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This study aims to introduce an optimum model to assess the COVID-19 
death rate in Saudi Arabia, Canada, Italy, and Mexico. A novel five-parameter 
lifetime distribution termed the odd generalized exponential Kumaraswamy-
inverse exponential distribution is presented by combining the 
Kumaraswamy-inverse exponential distribution with the odd generalized 
exponential generator. The theoretical features of the new distribution, as 
well as its reliability functions, moments, and order statistics are 
investigated. The odd generalized exponential Kumaraswamy-inverse 
exponential distribution is of special importance since its density has a 
variety of symmetric and asymmetric forms. Furthermore, the graphs of the 
hazard rate function exhibit various asymmetrical shapes such as decreasing, 
increasing, and upside-down bathtub shapes, and inverted J-shapes making 
The odd generalized exponential Kumaraswamy-inverse exponential 
distribution suitable for modeling hazards behaviors more likely to be 
observed in practical settings like human mortality, and biological 
applications. The proposed distribution parameters are estimated using the 
maximum likelihood approach and its effectiveness is demonstrated through 
both numerical study and applications to four COVID-19 mortality rate data 
sets. The odd generalized exponential Kumaraswamy-inverse exponential 
distribution provides the best fit to COVID-19 data compared to other 
extended forms of the Kumaraswamy and inverse exponential distributions 
which may attract wider applications in different fields. 
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1. Introduction 

*Severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) was discovered during the recent 
pneumonia epidemic in January 2020 in Wuhan, 
China. Ever since, the virus has rapidly spread 
around the world, infecting many people and causing 
severe pneumonia with a high mortality rate. This 
has forced many governments to take exceptional 
actions to safeguard their citizens. Therefore, several 
researchers proposed various new statistical models 
to accurately fit the COVID-19 data, see for example 
Almongy et al. (2021), Almetwally et al. (2021), 
Bantan et al. (2020), and Mohamed et al. (2021). 

There are still numerous real-world issues where 
actual data does not fit any of the well-known 
probability models. In order to address this, there is 
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a significant need to develop probability models that 
better reflect the behavior of particular real-life 
phenomena. 

Generated families of continuous distributions 
are a recent invention that offers a great deal of 
versatility in modeling real-world data. The addition 
of new parameter(s) to established distributions 
enhance their appropriateness for real-life 
phenomenon and increase the accuracy of 
characterizing the shape of the distribution’s tail. A 
number of families were generated in previous 
studies using new approaches, for example, the beta-
G family by Eugene et al. (2002), the Kumaraswamy-
G family (kum-G) by Cordeiro and de Castro (2011), 
and the more general method T-X family introduced 
by Alzaatreh et al. (2013) which allowed any 
continuous distribution to be the generator, Weibull-
G by Bourguignon et al. (2014), exponentiated 
Weibull-G by Cordeiro et al. (2017), odd generalized 
exponential-G (OEG) by Tahir et al. (2015), among 
many others. 

Our focus here is on the OEG family, which is 
versatile due to its different hazard rate shape 
properties. The OEG family is useful for evaluating 
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many types of lifespan data. If G(x) is any continuous 
cumulative distribution function (CDF), then the CDF 
and the probability density function (pdf) of the OEG 
family can be expressed, respectively, as: 
 

𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥;𝛼𝛼, 𝜆𝜆) = �1 − 𝑒𝑒−𝜆𝜆
𝐺𝐺(𝑥𝑥)

1−𝐺𝐺(𝑥𝑥)�
𝛼𝛼

,    x > 0;𝛼𝛼, 𝜆𝜆 > 0,            (1) 

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥;𝛼𝛼, 𝜆𝜆) = 𝜆𝜆𝛼𝛼𝜆𝜆(𝑥𝑥)
[1−𝑂𝑂(𝑥𝑥)]2

𝑒𝑒−𝜆𝜆
𝐺𝐺(𝑥𝑥)

1−𝐺𝐺(𝑥𝑥) �1 − 𝑒𝑒−𝜆𝜆
𝐺𝐺(𝑥𝑥)

1−𝐺𝐺(𝑥𝑥)�
𝛼𝛼−1

,     x >
0;  𝛼𝛼,𝜆𝜆 > 0.                                                                                      (2) 
 

The exponential distribution is a well-known 
model in life testing studies due to its 
straightforward mathematical application and 
intriguing characteristics. As a result, it has been 
generalized by a number of scholars. However, the 
exponential distribution has a major drawback in 
that it has bad memory characteristics and a 
constant failure rate, which is inappropriate for 
modeling specific cases with bathtub and inverted 
bathtub failure rates (Lemonte, 2013). Therefore, a 
modified version of the exponential distribution, 
named inverse exponential distribution (IE), is 
proposed and studied by Keller et al. (1982) and Lin 
et al. (1989) to compensate for these constraints. 
The CDF and pdf of IE distribution are expressed, 
respectively, as: 
 
𝐹𝐹𝐼𝐼𝑂𝑂(𝑥𝑥; 𝛾𝛾) = 𝑒𝑒−

𝛾𝛾
𝑥𝑥,    x > 0;  𝛾𝛾 > 0,                                                (3) 

𝑓𝑓𝐼𝐼𝑂𝑂(𝑥𝑥; 𝛾𝛾) = 𝛾𝛾
𝑥𝑥2
𝑒𝑒−

𝛾𝛾
𝑥𝑥, x > 0;  𝛾𝛾 > 0.                                              (4) 

 
Various generalizations of the IE distribution 

have been contributed in recent years to improve its 
flexibility, including the generalized inverted 
exponential by Abouammoh and Alshingiti (2009), 
the exponentiated generalized inverse-exponential 
(Oguntunde et al., 2014), the Odd generalized 
exponential inverse-exponential (Yahaya and Abba, 
2017), and the exponentiated transmuted inverse-
exponential (Mohammed and Yahaya, 2019). 

The Kumaraswamy distribution has recently 
gained popularity due to its attractable 
representations for its CDF, pdf, and moments. 
Furthermore, it is widely used in hydrology 
applications (Cordeiro and de Castro, 2011; Jones, 
2009; Kumaraswamy, 1980). 

As a result of the appealing properties and 
potentials of both the Kumaraswamy and IE 
distributions, the Kum-G family is employed by 
Mohammed and Yahaya (2019) and Oguntunde et al. 
(2017) to generate the Kumaraswamy-IE (Kum-IE) 
distribution with CDF as follow: 
 

𝐺𝐺𝐾𝐾𝐾𝐾𝐾𝐾−𝐼𝐼𝑂𝑂(𝑥𝑥;𝑎𝑎,𝛽𝛽, 𝛾𝛾) = 1 − �1 − 𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

𝛽𝛽
,    x > 0;𝑎𝑎,𝛽𝛽, 𝛾𝛾 > 0.  

                                                                                                            (5) 
 

The associated pdf of Eq. 5 is given as:  
 

𝑔𝑔𝐾𝐾𝐾𝐾𝐾𝐾−𝐼𝐼𝑂𝑂(𝑥𝑥;𝑎𝑎,𝛽𝛽, 𝛾𝛾) = 𝛾𝛾𝑎𝑎𝛽𝛽𝑥𝑥−2𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �1 − 𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

𝛽𝛽−1
, x >

0;𝑎𝑎,𝛽𝛽, 𝛾𝛾 > 0.                                                                                   (6) 
 

This study aims to suggest a novel lifetime 
distribution termed the Odd generalized exponential 
Kumaraswamy-inverse exponential (OEKIE) 
distribution, based on a previous study’s odd 
generalized exponential generator, T-X, and Kum-G 
family. Furthermore, the following are the major 
reasons for implementing OEKIE in practice: 
 
• Provides additional adaptability for modeling real-

world data in a variety of disciplines by combining 
the OEG, T-X, and Kum-G approaches for 
generating new distributions.  

• Provides an appropriate model for fitting COVID-
19 mortality rate data.  

• Improve the flexibility of the Kum-IE distribution 
by providing new generalizations.  

• Provides more diverse lifetime data fits than its 
rival.  

 
In this article, some of OEKIE’s theoretical 

properties are deduced in Section 2, with an 
emphasis on those that may be of broad importance 
in probability and statistics. The maximum 
likelihood (ML) approach is adopted to estimate the 
OEKIE’s parameters in Section 3. In Section 4, a 
numerical study is carried out. Section 5 presents 
different COVID-19 mortality rate data sets from four 
countries to demonstrate the efficiency of the OEKIE 
distribution in comparison to some competitive 
generalized distributions of IE and Kumaraswamy. 
Finally, concluding remarks are provided in Section 
6. 

2. The OEKIE distribution 

The CDF and pdf of OEKIE can be obtained by 
replacing the 𝐺𝐺(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) in (1) and (2) by (5) and 
(6) as follows:  
 

𝐹𝐹(𝑥𝑥;𝛼𝛼,𝜆𝜆,𝑎𝑎,𝛽𝛽, 𝛾𝛾) = �1 − 𝑒𝑒
−𝜆𝜆��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�

𝛼𝛼

, x >

0;𝛼𝛼, 𝜆𝜆, 𝑎𝑎,𝛽𝛽, 𝛾𝛾 > 0,                                                                          (7) 
 
and  
 

𝑓𝑓(𝑥𝑥;𝛼𝛼, 𝜆𝜆, 𝑎𝑎,𝛽𝛽, 𝛾𝛾) =
𝜆𝜆𝛼𝛼𝛾𝛾𝜆𝜆𝛽𝛽�𝑒𝑒−

𝛾𝛾
𝑥𝑥�

𝑎𝑎

𝑥𝑥2�1−𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

𝛽𝛽+1     𝑒𝑒
−𝜆𝜆��1−�𝑒𝑒−

𝛾𝛾
𝑥𝑥�

𝑎𝑎
�
−𝛽𝛽

−1�
�1 −

𝑒𝑒
−𝜆𝜆��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�

𝛼𝛼−1

, x > 0;𝛼𝛼, 𝜆𝜆, 𝑎𝑎,𝛽𝛽, 𝛾𝛾 > 0.                      (8) 

 
The Survival function, 𝑆𝑆(𝑥𝑥), and hazard rate 

function (hrf) of OEKIE are expressed as: 
 

𝑆𝑆(𝑥𝑥;𝛼𝛼, 𝜆𝜆, 𝑎𝑎,𝛽𝛽, 𝛾𝛾) = 1 − �1 − 𝑒𝑒
−𝜆𝜆��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�

𝛼𝛼

, x >

0;𝛼𝛼, 𝜆𝜆, 𝑎𝑎,𝛽𝛽, 𝛾𝛾 > 0,                                                                          (9) 
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ℎ(𝑥𝑥;𝛼𝛼, 𝜆𝜆, 𝑎𝑎,𝛽𝛽, 𝛾𝛾) =

𝜆𝜆𝛼𝛼𝛾𝛾𝜆𝜆𝛽𝛽�𝑒𝑒−
𝛾𝛾
𝑥𝑥�

𝑎𝑎
𝑒𝑒
−𝜆𝜆��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

⎣
⎢
⎢
⎢
⎡
1−𝑒𝑒

−𝜆𝜆��1−𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

⎦
⎥
⎥
⎥
⎤
𝛼𝛼−1

𝑥𝑥2�1−𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

𝛽𝛽+1

⎝

⎜
⎛
1−

⎣
⎢
⎢
⎢
⎡
1−𝑒𝑒

−𝜆𝜆��1−𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

⎦
⎥
⎥
⎥
⎤
𝛼𝛼

⎠

⎟
⎞

, x > 0;𝛼𝛼, 𝜆𝜆, 𝑎𝑎,𝛽𝛽, 𝛾𝛾 > 0.                                                               (10) 

  
 

Fig. 1 and Fig. 2 show the various forms of 
OEKIE’s density and hrf at some values of the 
parameters. The pdf of the OEKIE in Fig. 1 shows 
decreasing, symmetrical, right-skewed, and reversed 
J-shape, which demonstrates the various modeling 

scenarios. In addition, the OEKIE’s hrf is attractive as 
seen in Fig. 2 since it exhibits a wide range of 
asymmetrical forms, including increasing, bath-tab, 
decreasing, constant, and reversed J-shape. This 
diverse panel of shapes reflects OEKIE’s flexibility. 

 

 
Fig. 1: The plots for the OEKIE pdf for certain values 

 

 
Fig. 2: The OEKIE’s hrf plots at some selected values 

 
2.1. Alternative expression for OEKIE’s density 

This subsection provides expansion for the 
OEKIE’s pdf given in Eq. 8 by first considering the 
binomial theorem series defined by, 

(1 − 𝑧𝑧)𝜆𝜆 = ∑∞𝑑𝑑=0 (−1)𝑑𝑑 �𝑎𝑎𝑑𝑑� 𝑧𝑧
𝑑𝑑 .                                             (11) 

 
In addition, the expansion of the exponential 

function is defined as: 
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𝑒𝑒−𝑥𝑥 = ∑∞𝑖𝑖=0
(−1)𝑖𝑖

𝑖𝑖!
𝑥𝑥𝑖𝑖 .                                                                    (12) 

 

Employing Eq. 11 to expand �1 − 𝑒𝑒
−𝜆𝜆��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�

𝛼𝛼−1

, 

the OEKIE’s pdf in Eq. 8 will be rewritten as: 
 

𝑓𝑓(𝑥𝑥) =

𝜆𝜆𝛼𝛼𝛾𝛾𝜆𝜆𝛽𝛽𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥

𝑥𝑥2�1−𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

𝛽𝛽+1  ∑∞𝑗𝑗1=0 (−1)𝑗𝑗1 �𝛼𝛼 − 1
𝑗𝑗1

� 𝑒𝑒
−𝜆𝜆(𝑗𝑗1+1)��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

.  

 
Moreover, applying Eq. 12 to expand 

𝑒𝑒
−𝜆𝜆(𝑗𝑗1+1)��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

, then, 
  

𝑓𝑓(𝑥𝑥) =
𝛼𝛼𝛾𝛾𝑎𝑎𝛽𝛽𝑒𝑒−

𝜆𝜆𝛾𝛾
𝑥𝑥

𝑥𝑥2 �
∞

𝑗𝑗1=0

�
∞

𝑗𝑗2=0

(−1)𝑗𝑗1+𝑗𝑗2𝜆𝜆𝑗𝑗2+1(𝑗𝑗1 + 1)𝑗𝑗2

𝑗𝑗2! �1 − 𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥 �

𝛽𝛽𝑗𝑗2+𝛽𝛽+1
�𝛼𝛼 − 1
𝑗𝑗1

� �1 − �1 − 𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
�
𝑗𝑗2

. 

  
 

Additionally, by employing Eq. 11 twice, the pdf 
of OEKIE will reduce to 
 
𝑓𝑓(𝑥𝑥) = 𝛼𝛼𝛾𝛾𝑎𝑎𝛽𝛽 ∑∞𝑗𝑗4=0

𝜂𝜂𝑗𝑗4𝜆𝜆
𝑗𝑗2+1

𝑥𝑥2
𝑒𝑒−

𝑎𝑎𝑗𝑗4𝛾𝛾
𝑥𝑥 ,                                         (13) 

 
where,  
 

𝜂𝜂𝑗𝑗4 = ∑∞𝑗𝑗1=0 ∑
∞
𝑗𝑗2=0 ∑

𝑗𝑗2
𝑗𝑗3=0

(−1)𝑗𝑗1+𝑗𝑗2+𝑗𝑗3+𝑗𝑗4(𝑗𝑗1+1)𝑗𝑗2

𝑗𝑗2!
�𝛼𝛼 − 1
𝑗𝑗1

�  

�𝑗𝑗2𝑗𝑗3
� �𝛽𝛽(𝑗𝑗3 − 𝑗𝑗2 − 1) − 1
𝑗𝑗4

�.                                                        (14) 

3. Properties of the OEKIE 

This section presents some essential statistical 
properties of OEKIE as follows:  

3.1. Quantile function 

The quantile function (𝑥𝑥𝑝𝑝) of the OEKIE 
distribution can be expressed as: 
 

𝑥𝑥𝑝𝑝 = −a𝛾𝛾 �log �1 − �1 −
log(1 − 𝑝𝑝1/𝛼𝛼)

𝜆𝜆 �
−1/𝛽𝛽

��

−1

,    0 < 𝑝𝑝

< 1. 
                                                                                                         (15) 
 

Therefore, the OEKIE’s median can be obtained 
as: 
 

𝑥𝑥0.50 = −a𝛾𝛾 �log �1 − �1 −
log(1 − 𝑝𝑝1/𝛼𝛼)

𝜆𝜆 �
−1/𝛽𝛽

��

−1

. 

 
Hence, the 25𝑡𝑡ℎ and 75𝑡𝑡ℎ percentiles of the OEKIE 

are obtained from Eq. 15 by replacing 𝑝𝑝 by 
(0.25,0.75), respectively. 

3.2. Skewness and kurtosis 

The shapes of OEKIE can be studied using 
Galton’s skewness and Moors’ kurtosis (Moors, 
1988). This is easily obtained using Eq. 15, as 
follows:  
 
𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆 = 𝑋𝑋0.75−2𝑋𝑋0.5+𝑋𝑋0.25

𝑋𝑋0.75−𝑋𝑋0.25
,                                                    (16) 

 
and  
 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑆𝑆𝐾𝐾𝑆𝑆 = 𝑋𝑋0.875−𝑋𝑋0.625+𝑋𝑋0.375−𝑋𝑋0.125

𝑋𝑋0.75−𝑋𝑋0.25
.                                       (17) 

 
For details see Alzaatreh et al. (2013). Fig. 3 and 

Fig. 4 display the Galton’s skewness and Moors’ 
kurtosis for OEKIE at different values of 𝛼𝛼, 𝜆𝜆 when 
𝑎𝑎 = 2,𝛽𝛽 = 1.2, 𝛾𝛾 = 0.3 and at different values of 𝜆𝜆, 𝛾𝛾 
when 𝑎𝑎 = 0.2,𝛽𝛽 = 1.2,𝛼𝛼 = 1.3. It can be seen that 
the skewness is always positive, implying that OEKIE 
is right-skewed. Fig. 3 shows that the kurtosis is a 
decreasing function of 𝜆𝜆 and 𝛼𝛼, but the Galton’s 
skewness is increasing function of 𝜆𝜆 for fixed 𝛼𝛼 and 
is decreasing function of 𝛼𝛼 for fixed 𝜆𝜆. Fig. 4 shows 
that kurtosis is increasing function of 𝜆𝜆 and 
skewness is decreasing function of 𝛾𝛾. 

3.3. Moments 

If 𝑋𝑋 has the OEKIE with density (8), then the 𝐾𝐾𝑡𝑡ℎ  
moment of 𝑋𝑋 is given by, 
 
𝐸𝐸(𝑥𝑥𝑟𝑟) = ∫∞0 𝑥𝑥𝑟𝑟𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 =

𝛼𝛼𝛾𝛾𝑎𝑎𝛽𝛽 ∑∞𝑗𝑗4=0 𝜂𝜂𝑗𝑗4𝜆𝜆
𝑗𝑗2+1 ∫∞0 𝑥𝑥𝑟𝑟−2𝑒𝑒−

𝑎𝑎𝑗𝑗4𝛾𝛾
𝑥𝑥 𝑑𝑑𝑥𝑥,                                (18) 

 
where, 𝜂𝜂𝑗𝑗4 given by Eq. 14. Taking 𝑧𝑧 = 𝑎𝑎𝑗𝑗4𝛾𝛾𝑥𝑥−1, 
limits will change from ∞ to 0, then simplifying, we 
obtain: 
 

𝐸𝐸(𝑥𝑥𝑟𝑟) = 𝛼𝛼𝛾𝛾𝑟𝑟𝑎𝑎𝑟𝑟𝛽𝛽 �
∞

𝑗𝑗4=0

𝜂𝜂𝑗𝑗4𝜆𝜆
𝑗𝑗2+1𝑗𝑗4𝑟𝑟−1 �

∞

0
𝑧𝑧−𝑟𝑟𝑒𝑒−𝑧𝑧𝑑𝑑𝑧𝑧. 

 
Thus, the 𝐾𝐾𝑡𝑡ℎ  moment is expressed as:  
 

𝜇𝜇𝑟𝑟 = 𝐸𝐸(𝑥𝑥𝑟𝑟) = 𝛼𝛼𝛾𝛾𝑟𝑟𝑎𝑎𝑟𝑟𝛽𝛽 �
∞

𝑗𝑗4=0

𝜂𝜂𝑗𝑗4𝜆𝜆
𝑗𝑗2+1𝑗𝑗4𝑟𝑟−1Γ(1 − 𝐾𝐾), 𝐾𝐾 < 1, 

                                                                                                         (19) 
 
where, the gamma function is defined as: 
 
Γ(𝜙𝜙) = ∫∞0 𝑥𝑥𝜙𝜙−1𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥.                                                            (20) 

 
The expression in Eq. 19 suggests that OEKIE’s 

𝐾𝐾𝑡𝑡ℎ  the moment does not exist for 𝐾𝐾 ≥ 1. 

3.4. Moment generating function 

The OEKIE’s moment generating function (MGF) 
is easily expressed as: 
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𝑀𝑀𝑥𝑥(𝐾𝐾) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑥𝑥) = ∑∞𝑟𝑟=0
𝑡𝑡𝑟𝑟

𝑟𝑟!
𝜇𝜇𝑟𝑟 =

𝛼𝛼𝛽𝛽∑∞𝑟𝑟=0 ∑∞𝑗𝑗4=0
𝑡𝑡𝑟𝑟

𝑟𝑟!
𝛾𝛾𝑟𝑟𝑎𝑎𝑟𝑟𝜂𝜂𝑗𝑗4𝜆𝜆

𝑗𝑗2+1𝑗𝑗4𝑟𝑟−1Γ(1 − 𝐾𝐾),                        (21) 

where 𝐾𝐾 ≥ 1 and 𝜂𝜂𝑗𝑗4 is given by Eq. 14.  

 

 
Moors-Kurtosis Galton-Skewness 

 
Fig. 3: OEKIE’s Skewness and Kurtosis plots for various values of 𝛼𝛼 and 𝜆𝜆 

 

 
Moors-Kurtosis Galton-Skewness 

 
Fig. 4: OEKIE’s Skewness and Kurtosis plots for various values of 𝜆𝜆 and 𝛾𝛾 

 
3.5. Characteristic function 

The OEKIE’s characteristic function is easily 
obtained as follows: 
 
𝜙𝜙𝑥𝑥(𝐾𝐾) = 𝐸𝐸(𝑒𝑒𝑖𝑖𝑡𝑡𝑥𝑥) =
𝛼𝛼𝛽𝛽∑∞𝑟𝑟=0 ∑∞𝑗𝑗4=0

(𝑖𝑖𝑡𝑡)𝑟𝑟

𝑟𝑟!
𝛾𝛾𝑟𝑟𝑎𝑎𝑟𝑟𝜂𝜂𝑗𝑗4𝜆𝜆

𝑗𝑗2+1𝑗𝑗4𝑟𝑟−1Γ(1 − 𝐾𝐾),                  (22) 
 
where 𝐾𝐾 ≥ 1 and 𝜂𝜂𝑗𝑗4 is given by 14. 

3.6. Rényi entropy 

The level of uncertainty of an R.V. 𝑋𝑋 having pdf 
𝑓𝑓(𝑥𝑥) is defined by its entropy. The Rényi entropy, 
denoted by (𝑅𝑅𝐸𝐸𝑋𝑋(𝜈𝜈)), is formulated as: 
 

𝑅𝑅𝐸𝐸𝑋𝑋(𝜈𝜈) =
1

1 − 𝜈𝜈 log ��
∞

0
𝑓𝑓(𝑥𝑥)𝜈𝜈𝑑𝑑𝑥𝑥� ;     𝜈𝜈 > 0, 𝜈𝜈 ≠ 1. 

 
Therefore, using the pdf of OEKIE in (8), 𝑓𝑓(𝑥𝑥)𝜈𝜈  is 

expressed as: 
 

𝑓𝑓𝜈𝜈(𝑥𝑥) = � 𝜆𝜆𝛼𝛼𝛾𝛾𝜆𝜆𝛽𝛽𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥

𝑥𝑥2�1−𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

(𝛽𝛽+1)�

𝜈𝜈

�𝑒𝑒
−𝜆𝜆��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�

𝜈𝜈

�1−

𝑒𝑒
−𝜆𝜆��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�

𝜈𝜈(𝛼𝛼−1)

.  

 
Applying the same approach in Subsection 1.1 

and using Eq. 11, then: 

  

𝑓𝑓𝜈𝜈(𝑥𝑥) = �
𝜆𝜆𝛼𝛼𝛾𝛾𝑎𝑎𝛽𝛽𝑒𝑒−

𝜆𝜆𝛾𝛾
𝑥𝑥

𝑥𝑥2 �1 − 𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥 �

(𝛽𝛽+1)�

𝜈𝜈

�
∞

𝑗𝑗1=0

(−1)𝑗𝑗1 �𝜈𝜈(𝛼𝛼 − 1)
𝑗𝑗1

� �𝑒𝑒
−𝜆𝜆(𝜈𝜈+𝑗𝑗1)��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�.  
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Using Eq. 12 to expand �𝑒𝑒
−𝜆𝜆(𝜈𝜈+𝑗𝑗1)��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�, then, 
 

  

𝑓𝑓𝜈𝜈(𝑥𝑥) = (𝛼𝛼𝛾𝛾𝑎𝑎𝛽𝛽)𝜈𝜈 �
∞

𝑗𝑗1=0

𝑆𝑆𝐾𝐾𝑚𝑚𝑗𝑗2=0
∞ (−1)𝑗𝑗1+𝑗𝑗2𝜆𝜆𝑗𝑗2+1(𝜈𝜈 + 𝑗𝑗1)𝑗𝑗2

𝑥𝑥2𝜈𝜈𝑗𝑗2!
�𝜈𝜈(𝛼𝛼 − 1)
𝑗𝑗1

� �𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥 �

𝜈𝜈
× �1 − 𝑒𝑒−

𝜆𝜆𝛾𝛾
𝑥𝑥 �

−𝜈𝜈(𝛽𝛽+1)−𝑗𝑗2𝛽𝛽
�1 − �1 − 𝑒𝑒−

𝜆𝜆𝛾𝛾
𝑥𝑥 �

𝛽𝛽
�
𝑗𝑗2

. 

  
 

Additionally, by employing Eq. 11 to expand 
�1 − �1 − 𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �
𝛽𝛽
�
𝑗𝑗2

, then: 
  

𝑓𝑓𝜈𝜈(𝑥𝑥) = (𝛼𝛼𝛾𝛾𝑎𝑎𝛽𝛽)𝜈𝜈 �
∞

𝑗𝑗1=0

�
∞

𝑗𝑗2=0

�
𝑗𝑗2

𝑗𝑗3=0

(−1)𝑗𝑗1+𝑗𝑗2+𝑗𝑗3𝜆𝜆𝑗𝑗2+1(𝜈𝜈 + 𝑗𝑗1)𝑗𝑗2

𝑥𝑥2𝜈𝜈𝑗𝑗2!
�𝜈𝜈(𝛼𝛼 − 1)
𝑗𝑗1

� �𝑗𝑗2𝑗𝑗3
�×        �𝑒𝑒−

𝛾𝛾
𝑥𝑥�

𝜆𝜆𝜈𝜈
�1 − 𝑒𝑒−

𝜆𝜆𝛾𝛾
𝑥𝑥 �

𝑗𝑗3𝛽𝛽−𝜈𝜈(𝛽𝛽+1)−𝑗𝑗2𝛽𝛽
. 

  
 

Finally, employing Eq. 11 to expand �1 −

𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

𝑗𝑗3𝛽𝛽−𝜈𝜈(𝛽𝛽+1)−𝑗𝑗2𝛽𝛽, then 𝑓𝑓(𝑥𝑥)𝜈𝜈  will be reduced to: 
 

𝑓𝑓𝜈𝜈(𝑥𝑥) = (𝛼𝛼𝛾𝛾𝑎𝑎𝛽𝛽)𝜈𝜈 �
∞

𝑗𝑗4=0

𝜂𝜂𝑗𝑗4
∗ 𝑥𝑥−2𝜈𝜈 �𝑒𝑒−

𝛾𝛾
𝑥𝑥�

𝜆𝜆𝜈𝜈+𝜆𝜆𝑗𝑗4
, 

 
where, 

  

𝜂𝜂𝑗𝑗4
∗ = �

∞

𝑗𝑗1=0

�
∞

𝑗𝑗2=0

�
𝑗𝑗2

𝑗𝑗3=0

(−1)𝑗𝑗1+𝑗𝑗2+𝑗𝑗3𝑗𝑗2! 𝜆𝜆𝑗𝑗2+1(𝜈𝜈 + 𝑗𝑗1)𝑗𝑗2
𝑗𝑗2! �𝜈𝜈(𝛼𝛼 − 1)

𝑗𝑗1
� �𝑗𝑗2𝑗𝑗3

� �𝛽𝛽(𝑗𝑗3 − 𝑗𝑗2 − 𝜈𝜈) − 𝜈𝜈
𝑗𝑗4

�. 

  
 

By setting 𝐾𝐾 = 𝑎𝑎𝛾𝛾(𝜈𝜈 + 𝑗𝑗4)𝑥𝑥−1, the Rényi entropy 
of the OEKIE, is given by: 
 

𝑅𝑅𝐸𝐸𝑥𝑥(𝜈𝜈) =
1

1 − 𝜈𝜈 log[(𝛼𝛼𝛽𝛽)𝜈𝜈(𝛾𝛾𝑎𝑎)−(𝜈𝜈+1) �
∞

𝑗𝑗4=0

𝜂𝜂𝑗𝑗4
∗ Γ(1 − 2(𝜈𝜈

+ 1))],    2(𝜈𝜈 + 1) < 1. 

3.7. Order statistics 

Suppose 𝑋𝑋1,𝑋𝑋2, . . . . . ,𝑋𝑋𝑛𝑛 is a random sample (R.S.) 
from OEKIE and 𝑋𝑋𝑠𝑠:𝑛𝑛 denotes the 𝑆𝑆𝑡𝑡ℎ order statistics. 
Therefore, the pdf, 𝑓𝑓𝑠𝑠:𝑛𝑛(𝑥𝑥), of the 𝑆𝑆𝑡𝑡ℎ order statistics 
are expressed as: 
 
𝑓𝑓𝑠𝑠:𝑛𝑛(𝑥𝑥) = 𝑛𝑛!

(𝑠𝑠−1)!(𝑛𝑛−𝑠𝑠)!
𝑓𝑓(𝑥𝑥)[𝐹𝐹(𝑥𝑥)]𝑠𝑠−1[1 − 𝐹𝐹(𝑥𝑥)]𝑛𝑛−𝑠𝑠 .            (23) 

 
Applying the binomial series expansion of Eq. 11 

to Eq. 23, 𝑓𝑓𝑠𝑠:𝑛𝑛(𝑥𝑥) will be, 
 
𝑓𝑓𝑠𝑠:𝑛𝑛(𝑥𝑥) = 𝑛𝑛!

(𝑠𝑠−1)!(𝑛𝑛−𝑠𝑠)!
𝑓𝑓(𝑥𝑥)∑∞𝑘𝑘=0 (−1)𝑘𝑘 �𝑆𝑆 − 𝑆𝑆

𝑆𝑆 � [𝐹𝐹(𝑥𝑥)]𝑘𝑘+𝑠𝑠−1.  

                                                                                                         (24) 
 

By substituting the CDF of OEKIE into (24), the 
pdf of 𝑋𝑋𝑠𝑠:𝑛𝑛 is: 
 

𝑓𝑓𝑠𝑠:𝑛𝑛(𝑥𝑥) =
𝑆𝑆! 𝑓𝑓(𝑥𝑥)

(𝑆𝑆 − 1)! (𝑆𝑆 − 𝑆𝑆)!�
∞

𝑘𝑘=0

(−1)𝑘𝑘 �𝑆𝑆 − 𝑆𝑆
𝑆𝑆 � �1

− 𝑒𝑒
−𝜆𝜆��1−𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

�

𝛼𝛼(𝑘𝑘+𝑠𝑠−1)

, 

 
where f(x) is the OEKIE’s pdf given by (8). 

4. ML estimation  

Let 𝑥𝑥1, . . . . , 𝑥𝑥𝑛𝑛 be a R.S. of size n from OEKIE. The 
log-likelihood function, (ℓ), for Θ = (𝜆𝜆,𝛼𝛼, 𝑎𝑎,𝛽𝛽, 𝛾𝛾), is 
given by, 

 
  
ℓ(Θ) = 𝑆𝑆log(𝜆𝜆𝛼𝛼𝛾𝛾𝑎𝑎𝛽𝛽) − 2∑𝑛𝑛𝑖𝑖=1 log(𝑥𝑥𝑖𝑖) − 𝑎𝑎∑𝑛𝑛𝑖𝑖=1

𝛾𝛾
𝑥𝑥𝑖𝑖
− (𝛽𝛽 + 1)∑𝑛𝑛𝑖𝑖=1 log �1 − 𝑒𝑒−

𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝜆𝜆 ∑𝑛𝑛𝑖𝑖=1 ��1 − 𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
− 1� + (𝛼𝛼 − 1)∑𝑛𝑛𝑖𝑖=1 log �1 − 𝑒𝑒

−𝜆𝜆��1−𝑒𝑒−
𝑎𝑎𝛾𝛾
𝑥𝑥 �

−𝛽𝛽
−1�

� .
                                                                             (25) 

  
 

Therefore, the ML estimates (MLEs) of the 
parameters can be computed via maximizing Eq. 25. 

That is, the first derivative of Eq. 25 with respect to 
𝜆𝜆,𝛼𝛼, 𝑎𝑎,𝛽𝛽, and 𝛾𝛾 are as follows:  

 
  

𝜕𝜕ℓ
𝜕𝜕𝜆𝜆

=
𝑆𝑆
𝜆𝜆
−�

𝑛𝑛

𝑖𝑖=1

��1 − 𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥𝑖𝑖 �

𝛽𝛽
− 1� − (𝛼𝛼 − 1)�

𝑛𝑛

𝑖𝑖=1

�1 − �1 − 𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥𝑖𝑖 �

−𝛽𝛽
� 𝑒𝑒

−𝜆𝜆��1−𝑒𝑒
−𝑎𝑎𝛾𝛾𝑥𝑥𝑖𝑖 �

−𝛽𝛽

−1�

1 − 𝑒𝑒
−𝜆𝜆��1−𝑒𝑒

−𝑎𝑎𝛾𝛾𝑥𝑥𝑖𝑖 �
−𝛽𝛽

−1�

, 
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𝜕𝜕ℓ
𝜕𝜕𝛼𝛼 =

𝑆𝑆
𝛼𝛼 + log�

𝑛𝑛

𝑖𝑖=1

�1 − 𝑒𝑒
−𝜆𝜆��1−𝑒𝑒

−𝑎𝑎𝛾𝛾𝑥𝑥𝑖𝑖 �
−𝛽𝛽

−1�
�, 

𝜕𝜕ℓ
𝜕𝜕𝑎𝑎

=
𝑆𝑆
𝑎𝑎 −�

𝑛𝑛

𝑖𝑖=1

𝛾𝛾
𝑥𝑥𝑖𝑖
− (𝛽𝛽 + 1)𝛾𝛾�

𝑛𝑛

𝑖𝑖=1

𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 �1 − 𝑒𝑒−
𝛾𝛾𝜆𝜆
𝑥𝑥𝑖𝑖 �

+ 𝛽𝛽𝛾𝛾𝜆𝜆�
𝑛𝑛

𝑖𝑖=1

𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥𝑖𝑖 �1 − 𝑒𝑒−

𝜆𝜆𝛾𝛾
𝑥𝑥𝑖𝑖 �

−𝛽𝛽−1

𝑥𝑥𝑖𝑖

− 𝛽𝛽𝛾𝛾𝜆𝜆(𝛼𝛼 − 1)�
𝑛𝑛

𝑖𝑖=1

𝑒𝑒−
𝜆𝜆𝛾𝛾
𝑥𝑥𝑖𝑖 �1 − 𝑒𝑒−
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Hence, the MLE for each parameter is produced 
by equating the aforementioned equations to zero 
and numerically solving them using the optimization 
technique in R-package. 

5. Numerical study 

In this section, a numerical study is provided to 
analyze the performance of the OEKIE’s MLEs. 
Samples of sizes 25, 50, 100, and 500 were 
generated from the OEKIE distribution for three sets 
with various parameter values, as shown below: 

Set 1: (𝜆𝜆 = 2.9,𝛼𝛼 = 2.5, 𝑎𝑎 = 0.7,𝛽𝛽 = 3.5, 𝛾𝛾 = 0.9),  
Set 2: (𝜆𝜆 = 0.5,𝛼𝛼 = 0.7, 𝑎𝑎 = 1.9,𝛽𝛽 = 0.9, 𝛾𝛾 = 1.2),  
Set 3: (𝜆𝜆 = 1.5,𝛼𝛼 = 0.2, 𝑎𝑎 = 2.0,𝛽𝛽 = 2.0, 𝛾𝛾 = 2.0). 
 

Average estimates of OEKIE’s parameters and 
their mean squared errors (MSE) are calculated for 
each sample size. Table 1 shows that the MSE 
decreases as the sample size n increases and the 
MLEs of the parameters become closer to their true 
values. 

 
Table 1: Numerical study of the OEKIE distribution 

  Set 1 Set 2 Set 3 
n Par. MLEs MSE MLEs MSE MLEs MSE 

25 𝜆𝜆 6.6681 15.2186 1.0496 3.3760 1.3233 5.7364 
 𝛼𝛼 6.1210 12.2211 0.8981 2.5452 0.9551 0.9299 
 𝑎𝑎 0.8677 0.9247 3.5408 5.3340 2.0585 0.8525 
 𝛽𝛽 9.1417 23.5833 2.6265 3.6321 1.7205 1.9541 
 𝛾𝛾 1.1590 1.3496 3.6012 6.0135 1.7361 0.9911 

50 𝜆𝜆 4.9985 8.9745 0.6001 1.2064 1.2473 2.5038 
 𝛼𝛼 4.4263 6.0000 0.7682 0.9370 0.9534 0.9070 
 𝑎𝑎 0.7476 0.4533 2.7226 2.9601 2.0559 0.8151 
 𝛽𝛽 6.5498 18.7188 1.6932 1.6045 1.5988 1.3992 
 𝛾𝛾 1.0330 0.7387 2.5429 3.4998 1.6963 0.8038 

100 𝜆𝜆 3.7751 3.9615 0.5209 0.4242 1.1695 2.1053 
 𝛼𝛼 .2728 2.9033 0.7019 0.5567 0.9507 0.9039 
 𝑎𝑎 0.7362 0.3496 2.5337 2.2951 2.0503 0.8098 
 𝛽𝛽 5.0486 7.1626 1.2962 0.8365 1.5642 1.1108 
 𝛾𝛾 0.9585 0.5374 1.8862 1.7323 1.6889 0.7460 

500 𝜆𝜆 3.2220 1.9019 0.4903 0.1472 1.4159 0.0841 
 𝛼𝛼 2.7260 1.0852 0.7087 0.2831 0.1854 0.0146 
 𝑎𝑎 0.7033 0.1250 2.0545 0.7350 2.0012 0.0012 
 𝛽𝛽 3.6171 1.1750 0.9780 0.2588 2.1232 0.1232 
 𝛾𝛾 0.8934 0.1704 1.3395 0.6190 2.0752 0.0752 
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6. COVID-19 applications  

The efficacy of OEKIE is investigated by 
examining four COVID-19 mortality rate data from 
Saudi Arabia, Canada, Italy, and Mexico. The data are 
listed as follows. 

6.1. COVID-19 mortality rate data in Saudi Arabia 

The following (Table 2) are the mortality rate 
data in Saudi Arabia for 61 days from 1/11/2020 to 
31/12/2020, which are obtained from 
https://covid19.moh.gov.sa/. 

 
Table 2: Mortality rate data in Saudi Arabia 

4.4619 4.0169 3.5211 4.0000 3.8991 4.6683 4.1322 4.8469 3.6093 
3.5533 4.8232 4.5351 4.5845 5.2459 6.3123 4.4199 6.2069 5.6426 
6.6434 7.2398 8.4821 6.9264 5.9524 4.2945 4.6584 5.6291 5.9091 
6.4516 5.1724 4.1825 4.8193 4.7826 4.2735 7.3684 5.8824 5.7416 
6.2176 8.1761 7.0922 6.5476 7.8313 8.6331 8.8000 7.0423 6.1111 
6.0773 5.7471 6.9620 6.1728 5.3571 4.4199 5.0847 5.8201 5.0562 
4.9080 5.8442 9.2437 5.3691 8.8496 6.4286 5.1095   

 
6.2. COVID-19 mortality rate data in Canada 

The following (Table 3) are the mortality rate 
data in Canada for 36 days, from 10/4/2020 to 

15/5/2020 [https://covid19.who.int/], and was 
studied by Almetwally et al. (2021). 

 
Table 3: Mortality rate data in Canada  

3.1091 3.3825 3.1444 3.2135 2.4946 3.5146 4.9274 3.3769 6.8686 
3.0914 4.9378 3.1091 3.2823 3.8594 4.0480 4.1685 3.6426 3.2110 
2.8636 3.2218 2.9078 3.6346 2.7957 4.2781 4.2202 1.5157 2.6029 
3.3592 2.8349 3.1348 2.5261 1.5806 2.7704 2.1901 2.4141 1.9048 

 
6.3. COVID-19 mortality rate in Italy Data 

The following (Table 4) are the mortality rate 
data in Italy for 59 days, from 27/2/2020 to 

27/4/2020 [https://covid19.who.int/], and was 
studied by Almongy et al. (2021). 

 
Table 4: Mortality rate data in Italy 

4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503 
18.474 11.010 17.337 16.561 13.226 15.137 8.697 15.787 13.333 
11.822 14.242 11.273 14.330 16.046 11.950 10.282 11.775 10.138 
9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445 7.214 
6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148 
4.040 4.253 4.011 3.564 3.827 3.134 2.780 2.881 3.341 
2.686 2.814 2.508 2.450 1.518     

 
6.4. COVID-19 mortality rate data in Mexico 

The following (Table 5) are the mortality rate 
data in Mexico for 108 days, from 4/3/2020 to 

20/7/2020 [https://covid19.who.int/], and was 
studied by Almongy et al. (2021): 

 
Table 5: Mortality rate data in Mexico  

8.826 6.105 10.383 7.267 13.220 6.015 10.855 6.122 10.685 
10.035 5.242 7.630 14.604 7.903 6.327 9.391 14.962 4.730 
3.215 16.498 11.665 9.284 12.878 6.656 3.440 5.854 8.813 

10.043 7.260 5.985 4.424 4.344 5.143 9.935 7.840 9.550 
6.968 6.370 3.537 3.286 10.158 8.108 6.697 7.151 6.560 
2.988 3.336 6.814 8.325 7.854 8.551 3.228 3.499 3.751 
7.486 6.625 6.140 4.909 4.661 1.867 2.838 5.392 12.042 
8.696 6.412 3.395 1.815 3.327 5.406 6.182 4.949 4.089 
3.359 2.070 3.298 5.317 5.442 4.557 4.292 2.500 6.535 
4.648 4.697 5.459 4.120 3.922 3.219 1.402 2.438 3.257 
3.632 3.233 3.027 2.352 1.205 2.077 3.778 3.218 2.926 
2.601 2.065 1.041 1.800 3.029 2.058 2.326 2.506 1.923 

 
The basic statistics for the four COVID-19 

mortality rate data in Saudi Arabia, Canada, Italy, 
and Mexico are reported in Table 6. 

The significant distinctions between the four 
COVID-19 mortality rate statistics are in their central 
and dispersion features and their skewness 
characteristics. The mean and median of COVID-19 

mortality rate data in Italy are the highest, while 
Canada’s mortality rate data is more skewed to the 
right compared to other countries’ mortality rates. 
The descriptive statistics are strengthened in Fig. 5 
by presenting the total time on test (TTT) plots, 
which are used to determine the shape of the hrf of 
such data (Aarset, 1987). 
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Table 6: Statistics for COVID-19 mortality rate data 
Data Size Median Mean Standard Deviation Skewness Kurtosis 

Saudi Arabia 61 5.6426 5.7343 1.4258 0.6461 2.7797 
Canada 36 3.1777 3.2816 0.9985 1.2139 6.1516 

Italy 59 7.4450 8.1562 4.5267 0.4524 2.1282 
Mexico 108 5.1925 5.7581 3.2542 0.9866 3.6813 

 

 
Fig. 5: TTT plots for the COVID-19 mortality rate data in Saudi Arabia (a), Canada (b), Italy (c), and Mexico (d) 

 
The graphs in Fig. 5 show that COVID-19 

mortality rate data of all countries have a concave 
TTT line, indicating monotonic hrf, supporting the 
suitability of OEKIE to fit these data. 

The appropriateness of the COVID-19 mortality 
rate data for the OEKIE is evaluated by comparing its 
fit to four competing distributions with CDF as 
follows: 
 
• The odd Kumaraswamy inverse Weibull (OKIW) by 
Atem (2018) and Atem et al. (2017): 
 

𝐹𝐹(𝑥𝑥) = �1 − 𝑒𝑒
1−�1−𝑒𝑒−𝜆𝜆�

𝛾𝛾
𝑥𝑥�
𝛽𝛽
�
−𝛿𝛿

�

𝛼𝛼

.  

 
• The Kum-IE by Oguntunde et al. (2017) with CDF 
given in Eq. 6. 
• The Odd generalized exponential inverse-
exponential (OEIE) (Yahaya and Abba, 2017): 

𝐹𝐹(𝑥𝑥) = �1 − 𝑒𝑒−𝜆𝜆�𝑒𝑒
𝛾𝛾
𝑥𝑥−1�

−1

�
𝛼𝛼

. 

• The generalized inverted generalized exponential 
(GIE) (Oguntunde and Adejumo, 2015) 
 

𝐹𝐹(𝑥𝑥) = 1 − �1 − 𝑒𝑒−�
𝛾𝛾
𝑥𝑥
�
𝑏𝑏

�
𝛽𝛽

. 

 
The goodness of fit criteria (GoF) such as the −ℓ, 

Akaike information criterion (AIC), corrected AIC 
(CAIC), Bayesian information criterion (BIC), 
Kramér-von Mises (W*), Anderson-Darling (AD*), 
Kolmogorov-Smirnov (KS) and p-value statistics are 
obtained to evaluate the OEKIE performance. In 
general, a superior fit to the data is achieved when 
the value of these statistics is less than that of 
competing fits. The MLEs, along with the GoF criteria 
measures of OEKIE and competing distributions for 
the four COVID-19 mortality rate data sets are 
reported in Tables 7-10. In addition, Figs. 6-9 
compare the estimated pdf and cdf of OEKIE to 
competing distributions for the four COVID-19 data 
sets. 



Lamya A. Baharith/International Journal of Advanced and Applied Sciences, 9(7) 2022, Pages: 100-112 

109 
 

Table 7: MLEs and GoF measures for the COVID-19 mortality rate data in Saudi Arabia. 
Distributions OEKIE OKIW Kum-IE OEIE GIE 

Estimates �̂�𝜆 = 4.5623 �̂�𝜆 = 8.5038 𝑎𝑎� = 6.2407 �̂�𝜆 = 40.9055 �̂�𝛽 = 299.2887 
 𝛼𝛼� = 9.4283 𝛼𝛼� = 8.6102 �̂�𝛽 = 21.3358 𝛼𝛼� = 0.9706 𝛾𝛾� = 35.3393 
 𝑎𝑎� = 1.9642 𝑎𝑎� = 0.6916 𝛾𝛾� =3.0396 𝛾𝛾� = 23.8904  
 𝑏𝑏� = 1.2060 �̂�𝛿 = 3.6127    
 𝛾𝛾� = 3.2379 𝛾𝛾� =0.3349    

−ℓ 104.2425 104.6963 109.5656 111.4505 111.5288 
AIC 218.4849 219.3926 225.1311 228.9010 227.0576 

CAIC 223.7621 224.6697 228.2974 232.0673 229.1684 
BIC 229.0393 229.9469 231.4637 235.2336 231.2793 
W* 0.0296 0.0316 17.2824 0.1753 0.3917 
AD* 0.2105 0.2708 87.0993 0.9725 3.0710 
KS 0.0581 0.0596 0.9467 0.1037 0.1604 

p-value 0.9861 0.9819 0.5139 0.5270 0.0866 
 

 
Fig. 6: Estimated CDFs and pdfs for COVID-19 mortality rate data in Saudi Arabia 

 
Table 8: MLEs and GoF measures for COVID-19 mortality rate data in Canada 

Distributions OEKIE OKIW Kum-IE OEIE GIE 
Estimates �̂�𝜆 = 0.0517 �̂�𝜆 = 5.3100 𝑎𝑎� = 7.7390 �̂�𝜆 = 23.6590 �̂�𝛽 = 162.5989 

 𝛼𝛼� = 8.1034 𝛼𝛼� = 4.8644 �̂�𝛽 = 2.4013 𝛼𝛼� = 0.7944 𝛾𝛾� = 17.9672 
 𝑎𝑎� = 1.7592 𝑎𝑎� = 0.5447 𝛾𝛾� =0.5530 𝛾𝛾� = 12.3121  
 �̂�𝛽 = 1.5439 �̂�𝛿 = 6.1207    
 𝛾𝛾� = 0.1502 𝛾𝛾� = 0.4429    

−ℓ 48.0964 48.3186 65.6005 53.0433 54.1811 
AIC 106.1930 106.8712 137.2011 112.7785 112.332 

CAIC 110.1518 110.8300 113.9155 115.1538 113.915 
BIC 114.1106 114.7887 141.9517 117.5290 115.499 
W* 0.0900 0.1088 0.8799 0.1819 0.1280 
AD* 0.5307 0.6149 4.7880 0.9723 1.3203 
KS 0.1058 0.1305 0.2492 0.1440 0.1419 

p-value 0.8142 0.5710 0.0227 0.4438 0.4627 
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Fig. 7: Estimated CDFs and pdfs for COVID-19 mortality rate data in Canada 

 
Table 9: MLEs and GoF measures for the COVID-19 mortality rate data in Italy 

Distributions OEKIE OKIW Kum-IE OEIE GIE 
Estimates �̂�𝜆 = 0.2135 �̂�𝜆 = 6.5617 𝑎𝑎� = 3.3417 �̂�𝜆 = 21.5765 �̂�𝛽 = 3.3731 

 𝛼𝛼� = 0.1946 𝛼𝛼� = 0.1796 �̂�𝛽 = 3.3719 𝛼𝛼� = 0.1574 𝛾𝛾� = 11.0133 
 𝑎𝑎� = 6.0991 𝑎𝑎� = 0.9605 𝛾𝛾� =3.2946 𝛾𝛾� = 52.8179  
 𝑏𝑏� = 21.0211 �̂�𝛿 = 20.1175    
 𝛾𝛾� = 6.2931 𝛾𝛾� =7.4960    

−ℓ 163.2078 164.0031 170.6591 168.3111 170.6591 
AIC 336.4155 338.0062 347.3182 342.6222 345.3182 

CAIC 341.6094 343.2001 350.4345 345.7385 347.3957 
BIC 346.8032 348.3939 353.5508 348.8548 349.4733 
W* 0.0551 0.1056 0.2422 0.1033 0.2422 
AD* 0.3264 0.5636 1.3456 0.6162 1.3457 
KS 0.0881 0.0933 0.1501 0.0980 0.1501 

p-value 0.7159 0.6149 0.1259 0.5878 0.1262 
 

Table 10: MLEs and GoF measures for the COVID-19 mortality rate data in Mexico 
Distributions OEKIE OKIW Kum-IE OEIE GIE 

Estimates �̂�𝜆 = 2.3161 �̂�𝜆 = 12.1937 𝑎𝑎� = 1.5753 �̂�𝜆 = 26.6543 �̂�𝛽 = 3.9349 
 𝛼𝛼� = 0.2544 𝛼𝛼� = 10.5343 �̂�𝛽 = 3.9346 𝛼𝛼� = 0.1731 𝛾𝛾� = 8.5998 
 𝑎𝑎� = 9.0234 𝑎𝑎� = 0.3018 𝛾𝛾� =5.4485 𝛾𝛾� = 36.9258  
 𝑏𝑏� = 4.1073 �̂�𝛿 = 3.5912    
 𝛾𝛾� = 2.7844 𝛾𝛾� =0.0020    

−ℓ 264.823 268.3603 269.3388 268.7825 269.3382 
AIC 539.6460 546.7206 544.6777 543.5650 542.6764 

CAIC 546.3513 553.4259 548.7009 547.5882 545.3585 
BIC 553.0567 560.1313 552.7241 551.6114 548.0407 
W* 0.0322 0.3099 0.1425 0.0326 0.1381 
AD* 0.1910 1.8060 0.8216 0.1900 0.8059 
KS 0.0517 0.1182 0.0925 0.0530 0.0914 

p-value 0.9348 0.0977 0.3130 0.9218 0.3274 
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Fig. 8: Estimated CDFs and pdfs for COVID-19 mortality rate data in Italy 

 

 
Fig. 9: Estimated CDFs and pdfs for COVID-19 mortality rate data in Mexico 

 
Referring to Tables 7-10, the OEKIE has the 

lowest values of ℓ, AIC, CAIC, BIC, and K-S statistics 
and the highest p-value among all distributions. This 
indicates that, when compared to other competing 
distributions, the OEKIE gives better fits for COVID-

19 mortality rate data from Saudi Arabia, Canada, 
Italy, and Mexico. Moreover, it is evident from Fig. 6-
Fig. 9 that the OEKIE fits the histogram of COVID-19 
mortality rate data from all four countries better 
than other competing distributions. 
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7. Conclusion 

This article developed the OEKIE distribution 
based on combining the odd generalized exponential 
generator with the Kum-G family. The OEKIE offers 
greater versatility since its density and hrf have 
attractive shapes for fitting a wide range of real-
world data behaviors. The main mathematical 
characteristics are derived, and the statistical 
modeling capability is examined. The well-
established ML technique is used to estimate 
OEKIE’s parameters. The OEKIE model’s efficiency is 
assessed by its applications to four COVID-19 data 
sets from Saudi Arabia, Canada, Italy, and Mexico. 
The study’s main notable finding is that OEKIE 
outperforms competing distributions in terms of 
performance and adaptability. The OEKIE has the 
lowest GoF criterion and highest p-value of the KS 
statistics for the four COVID-19 mortality rate data 
sets. 
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