concurrency control algorithm is introduced by
Herlihy and Weihl (1991) which used properties of
type-specific objects to provide more relaxed
concurrency access while maintaining the strict
serializability of locking-based concurrency control
algorithms. A survey of concurrency control
algorithms by Batra and Kapil (2010) classified 14
concurrency control protocol variants into two
mainstream categorical approaches; optimistic and
pessimistic. The survey classifies variants such as;

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

162

the divergence control lock model, secured two-
phase lock algorithm, clock synchronization by
message passing, and optimistic concurrency control
(OCC) method. The study examined their
performances considering factors such as
consistency, reduced blocking, load balancing, and
security. Another distributed OCC variant method
(DOCC-DATI) is presented by Lindström (2004) that
adjusted serialization order dynamically through
timestamp intervals. Another variant of OCC is
proposed by Kim and Shin (1994). The proposed
protocol uses a priority-based method to effectively
control concurrent transactions by combining
forward and backward validation processes. other
methods of using priority assignment for
concurrency optimization can be found in works
such as Lam et al. (1997). A lock-free strategy for
managing concurrency control in mobile
environments through combining features of
timestamp ordering and OCC strategies aiming at
minimizing transaction abortion rate and response
time is discussed by Bakura and Mohammed (2014),
in which pre-commit transactions are allowed
offline.

3. Concurrency control: A brief review

There are various classifications of concurrency
control anomalies resulting from simultaneous
access. Early work achieved by Bernstein and
Goodman (1981) suggested that all different
variations forms of anomalies can be traced to only
two sub-problems:

 read-write
 write-write

Further classifications define three mainstream
forms of anomalies as follows:

 Lost updates anomaly: As the name suggests, the

update of a transaction is lost almost immediately
by a successor transaction.

 Inconsistent retrievals anomaly: Also identified as
the unrepeatable read problem. This anomaly
occurs when two read operations belonging to the
same transaction return different values.

 Dirty read anomaly: Also known as Temporary
update or uncommitted data problem. It's a result
of a transaction's failed attempt to update a data
item. But before the failure, the data item is used by
another transaction which only reads the failed-
uncommitted value.

 Additional exhaustive classifications add the
following two forms in addition to the previous list:

 Phantom read anomaly: This results when a
transaction is able to read a variable the first time
but fails the second with an error 'variable does not
exist' message.

 Incorrect Summary anomaly: This anomaly results
from concurrent transactions of updating and an
aggregate function. This can result in data items
being counted or summed before they are

immediately updated, thus, resulting in a faulty
aggregate value.

A different notion of the concurrency control

problem was presented by Akintola et al. (2005),
which extended the definition of the problem in the
form of two time-related incurred costs:

 Lost opportunity cost: That results from

unnecessary wait under locks to ensure the
absence of conflict and interference.

 Restart cost: that results from the unnecessary
restart of some transactions due to the inaccuracy
of many concurrency control algorithms in
preemptively identifying the root cause of a
potential anomaly or deadlock, hence, opting for
improper transaction termination of all involved
transactions.

It is important to indicate that in real-time

commercial DDBSs the situation is far more complex,
especially when considering anything in between
extreme measures to handle concurrency control
such as granularity levels of locking algorithms. On
one hand, it's always easy to define an operation's
method theoretically not considering the actual
number of hits a DDBS receives pertaining to the
same data items at once and the complexity of
completing the operation depending on the selected
method of data replication, allocation, and
fragmentation (Gray et al., 1996). While on the other
hand, to alternate between replication and
duplication processes. not to mention additional
complexities considering heterogeneous DDBS that
use different DBMS software instead of a
homogeneous DDBS that employs the same type of
DBMS software (Kumar et al., 2013). Conclusively,
the root causes of the concurrency control anomalies
can easily be identified, as well as classifying the
methods used by different concurrency control
algorithms into two categories. However, actual
scenarios that can occur in practice are numerous
and can vary greatly for the aforementioned reasons.
Additionally, continuous development of new
technologies and devices will eventually lead to an
exponential increase in the number of hits a
database receives. Ultimately, this led to the
existence of numerous concurrency control
algorithms while anomalies still persist as a result of
this discrepancy between theory and practice and
the difficulty of proving the correctness and
suitability of concurrency control algorithms
(Bernstein et al., 1987). This is why we can only
provide limited examples for the method we
proposed here.

3.1. Transactions and ACID rules

These are four rules that every centralized or
distributed DBS should comply with in regard to
every transaction to be performed. They can be
summarized as follows:

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

163

 Atomicity: Each transaction's operations are either
entirely committed or entirely aborted, in other
words, there is no such thing as a partial commit
operation. The atomicity property is better
characterized by the "all or nothing" rule.
Atomicity is ensured by serializability (Kanungo
and Rustom, 2015), a core principle and goal of
concurrency control mechanisms.

 Consistency: This property is rather a formal
regulatory one since the consistency and integrity
of the database and its changing states are
maintained by the restrictions and transactions
operations' permissions enforced by the DBMS
software and its programming at the time of the
DBS creation.

 Isolation: Transactions must always be completely
isolated during their execution. This rule is one of
the core objectives of concurrency control.

 Durability: A record of successfully performed
transactions must be persistently maintained at
any time by any means necessary for later retrieval
in case of failures or crashes, in other words, a
committed transaction should never be lost.

It is vital to indicate that isolation in addition to

serializability characterizes the ultimate goals of
concurrency control (Rahimi and Haug, 2010), in
addition to recoverability and distribution. Most
concurrency control mechanisms generate schedules
that follow the serializability rule in which
transactions are sequential and isolated. Although
serializability is one of the core goals of concurrency
control that ensures correctness it also negatively
affects performance in terms of availability.

3.2. Concurrency control algorithms

There are many algorithms that were proposed to
address the problem of interference of transactions
resulting from simultaneous access to the same data
object by more than one user. Some researchers
reduce them to only two mainstream techniques;
timestamp-based and locking-based mechanisms,
while others attempted to analyze and compare
these mainstream types of concurrency control
algorithms (Carey and Livny, 1988; Kanungo and
Rustom, 2015; Bernstein and Goodman, 1981).
However, and for the purpose of presenting our
algorithm, in the following we briefly examine and
discuss different aspects of four of the main
algorithms proposed and implemented to handle
concurrency control in DDBSs. Mainstream
concurrency control algorithms can be summarized
in the following categories:

 Locking-based algorithms: This type of

concurrency control mechanism includes
algorithms such as; Two-Phase Locking (2PL)
(Gray, 1991), Strict 2PL, and Rigorous 2PL. As the
name suggests, locking algorithms enforces a lock
or block on a specific data item once an authorized
user requests and then was granted access to that
item. Hence, access to items is only granted if a lock

can be secured and no other transaction can gain
access until the lock is released by a commit or
abort or any termination trigger. Locking has many
types and granularity levels starting from extreme
locking of entire database read or write access
permissions. Although lock-based algorithms are
highly serializability, and thus, suitable for
updating intense environments, they are inefficient
in terms of time and processing cost, they are also
not deadlock-free.

 Timestamp-based Ordering algorithms (TO): Such
as Basic Timestamp Ordering (BTO) (Bernstein and
Goodman, 1981), each data item is given a
timestamp associated with the transaction
requesting to access it. A later operation with a
read request will be denied access if there is an
earlier write access timestamp granted to another
transaction and vice versa. Instead of using locks,
every transaction is granted access but in the
aforementioned manner, taking into consideration
that a 'read any - write all' rule must be applied for
replicated data stating that a read request can be
sent to any replica while a write request should be
sent and approved by all replicas.

 Certification-based algorithms: Also known as the
Optimistic concurrency control algorithm (Sinha et
al., 1985). These are also timestamp-based
algorithms that use certificate exchange during a
transaction commit phase. Each data item is
assigned a read and write time stamp. Every
transaction is granted free access to read and write
on the copy of the data item residing at its site or
local workspace. All transactions cohorts upon
completion report to the masters which all the
transactions, make a decision, and assign a global
unique read and write timestamps for the data
item and send them to all transaction sites in the
'prepare to commit' message as part of a two-phase
commit operation (AlKhatib and Labban, 2002). If
the transaction's read timestamp is the same as the
global write timestamp then it is certified, else it
reads the newer write timestamp that should be
already locally certified. Write requests are
certified if there are no later reads that have been
either certified and committed or locally certified.

 Multi-version-based algorithms: This type is used
with 2PL and Timestamp ordering in the forms of
multi-version Two-phase locking and multi-version
Timestamp ordering algorithms respectively. This
mechanism depends on accessing older copies in
the system in order to increase availability by
avoiding any delayed or aborted transaction as an
imperative requirement for ensuring serializability
which in turn corresponds to the rule of isolation of
the ACID protocol. Afterward, the final value of the
data item is consolidated and other versions are
updated accordingly if necessary based on the
timestamp version of that particular data item.
However, storing multi-versions of data requires a
carefully designed database structure in order to
optimize response time (Haapasalo et al., 2008).

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

164

Nevertheless, the majority of concurrency control
handling algorithms and their variants can be traced
to three categorical methods: Timestamp-based
(Bernstein and Goodman, 1981), certification-based
(Thomasian, 1998; Kung and Robinson, 1981), and
locking-based algorithms (Akintola et al., 2005).
Hence, if we carefully examine the locking method
and investigate the criterion upon which the locks
are enforced, we can deduce that prioritization of
locking is also with respect to time stamping.

4. Concurrency control: Discussion and re-
introducing of the problem

Concurrency control can be simply defined in
relation to the objective of preventing transaction
interference between users that are granted
simultaneous privileged access to the same data
items on different sites within a DDBS. Privileged
access can be in the form of read or write. It is
important to point out that, while anomalies arising
from concurrent access to DDBSs persist, most of the
algorithms proposed or implemented to handle
concurrency control are usually complex and cannot
be accurately validated (Bernstein and Goodman,
1981). The main purpose of DDBSs was to lower the
cost while maintaining the effectiveness of databases
and their applications, in other words; sustaining the
efficiency of databases by allowing their extension
across distributed locations while lowering the
expensive cost of managing such coordination and
processing and concurrency management using very
expensive servers. The complexity of concurrency
control management anomalies escalates
exponentially considering methods of data
fragmentation, allocation, and replication, since each
method used to store data results in its own set of
anomalies (Carey and Livny, 1988). However, we
propose our method independent of the used
techniques, although they can contribute to
complexities unnecessarily. Furthermore, we argue
that complete replication of the entire database
contents on every site serves our purpose of proving
that; although it may enhance performance to some
extent at a very high cost; yet doesn't guarantee
considerable optimization of concurrency control
performance or elimination of resulting anomalies.
Processing costs can take other forms such as a
constant requirement to maintain an optimized
network load balancing to ensure timely delivery of
control messages and signals between the remotely
located sites and prevent any sort of delays that can
cause additional problems. The problem of
proposing an intricate and complex algorithm to
address concurrency control issues in DDBSs
depends mainly on the processing factor in terms of
capacity and time, not to mention any
synchronization requirements between remote sites.
Evidently, any inclusion of time delay in any form
only increases the problem of concurrency control.
Concurrency control can be viewed as a problem of
resource allocation (control over data and
transaction ability). Hence, the core problem of

concurrency control can be simply characterized as
the synchronization procedure of read-write and
that of write-write (Bernstein and Goodman, 1981).
Both of which, require a sub-algorithm to address
each problem. But what if we consider a separate
algorithm for each type while segregating data items
accordingly?

Consequently, we argue that attempting to
exhaustively outline all the possible scenarios in
which concurrency control anomalies can occur can
be a difficult task since new unanticipated scenarios
could emerge as a result of external factors such as a
delay in a lock signal due to network congestion. We
can also argue that the performance tradeoff of
distributed concurrency control remains not
properly defined despite the numerous research
exhaustively describing different types of algorithms
to handle concurrency control (Carey and Livny,
1988). Hence, we propose using more than one
concurrency control handling algorithm within the
same DDBS in response to one of the questions
raised.

Based on or redefinition of the problem of
concurrency control as an issue of resource
allocation and a derivative of time, we propose
extending the method used by contemporary
operating systems in memory management through
the use and employment of various techniques
depending on the state and parameters to be
considered in memory management such as the size
of the program and data to be executed, the available
free memory size and location of these frames and
whether there are contingent or not. Another point
of concern upon careful investigation of the first part
of our proposed strategy is that the suitability of a
specific concurrency control algorithm to a
particular type of transaction doesn’t take into
consideration the type of data items being handled,
which in turn raises a question on the basis of
algorithm-transaction allocation determining factor;
Data item type, transaction type, or combination of
both?

5. Concurrency control optimization strategy

The optimization strategy we proposed is based
on the basic notion that it is not only possible, but it
is advisable that geographically distributed sites
contain different fragments of data entities.
Therefore, if a transaction requires access to two
distributed sites to perform one job, then complexity
escalates because not only a global concurrency
control mechanism is required to manage the data
consistency between the two sites, and in the entire
DDBS as well, but also a global process handler is
required. And although distributed process handling
is somewhat easier than handling concurrency
control, nevertheless, complexity increases with
different distributed concurrency control scenarios
in addition to distributed processing management.
This relates to our previous partial redefinition of
the concurrency control problem as a resource
allocation issue. The strategy we propose is a two-

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

165

part method. The first part is a structured system to
classify data items into tiers according to the
importance and sensitivity of data in relation to the
transaction type intensity of that environment. The
second part is the concurrency control algorithm
controller that manages transactions between tiers
and sites known as the Concurrency Manager (CM).
Database items can be any entities ranging from
records up to clusters of tables. For simplicity, we
consider tables as the data entities upon which the
tier-based structure is identified. Therefore, tables
classified as tier1 are the most sensitive data that
should be strictly managed in terms of concurrency
control. Each tier is assigned a designated algorithm
from a previously specified and classified algorithms
list. The classification system categorizes selected
concurrency control algorithms on a 1.0–0.1 scale
depending on the level of relaxation with respect to
serializability. There are various variants of
algorithms that can be considered for classification
under our proposed serializability tier-based
structure. However, for demonstrational purposes,
we considered a four-tier DDBS structure with four
corresponding designated concurrency control
algorithms to represent distinct levels of
serializability relaxation degrees. Moreover, the
number of sites increases with more serializability-
relaxed tiers.

The tiered level classification is associated with
careful positioning of each tier site geographically,
taking into consideration various factors such as:

 Transactions density of each data entity with

respect to its geographical location.
 Transactions type density per site with respect to

tier level.
 Network status in terms of optimization statistics

and congestion.

Therefore, a necessity arises to re-classify
concurrency control algorithms according to the
degree of relaxation that each can provide in
comparison to others, and thereafter, is assigned a
simple membership value ranging from (1.0–0.1) to
indicate the degree of relaxation to each algorithm.
Each transaction pertaining to any data item or
entity is classified accordingly and then assigned a
concurrency control algorithm depending on the
classification of the data item's sensitivity during the
creation of that entity. Hence, it is possible to assign
10 or even more data items sensitivity tier levels
upon creation.

5.1. The optimized distributed database model

Our proposed system's components structure can
be built on top of any concurrency control sub-
system of all proposed DDBMSs models. For
instance, we can consider a widely used
conventional model described by Carey and Livny
(1988) as a platform to demonstrate the
functionality of our method. The demonstration

model consists of the following components as
shown in Fig. 1:

 The Transaction Manager (TM): Models the

execution of transactions accepted from the source.
 The Data Manager (DM): Responsible for

processing and handling the data by controlling
DBMS information access that is stored on disk.

 The Network Manager (NM): Handles the site's
communications with other sites.

There are two more components that should be

mentioned, although they bare minimal weight in
our discussions; the source which generates the
workload for a site, and the resource manager which
is responsible for managing the site's CPU, I/O, and
disks, and provides their services to the transaction
manager. As shown in Fig. 1, each site contains a DM,
a TM, and an NM. The TM handles the user interface
with DDBMS in the form of transactions and
communicates with the DM, while the DM manages
the actual database and local transactions. TMs
communicate with local DMs.

The second part of our model involves a
Concurrency Manager (CM), which is an algorithm
that determines which algorithm to allocate to which
transaction depending on a specified range of
parameters such as source of transaction, targeted
environment transactions type intensity, type on the
transaction, etc. The concurrency control algorithm
controller operates under a tier-based classification
system; it provides a form of tradeoff but not in the
convenience that has been previously applied in
DDBMSs concurrency control practices.

At this stage, we propose a simple design for The
CM algorithm, although more intricate
functionalities can be embedded later. Logically, The
NM is part of the tier’s CM. The DM communicates
with the tier site’s CM. furthermore, no tier site CMs
are required for same-tier remote sites as shown in
Fig. 2.

The 4-tier structure system set as an example
here is composed of the following tiers:

 Tier1 sites: Contains the most sensitive data

entities (eg; account balance tables), are stored in a
limited number of sites (only 2 locations) carefully
geographically located, and assigned a strict 2PL
algorithm as a concurrency control algorithm to
ensure strict serializability.

 Tier2 sites: Contain lesser sensitive data than tier1,
and therefore are assigned the 2PL algorithm that
provides a more relaxed form of serializability. The
number of Tier3 sites is slightly more than Tier1
sites (3 locations).

 Tier3 sites: Contain data that can tolerate a
relatively more relaxed form of serializability. This
tier offers moderate levels of availability in the
form of performance. Tier3 sites are assigned a
Multi-version 2PL algorithm.

 Tier4 sites: Contain the most relaxed form of
serializability, which translates to the highest level

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

166

of availability permitted in DDBSs. It is assigned a multi-version Timestamp ordering algorithm.

Data
Manager

Network
Manager

Network
Manager

Data
Manager

Transaction
Manager

Transaction
Manager

Data Data

T1s1 T2s1

Tier 1 master site CM Tier 2 master site CM

Fig. 1: Site components

Both networks in Fig. 2 and Fig. 3, which
represent a single site–multitier scheme, are both
reliable point-to-point (PTP) networks, however, it’s
possible to use VPNs through the internet as a
medium of communication to reduce costs, although
this may raise delay and security concerns.

5.2. Two scheme tier-based site distribution

We propose two tier-based site distribution
schemes for our proposed optimization strategy. The
DDBS in both schemes consists of multiple
distributed sites. But the distribution and locating of
tiers differ between the two schemes, for which each
has its own merits and weaknesses as follows:

 Single Site–Single-Tier scheme: As shown in Fig. 2,

each geographically distributed site contains only a
single-tier. One site of each tier level is designated
as the master site for that tier and controls inter-
tier transactions between same tier sites.
Additionally, the tier master site also contains the
CM that handles transactions requesting access to
that tier's data items. This scheme design is agile
and simple but depends greatly on the quality and
status of network communications.

 Single site–Multi-tier scheme: As shown in Fig. 3,
each geographically distributed site can contain
different multiple tiers. Tier master sites are
alternately distributed so that no single site
contains the master tier site of two tiers. Similarly,
the tier master site contains the CM that handles
transactions requesting access to that tier's data
items. The advantage gained from this
decentralized scheme is that each tier master site
CM can process and perform any other tier’s

transaction if its tier data is available at the same
site taking into consideration the version of data
items with respect to replication. Otherwise, it will
classify and forward it to the corresponding tier
master site CM. This scheme design doesn't rely
greatly on network communication like the former
scheme, but consequently, imposes a higher
processing burden on the tier master site CM
adjacent to the multi-tier cluster site.

5.3. Concurrency manager: Algorithm's design
and operation method

All data items are important parts of the DDBS,
but performance-wise, Our algorithm suggests a
categorical classification of data items in terms of
serializability requirements into crucial data items
that should strictly follow the serializability
scheduling mechanism, examples of such data
include banks customers' credit, money, and balance
transactions, and into those that can follow a more
relaxed form of serializability for employee
information in the form of a snapshot isolation
mechanism such as the mechanism used by
Haapasalo et al. (2009) with a concurrent multi-
version B+-tree to allow multiple concurrent read-
only transactions to access historical states of the
database, or even updating transactions using
relaxed forms of serializability scheduling while
maintaining security in both categories. In each tier,
hence, the concurrency control algorithm has a
master site to minimize cost in terms of processing
capacity and synchronization messages as much as
possible by increasing the autonomy of concurrency
control algorithms or the mechanism that oversees
its handling.

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

167

T1 master site CM

T1s1

T2 master site CM

T2s1

T3 master site CM

T3s1

T4 master site CM

T4s1

T2s3

T2s2

T4s6

T3s3

T3s2

T4s3

T4s4

T4s5

T4s2

T1s2

T3s4

Fig. 2: Single site–single-tier scheme

T1 master site CM

T1s1

T1s2

T2s1

T2s2

T2s3

T3s1

T3s2T3s3

T4s1T3s4

T3 master site CM

T2 master site CM

T4 master site CM

T4s5T4s6

T4s4

T4s2

T4s3

Fig. 3: Single site–multi-tier scheme

As shown in Fig. 4, the designation of a specific
algorithm for every site or tier-classified data item
optimizes concurrency control in the following
manner:

 Each tier, hence, the concurrency control algorithm

has a master site, which minimizes cost in terms of
processing capacity and amount of synchronization
messages as much as possible by increasing the
autonomy of concurrency control algorithms or the
mechanism that oversees its handling.

 Priority of every algorithm's control over all
transactions requesting access to its site's data,

while acquiring a lesser priority value for other
sites.

 Strength and weakness properties of each
algorithm are mainly limited to the sites and data it
manages. Hence, weaknesses are considerably
minimized since classifying data items and aligning
them with an algorithm is achieved on the basis of
suitability.

The CM algorithm doesn't shift from algorithm to

algorithm in the same manner that concurrency
control algorithms handle control to sub-routines. It
allocates a concurrency control algorithm to the
transactions requesting access.

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

168

This differs from the implemented scheduling
practice of using modular or global serializability
and distributed serializability (Bernstein and
Newcomer, 2009), although it uses a similar method
to the Commit Ordering mechanism (CO) (Raz, 1992)
to effectively distribute concurrency control
information to maintain the compatibility between
the chronological order of transactions commit
events and between their precedence order. The
main functions of the CM algorithm are as follow:

 Determine transactions tier according to pre-set

parameters.
 Allocate the corresponding concurrency control

algorithm
 Forward transactions to the appropriate master

tier CM algorithm.
 Handle transactions' requests for access to data

items within the site.
 Handle transactions' requests for additional access

to data on other tier sites with the aid of the
network manager.

The proposed algorithm’s primary concern is

establishing and maintaining a clear priority system
for allocating algorithms between transactions,
which in turn raises a question about whether; the
once specified concurrency control algorithm; is
assigned on the bases of site location or per
transaction. Apparently, assigning concurrency
control algorithms on the basis of transaction type
and size for example; infers a higher cost in terms of
processing capacity and delay time. The broad
operation methodology of the CM adheres to the
following directives:

 Transactions are handled by the concurrency

control algorithm allocated to each type of data
item or site's tier classification.

 Each master tier site contains a CM algorithm that
handles control of requests from/to other master
tier sites.

 Each CM of the master tier site handles that tier's
data items requests from other master tier sites
and not directly from user transactions.

 If any authorized transaction requests access to
specified tier data, it is allocated to that tier's
designated CM.

For the crucial purpose of deadlock avoidance, it

is imperative that every local concurrency control
algorithm should ensure the termination of every
transaction in case of any delay, timeout, or failure of
the designated handling concurrency control
algorithm, provided that its tier level is higher than
that of the transaction. As shown in Fig. 2, we have
the following tier sites:

 Primary sites: These are tier master sites such as

T1s1, T2s1, T3s1, and T4s1. they contain the
concurrency manager algorithm.

 Secondary sites: These are non-master tier sites.
The rest of the sites such as T1s2, T2s2, T3s2, T4s2,

and so on, fall under this category. They contain
versions of the tier’s data items for redundancy
and performance concerns in the same manner as
traditional DDBSs. Multi-versions of each tier's
data entities are used since they significantly allow
update and read-only transactions (Haapasalo et
al., 2008).

Hence, according to the proposed tier-based

structure system and its method of operation,
transactions fall into one of two categories:

 Conclusive Transactions (tcn): These are

transactions requesting data items sufficiently
available only to a specific tier.

 Inconclusive Transactions (tim.n): These are
transactions that require data available in two or
more different tier sites.

It is imperative to point out that each transaction

is initially assumed to be conclusive (tcn), and
therefore, is assigned one of the four concurrency
control algorithms according to the type of data
located at its corresponding site. The operation
method of the concurrency manager is shown in Fig.
4 which is a flowchart that illustrates the
concurrency manager operation method,

And can be further explained considering the
following scenario: Suppose a transaction is
initiated, it is received by the nearest CM which
classifies it as tc1, allocates its concurrency control
algorithm type, and forwards it to its designated
tier’s master site. Let's suppose it is assigned a tier1
site T1s1 which means being allocated a strict 2PL
algorithm to handle it, and thus, follows its operation
method. The transaction is terminated thereafter,
once the transaction’s requests are satisfied from
only accessing T1s1. However, If tc1 requests are not
fulfilled and require access to additional data items
on a different tier site, the additional data items
request is returned to the T1 master site CM, which
classifies it as ti1.1, and determines the tier of the
additional requested data items site; let’s say tier2,
and assigns a 2PL algorithm to handle it and
forwards it to T2 master site CM. transaction ti1.1

follows the new tier directives and thereafter, is
terminated once the transaction’s requests are
satisfied from accessing T2s1 or one of the T2
secondary remote sites, thus, returning the results to
the T2 master site CM, which returns it back to the
T1 master site CM, complete tc1 results, and then
returns the final results to the user. Similarly, if ti1.1

requires access to additional data items on a
different tier site, the additional data items request is
returned to the T2 master site CM, which then
classifies it as ti1.2, and determines the tier of the
additional requested data items site; let’s say tier3;
and assigns a multi-version 2PL algorithm to handle
it and forwards ti1.2, which should now follow the
new tier directives and its associated algorithm, to
T3 master site CM, and so on. Before each
inconclusive transaction is processed at its
corresponding tier master site, the CM algorithm

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

169

assigns it a priority level depending on the tier it's
being transferred from. In the previous example,
(ti1.1) will assign a higher priority than tier2
conclusive transactions, or transactions that only
require operations and data that can be sufficiently
provided by tier2. On the other hand, if a tier3
inconclusive transaction is transferred to (T2s1), it is
placed on the normal queue of transactions.

Therefore, the priority mechanism reflects two
issues:

 The importance and sensitivity of transactions

according to data items classification.
 Availability in the form of the increased number of

tier sites as data requirements with respect to
serializability becomes more relaxed.

Transaction received by
nearest CM from DM

Nearest CM classifies it as (tcn), allocates
appropriate algorithm, and forwards it

to site A CM

Return result and
completion

message to user and
terminate

site s CM receives (tcn) , forwards it to
site A TM, forwards to DM, performs

transaction & returns result

All requested operations
performed?

return additional data request to site A
CM which; classifies it as (tin.1), allocates
appropriate algorithm, and forwards it

to site B CM

transaction (tin.1) received and
processed by site B CM

Is
Site A s tier higher than site B s

tier ?

Place in normal
queue

Forward to site (B) TM, then
DM and process according

to priority

Increase
priority

NO

YES

YESNO

Fig. 4: The concurrency manager operation method

6. Challenges and performance testing

Up to this point, our proposed strategy remains
an algorithmic approach due to its nature. Moreover,
we’re in the process of designing and constructing a
hybrid multi-concurrency algorithm simulation
framework for testing the cumulative performance
of the DBS environment which incorporates multiple
concurrency algorithms. Various challenges face this

task since the notion is a novel one because all DDBS
in practice or theory applies only one concurrency
algorithm. However, several simulation frameworks
methods are being investigated and considered on
the basis of the quality of their generated results,
such as; hybrid concurrency simulator and
distributed hybrid simulator (Bakura and
Mohammed, 2014; D'Angelo et al., 2018), real-time
database system simulation model presented by Kim

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

170

and Shin (1994) with a DDBS oriented environment,
and real-time object-oriented database architecture
(Taina and Raatikainen, 1996; Lindström, 2004)
despite the fact that it's a telecommunication
architecture but the concurrency principle is the
same. For demonstrational purposes, we used four
known types of concurrency control algorithms with
relatively distinct characteristics, but empirically,
discrepancies between major concurrency control
variants can be vague (Batra and Kapil, 2010), thus,
adding to the challenges of reaching a crisp
classification of concurrency control algorithms. This
can reflect/translate into the performance tradeoffs
of distributed concurrency control (in too many or
too less parameters and their qualitative nature) in
either selecting the appropriate algorithms or
classifying them in concurrence to the alignment
process with tier-based classified data items. Finally,
it is important to indicate for comparison purposes,
that after the revision and examination of similar
work and research in literature, we were not able to
find any similar endeavors. Alternatively, the nearest
methods to the approach presented were
characterized by two works, each presenting a
partial aspect of our strategy and only to some
extent. The first one of these researches introduces
the concept of using more than one algorithm within
a hybrid intelligent concurrency control algorithm
for centralized DBSs, but it only alternates between
optimistic and pessimistic approaches to manage
concurrency depending on the conflict rate value
(Sheikhan and Ahmadluei, 2013). The second
research discusses transaction priority within a
hybrid concurrency control algorithm for mobile
DBSs in which concurrency access anomalies are
addressed depending on a variable transactions
priority parameter (Moiz, 2015).

7. Conclusion and future work

Our work concentrates on designing an optimized
distributed database system. We proposed a two-
part strategy for optimizing distributed databases'
concurrency control mechanisms. Our strategy can
be easily adapted to any distributed environment,
grid, or cloud. The first part of our strategy
acknowledges two factors; first, the differences
between data items with regard to importance and
sensitivity translate into serializability degree
requirements. Second, the strengths and weaknesses
of each implemented concurrency control algorithm
affect the entire distributed database system
regardless of different types of data entities and their
different requirements. We proposed using multiple
concurrency algorithms within the same distributed
database system. These algorithms are classified
according to a proposed tier-based structure system
that considers the type of transactions and data
items being processed among other factors. The
second part of our strategy is a concurrency
manager algorithm that is designed to operate on the
basis of the first part of our proposed strategy, with a
simple priority mechanism that is also based on the

first part. Our intentions for future work are mainly
targeted towards accomplishing two objectives;
establishing a well-defined system for classifying
concurrency control algorithms according to degrees
of fitness to data items' types and constructing an
appropriate simulator to test the performances of all
possible varieties of the proposed strategy in terms
of; used algorithms and their variants, structure of
the system, and parameters used to classify data
items. With respect to the latter objective and due to
the unconventional nature of our proposal, we're
considering a hybrid method of simulator
construction for performance measurement. Another
concern that we aim to further express and
investigate is the scenarios in which conflicting data
is present in the form of two values for the same data
item attribute that are equal in priority as a result of
using different algorithms to manage concurrency
locally from two different sites.

Evidently, this paper alone is not sufficient to
investigate the potentials of all different possible
combinations of two or even more concurrency
control algorithms considering the number of
variants proposed, but nevertheless, our work may
motivate other researchers to further investigate the
potentials.

Acknowledgment

The author gratefully acknowledges the approval
and the support of this research study by grant no.
COM-2018-3-9-F-7921 from the Deanship of
Scientific Research at Northern Border University,
Arar, K.S.A.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Akintola AA, Aderounmu GA, Osakwe AU, and Adigun MO (2005).
Performance modeling of an enhanced optimistic locking
architecture for concurrency control in a distributed database
system. Journal of Research and Practice in Information
Technology, 37(4): 365-380.

Alkhatib G and Labban RS (2002). Transaction management in
distributed database systems: The case of oracle’s two-phase
commit. Journal of Information Systems Education, 13(2): 95-
104.

Bakura SA and Mohammed A (2014). Lock-free hybrid
concurrency control strategy for mobile environment. In the
IEEE 6th International Conference on Adaptive Science and
Technology, IEEE, Ota, Nigeria: 1-5.
https://doi.org/10.1109/ICASTECH.2014.7068146

Batra N and Kapil AK (2010). Concurrency control algorithms and
its variants: A survey. AIP Conference Proceedings: American
Institute of Physics, 1324: 46-50.
https://doi.org/10.1063/1.3526261

https://doi.org/10.1109/ICASTECH.2014.7068146
https://doi.org/10.1063/1.3526261

Nasser Shebka/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 159-171

171

Bernstein PA and Goodman N (1981). Concurrency control in
distributed database systems. ACM Computing Surveys, 13(2):
185-221. https://doi.org/10.1145/356842.356846

Bernstein PA and Newcomer E (2009). Principles of transaction
processing. Morgan Kaufmann Publishers, Burlington, USA.
https://doi.org/10.1016/B978-1-55860-623-4.00004-4

Bernstein PA, Hadzilacos V, and Goodman N (1987). Concurrency
control and recovery in database systems. Volume 370,
Addison-Wesley, Boston, USA.

Carey MJ and Livny M (1988). Distributed concurrency control
performance: A study of algorithms, distribution, and
replication. In: Bancilhon F and DeWitt DJ (Eds.), Proceedings
of the 1988 VLDB Conference: 14th International Conference
on Very Large Data Bases: 13-25. Morgan Kaufmann
Publishers, Burlington, USA.

Carey MJ and Muhanna WA (1986). The performance of
multiversion concurrency control algorithms. ACM
Transactions on Computer Systems, 4(4): 338-378.
https://doi.org/10.1145/6513.6517

D'Angelo G, Ferretti S, and Ghini V (2018). Distributed hybrid
simulation of the internet of things and smart territories.
Concurrency and Computation: Practice and Experience,
30(9): e4370. https://doi.org/10.1002/cpe.4370

Dean J and Ghemawat S (2007). Distributed programming with
MapReduce. In: Oram A and Wilson G (Eds.), Beautiful code:
371-384. OReilly Media, Inc., Sebastopol, USA.

Geschwent P (1994). A survey of traditional and practical
concurrency control in relational database management
systems. Technical Reports, Miami University, Oxford, USA.

Gray J, Helland P, O'Neil P, and Shasha D (1996). The dangers of
replication and a solution. In the 1996 ACM SIGMOD
International Conference on Management of Data, Association
for Computing Machinery, Montreal, Canada: 173-182.
https://doi.org/10.1145/235968.233330

Gray JN (1991). Notes on database operating systems. Operating
Systems: An Advanced Course, 60: 397-405.

Haapasalo T, Sippu S, Jaluta I, and Soisalon-Soininen E (2009).
Concurrent updating transactions on versioned data. In the
2009 International Database Engineering and Applications
Symposium, Association for Computing Machinery, Cetraro-
Calabria, Italy: 77-87.
https://doi.org/10.1145/1620432.1620441

Haapasalo TK, Jaluta IM, Sippu SS, and Soisalon-Soininen EO
(2008). Concurrency control and recovery for multiversion
database structures. In the 2nd Ph.D. Workshop on Information
and Knowledge Management, Association for Computing
Machinery, Napa Valley, USA: 73-80.
https://doi.org/10.1145/1458550.1458563

Herlihy MP and Weihl WE (1991). Hybrid concurrency control for
abstract data types. Journal of Computer and System Sciences,
43(1): 25-61.
https://doi.org/10.1016/0022-0000(91)90031-Y

Kanungo S and Rustom DM (2015). Analysis and comparison of
concurrency control techniques. International Journal of
Advanced Research in Computer and Communication
Engineering, 4(3): 245-251.
https://doi.org/10.17148/IJARCCE.2015.4360

Kim J and Shin H (1994). Optimistic priority-based concurrency
control protocol for firm real-time database systems.
Information and Software Technology, 36(12): 707-715.
https://doi.org/10.1016/0950-5849(94)90042-6

Kumar N, Bilgaiyan S, and Sagnika S (2013). An overview of
transparency in homogeneous distributed database system.

International Journal of Advanced Research in Computer
Engineering and Technology, 2(10): 2677-2682.

Kung HT and Robinson JT (1981). On optimistic methods for
concurrency control. ACM Transactions on Database Systems,
6(2): 213-226. https://doi.org/10.1145/319566.319567

Lam KY, Lee VC, Hung SL, and Kao BC (1997). Priority assignment
in distributed real-time databases using optimistic
concurrency control. IEE Proceedings-Computers and Digital
Techniques, 144(5): 324-330.
https://doi.org/10.1049/ip-cdt:19971496

Li JM and He GH (2010). Research of distributed database system
based on Hadoop. In The 2nd International Conference on
Information Science and Engineering, IEEE, Hangzhou, China:
1417-1420. https://doi.org/10.1109/ICISE.2010.5689141

Lindström J (2004). Performance of distributed optimistic
concurrency control in real-time databases. In the
International Conference on Intelligent Information
Technology, Springer, Hyderabad, India: 243-252.
https://doi.org/10.1007/978-3-540-30561-3_26

Liu L and Özsu MT (2009). Encyclopedia of database systems.
Volume 6, Springer, New York, USA.
https://doi.org/10.1007/978-0-387-39940-9

Menasce DA and Muntz, RR (1979). Locking and deadlock
detection in distributed data bases. IEEE Transactions on
Software Engineering, SE-5(3): 195-202.
https://doi.org/10.1109/TSE.1979.234181

Moiz SA (2015). A hybrid concurrency control strategy for mobile
database systems. Journal of Advanced Research, 3(4): 374-
381. https://doi.org/10.9734/AIR/2015/12406

Rahimi SK and Haug FS (2010). Distributed database management
systems: A practical approach. John Wiley and Sons, Hoboken,
USA. https://doi.org/10.1002/9780470602379

Raz Y (1992). The principle of commitment ordering or
guaranteeing serializability in a heterogeneous environment
of multiple autonomous resource managers using atomic
commitment. In the 18th International Conference on Very
Large Databases (VLDB’92), Morgan Kaufmann Publishers,
Vancouver, Canada: 292–312.

Rosenkrantz DJ, Stearns RE, and Lewis PM (1978). System level
concurrency control for distributed database systems. ACM
Transactions on Database Systems, 3(2): 178-198.
https://doi.org/10.1145/320251.320260

Sheikhan M and Ahmadluei S (2013). An intelligent hybrid
optimistic/pessimistic concurrency control algorithm for
centralized database systems using modified GSA-optimized
ART neural model. Neural Computing and Applications, 23(6):
1815-1829. https://doi.org/10.1007/s00521-012-1147-3

Silberschatz A, Korth HF, and Sudarshan S (2002). Database
system concepts. Volume 5, McGraw-Hill, New York, USA.
https://doi.org/10.1016/B0-12-227240-4/00028-9

Sinha MK, Nandikar PD, and Mehndiratta SL (1985). Timestamp
based certification schemes for transactions in distributed
database systems. ACM SIGMOD Record, 14(4): 402-411.
https://doi.org/10.1145/971699.318990

Taina J and Raatikainen K (1996). RODAIN: A real-time object-
oriented database system for telecommunications. In:
Soparkar N and Ramamritham K (Eds.), Proceedings of the
workshop on databases: Active and real-time: 10-14.
University of Massachusetts, Boston, USA.
https://doi.org/10.1145/352302.352306

Thomasian A (1998). Distributed optimistic concurrency control
methods for high-performance transaction processing. IEEE
Transactions on Knowledge and Data Engineering, 10(1): 173-
189. https://doi.org/10.1109/69.667102

https://doi.org/10.1145/356842.356846
https://doi.org/10.1016/B978-1-55860-623-4.00004-4
https://doi.org/10.1145/6513.6517
https://doi.org/10.1002/cpe.4370
https://doi.org/10.1145/235968.233330
https://doi.org/10.1145/1620432.1620441
https://doi.org/10.1145/1458550.1458563
https://doi.org/10.1016/0022-0000(91)90031-Y
https://doi.org/10.17148/IJARCCE.2015.4360
https://doi.org/10.1016/0950-5849(94)90042-6
https://doi.org/10.1145/319566.319567
https://doi.org/10.1049/ip-cdt:19971496
https://doi.org/10.1109/ICISE.2010.5689141
https://doi.org/10.1007/978-3-540-30561-3_26
https://doi.org/10.1007/978-0-387-39940-9
https://doi.org/10.1109/TSE.1979.234181
https://doi.org/10.9734/AIR/2015/12406
https://doi.org/10.1002/9780470602379
https://doi.org/10.1145/320251.320260
https://doi.org/10.1007/s00521-012-1147-3
https://doi.org/10.1016/B0-12-227240-4/00028-9
https://doi.org/10.1145/971699.318990
https://doi.org/10.1145/352302.352306
https://doi.org/10.1109/69.667102

	A two-part multi-algorithm concurrency control optimization strategy for distributed database systems
	1. Introduction
	2. Related works
	3. Concurrency control: A brief review
	3.1. Transactions and ACID rules
	3.2. Concurrency control algorithms

	4. Concurrency control: Discussion and re-introducing of the problem
	5. Concurrency control optimization strategy
	5.1. The optimized distributed database model
	5.2. Two scheme tier-based site distribution
	5.3. Concurrency manager: Algorithm's designand operation method

	6. Challenges and performance testing
	7. Conclusion and future work
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References

