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In the present work, a mathematical model of the Green-Naghdi 
thermoelasticity theory of type III (GN-III) with memory-dependent 
derivative (MDD) heat transfer for a perfectly conducting isotropic media has 
been constructed. The state-space and Laplace transform techniques are 
adopted for the solution of a half-space problem in the presence of a moving 
heat source with constant velocity. The inversion of the Laplace transforms is 
carried out using a numerical approach. Numerical results for all fields are 
given and illustrated graphically. Comparison is made with the results 
predicted by coupled thermoelasticity (DCT). The influences of MDD 
parameters and heat source speed on all fields are examined. 
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1. Introduction 

*Load and Shulman (1967) were among the first 
to expand Biot's concept of connected 
thermoelasticity (Biot, 1956). Wave propagation 
speeds are guaranteed to be limited according to this 
theory. Contributions to the subject are represented 
by the works of Ezzat and Youssef (2010) and Ezzat 
et al. (2015). Green and Naghdi (1991) developed an 
enhanced thermoelasticity theory that includes the 
"thermal displacement gradient" as an independent 
constitutive element. Notable works in this field 
were the works of Chandrasekharaiah (1996), El-
Karamany and Ezzat (2013; 2016; 2015), and 
Khamis et al. (2021). Povstenko (2009) investigated 
new thermoelasticity models that use fractional 
derivatives. The fractional order theory of 
thermoelasticity was derived by Sherief et al. (2010) 
and Ezzat (2011). Yu et al. (2013), Hendy et al. 
(2019), and Khamis et al. (2020) solved some 
problems in fractional order generalized 
thermoelasticity. Parallel to fractional ordered 
derivatives, memory-dependent derivatives serve as 
an important mathematical tool in describing many 
real-world phenomena. One can refer to Yu et al. 
(2014), and Ezzat et al. (2014; 2015; 2016) for an 
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overview of utilizations of memory-dependent 
derivative analytics.  

The goal of this work is to look at how MDD 
parameters and both electric and magnetic fields 
affect temperature, displacement, and stress 
distributions in one-dimensional problems. The 
answer is discovered using a state-space method. 
The resulting formulation is used for a variety of 
problems using the Laplace transform approach. 
Ezzat (2008) introduced a good review of the state-
space approach in thermoelasticity and MHD 
theories. 

2. Mathematical model 

We shall start with a perfect conductivity 
thermoelastic material that fills half of the space and 
is pierced by an initial magnetic field H. As a result of 
the magnetic field's impact, induced magnetic field h 
and induced electric field E to arise in the conducting 
medium. We suppose that h and E are both small in 
magnitude, in accordance with the assumptions of 
the linear theory of thermoelasticity. Also, there 
arises a force F (the Lorentz Force). Due to the effect 
of the force, points of the medium undergo a 
displacement vector u, which gives rise to a 
temperature. The governing equations, in the 
presence of heat source, are given as: 
 
(i) Linearized equations of electromagnetism for 
slowly moving perfect conducting media Ezzat 
(1997): 
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𝑐𝑢𝑟𝑙 ℎ = 𝐽 + 𝜀𝑜
𝜕𝐸

𝜕𝑡
                                                                          (1) 

𝑐𝑢𝑟𝑙 𝐸 = −𝜇𝑜
𝜕ℎ

𝜕𝑡
                                                                             (2) 

𝐸 = −𝜇𝑜(
𝜕𝑢

𝜕𝑡
Λ𝐻)                                                                            (3) 

𝑑𝑖𝑣 ℎ = 0                                                                                         (4) 
 

(ii) Displacement equation, taking into account the 
Lorentz force is: 
 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
= 𝜎𝑖𝑗,𝑗 + 𝜇𝑜(𝐽Λ𝐻)𝑖                                                              (5) 

 

(iii) Constitutive equation: 
 
𝜎𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗−𝛾(𝑇 − 𝑇𝑜)𝛿𝑖𝑗                                        (6) 

 

(iv) Strain-displacement relation: 
 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                                                                         (7) 

 

(v) Heat equation with MDD (Ezzat at el., 2014): 
 

(𝑛1𝑘
𝜕

𝜕𝑡
+ 𝑛2𝑘

∗) 𝜃,𝑖𝑖 = 𝜌𝐶𝐸
𝜕2𝜃

𝜕𝑡2
+ 𝛾𝑇𝑜

𝜕2𝑒

𝜕𝑡2
− 
𝜕𝑄

𝜕𝑡
 

+∫ 𝐾(𝑡 − 𝜉)(𝜌𝐶𝐸
𝜕3𝜗(𝑥,𝜉)

𝜕𝜉3
𝑡

𝑡−𝜔
+ 𝛾𝑇𝑜

𝜕3𝑒(𝑥,𝜉)

𝜕𝜉3
−
𝜕2𝑄

𝜕𝜉2
) 𝑑𝜉         (8) 

 

where the kernel function 𝐾(𝑡 − 𝜔) can be picked 
unreservedly as: 
 

𝐾(𝑡 −  𝜉) = 1 −
2n

ω
(𝑡 − 𝜉) +

m2(𝑡 − 𝜉)2

𝜔2

=

{
 
 

 
 
  1                       𝑖𝑓  𝑚 = 𝑛 = 0                     

1 −
(𝑡 − 𝜉)

𝜔
          𝑖𝑓  𝑚 = 0, 𝑛 =

1

2
  

(1 −
𝑡 − 𝜉

𝜔
)2              𝑖𝑓  𝑚 = n = 1       

 

 

and 𝜃 = |𝑇 − 𝑇𝑜| and 
𝜃

𝑇𝑜
≪ 1 together with the 

previous equations, constitute a complete system of 
generalized magneto-thermoelasticity based on GN-
III theory with a memory-dependent derivative for a 
medium with perfect electric conductivity. 
 
Limiting cases: Eq. 16 when  𝜔 ⟶ 0 a, so 

that |𝐷𝜔(𝑓(𝑥, 𝑡)| ≤ |
𝜕𝑓(𝑥,𝑡)

𝜕𝑡
| = |lim

𝜔

𝑓(𝑥,𝑡+𝜔)−𝑓(𝑥,𝑡)

𝜔
| 

leads to the Fourier law for the following theories: 
 
(1) Biot theory (Biot, 1956), 𝑛1 = 1,   𝑛2 = 0 
(2) Green-Naghdi of type III theory with energy 
dissipation (Green and Naghdi, 1991), 𝑛1 = 1, 𝑛2 =
1 
(3) Green-Naghdi of type II without energy 
dissipation (Green and Naghdi, 1993), 𝑛1 = 0,   𝑛2 =
1 

3. Physical problem 

We shall consider a solid occupying the region 
𝑥≥0, where the x-axis is taken perpendicular to the 
bonding plane of half-space pointing inwards. 
Assume also that the initial conditions are 
homogeneous and the initial magnetic field has 
components (0, 0, 𝐻𝑜). The induced magnetic field h 

will have one component h in the z-direction, while 
the induced electric field E will have one component 
𝐸 in the y-direction. For the one-dimensional 
problems, all the considered functions will depend 
only on the space variables x and t. 

The displacement components, 
 
𝑢𝑥 = 𝑢(𝑥, 𝑡),   𝑢𝑦 = 𝑢𝑧 = 0                                                         (9) 

 

The strain-displacement relation, 
 

𝑒 =
𝜕𝑢

𝜕𝑥
                                                                                             (10) 

 

From Eq. 1, it follows that the electric current 
density J will have one component only J in the y-
direction, given by, 
 

𝐽 = −(
𝜕ℎ

𝜕𝑥
+ 𝜀𝑜 𝜇𝑜𝐻𝑜

𝜕2𝑢

𝜕𝑡2
)                                                           (11) 

 

The vector Eqs. 2 and 3, reduce to the following 
scalar equations: 
 

ℎ = −𝐻𝑜
𝜕𝑢

𝜕𝑥
                                                                                   (12) 

𝐸 = 𝜇𝑜𝐻𝑜
𝜕𝑢

𝜕𝑡
                                                                                  (13) 

 

By using the previous equations in the 
displacement Eq. 5, we arrive at: 
 

𝜶
𝝏𝟐𝒖

𝝏𝒕𝟐
= 𝒄𝒐

𝟐 𝝏
𝟐𝒖

𝝏𝒙𝟐
−
𝜸

𝝆

𝝏𝜽

𝝏𝒙
                                                                   (14) 

 

where 𝛼 = 1 + 𝛼𝑜
2/𝑐2, c is the speed of light given by 

𝑐 = (1/𝜇𝑜𝜀0)
1/2, 𝛼𝑜 is Alfven velocity, and 𝑐𝑜 =

√𝜈𝑜
2 + 𝛼𝑜

2  is the speed of propagation of longitudinal 

waves. 
The energy equation in GN-III theory with 

memory-dependent derivative in the presence of 
heat sources: 
 

𝑘 (𝑛1
𝜕

𝜕𝑡
+ 𝑛2𝜅) 𝜃,𝑖𝑖 = 𝜌𝐶𝐸

𝜕2𝜃

𝜕𝑡2
+ 𝛾𝑇𝑜

𝜕2𝑒

𝜕𝑡2
− 
𝜕𝑄

𝜕𝑡
 

+∫ 𝐾(𝑡 − 𝜉)(𝜌𝐶𝐸
𝜕3𝜗(𝑥,𝜉)

𝜕𝜉3
𝑡

𝑡−𝜔
+ 𝛾𝑇𝑜

𝜕3𝑒(𝑥,𝜉)

𝜕𝜉3
−
𝜕2𝑄

𝜕𝜉2
) 𝑑𝜉       (15) 

 

Let us introduce the following non-dimensional 
variables: 
 

𝑥∗ = 𝑐𝑜𝜂𝑜𝑥 , 𝑢
∗ = 𝑐𝑜𝜂𝑜𝑢 , 𝑡

∗ = 𝑐𝑜
2𝜂𝑜𝑡 , 𝜃

∗ =
𝛾𝜃

𝜌𝑐𝑜
2  , 𝜎

∗

=
𝜎

𝜌𝑐𝑜
2  , ℎ

∗ =
ℎ

𝐻𝑜
 , 

𝐸∗ =
𝐸

𝜇𝑜 𝐻𝑜𝑐𝑜
 , 𝐽∗ =

𝐽

𝜂𝑜 𝐻𝑜𝑐𝑜
 , 𝜅∗ =

𝜅

𝜂𝑜𝑐𝑜
2   , 𝑄

∗ =
𝛾

𝑘𝜌𝑐𝑜
4𝜂𝑜

2  𝑄,

𝑇𝑜 =
𝛿𝑜𝜌𝑐𝑜

2

𝛾
 

 

The Eqs. 10-15 in non-dimensional form reduce 
to: 
 

𝐽 = −(
𝜕ℎ

𝜕𝑥
+ 𝑉2

𝜕2𝑢

𝜕𝑡2
)                                                                     (16) 

ℎ = −
𝜕𝑢

𝜕𝑥
                                                                                         (17) 

𝐸 =
𝜕𝑢

𝜕𝑡
                                                                                            (18) 
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𝜕2𝜎

𝜕𝑥2
= 𝛼

𝜕2𝑒

𝜕𝑡2
                                                                                    (19) 

(𝑛1
𝜕

𝜕𝑡
+ 𝑛2𝜅)

𝜕2𝜃

𝜕𝑥2
=

𝜕2

𝜕𝑡2
(1 + 𝜔𝐷𝜔)(𝜃 + 𝜀𝑒) − 

𝜕

𝜕𝑡
(1 +

𝜔𝐷𝜔)𝑄                                                                                           (20) 

𝜎 =
𝜕𝑢

𝜕𝑥
− 𝜃                                                                                    (21) 

 

where  𝜀 = 𝑇𝑜𝛾
2/[(𝜆 + 2𝜇)𝑘𝜂], 𝜂 = 𝜌𝐶𝐸/𝑘   and  𝑉 =

𝑐𝑜/𝑐.  

4. Laplace transform and state-space approach 

Using the Laplace transform with the parameters 
s defined by the expression: 
 

𝐿{𝑔(𝑡) = 𝑔̅(𝑠) = ∫ 𝑒−𝑠𝑡𝑔(𝑡)𝑑𝑡
∞

0

𝐿{𝐷𝑛𝑔(𝑡)} = 𝑠𝑛 𝐿{𝑔(𝑡)}           

} 𝑠 > 0  

 

to both sides of Eqs. 16-21, we get a coupled system 
of the following equations: 
 

𝐽 ̅ = −(
𝜕ℎ̅

𝜕𝑥
+ 𝑉2 𝑠2 𝑢̅)                                                                   (22) 

ℎ̅ = −
𝜕𝑢

𝜕𝑥
                                                                                        (23) 

𝐸̅ = 𝑠𝑢̅                                                                                            (24) 
𝐷2𝜃̅ = 𝑠𝜛𝜃̅ + 𝑠𝜛𝜀𝑒̅ − 𝜛𝑄̅                                                       (25) 
𝐷2𝜎̅ = 𝛼𝑠2𝑒                                                                                  (26) 
𝜎̅ = 𝑒̅ − 𝜃̅                                                                                      (27) 
 

where, 
 
𝐿{𝜔𝐷𝜔𝑓(𝑡)}

= 𝐹(𝑠)

{
 
 

 
 
 [(1 − e−𝑠𝜔)]  ,                                    𝑖𝑓  𝑚 = 𝑛 = 0           

[1 −
1

𝜔𝑠
(1 − e−𝑠𝜔)] ,                         𝑖𝑓  𝑚 = 0, 𝑛 =

1

2
   

[(1 −
2

𝜔𝑠
) +

2

𝜔2𝑠2
  (1 − e−𝑠𝜔)]    ,   𝑖𝑓  𝑚 = n = 1          

 

                                                                                                         (28) 

𝐹(𝑠) = 𝐿{
𝜕2𝜃

𝜕𝑡2
+ 𝜀

𝜕2𝑒

𝜕𝑡2
−
𝜕𝑄

𝜕𝑡
= 𝑠2(𝜃̅ + 𝜀𝑒̅) − 𝑠𝑄̅ , 𝐷

=
𝑑

𝑑𝑥
 ,𝜛(𝑠) =

𝑠(1 +𝑊)

𝑛1𝑠 + 𝑛2𝜅
 

𝑊(𝑠) = (1 − 𝑒−𝑠𝜔) (1 −
2𝑛

𝜔𝑠
+
2𝑚2

𝜔2𝑠2
)

− (𝑚2 − 2𝑛 +
2𝑚2

𝜔𝑠
) 𝑒−𝑠𝜔  

 

and all the initial functions are equal to zero. 
We regard the medium to be exposed to a moving 

heat source of consistent quality, releasing its vitality 
indefinitely while traveling down the x-axis in a 
positive direction at a constant speed 𝑣. The non-
dimensional geometry of the moving heat source is 
assumed to be the case: 
 
𝑄(𝑥, 𝑡) = 𝑄𝑜𝛿(𝑥 − 𝑣𝑡)                                                               (29) 
 

where 𝑄𝑜  is a constant heat. Taking Laplace 
transform, we obtain: 
 
𝑄̅(𝑥, 𝑠) = ℓ 𝑒𝑥𝑝(−ℎ𝑥)                                                               (30) 
 

where   ℓ =
𝑄𝑜

𝑣
  𝑎𝑛𝑑 ℎ = 𝑠/𝑣.  

Eliminating 𝑒̅ and 𝜃̅ from Eqs. 25–27, we have: 
 

𝐷2𝜃̅ = 𝐿1𝜃̅ + 𝐿2𝜎̅ − 𝐿3exp (−ℎ𝑥)                                          (31) 
 

where, 
 
𝐿1 = 𝑠𝜛(1 + 𝜀), 𝐿2 = 𝑠𝜛𝜀, 𝐿3 = ℓ𝜛, 
 

and, 
 
𝐷2𝜎̅ = 𝑀1(𝜃̅ + 𝜎̅)                                                                       (32) 
 

where 𝑀1 = 𝛼𝑠2. 
Using the temperature and the stress component 

in the x-direction as state components, Eqs. 31 and 
32 may be combined in the framework form as 
follows: 
 
𝐷2𝐺̅(𝑥, 𝑠) = 𝐴(𝑠)𝐺̅(𝑥, 𝑠) + 𝐹(𝑠)exp (−ℎ𝑥)                        (33) 
 

where, 
 

𝐺̅(𝑥, 𝑠) = [
𝜃̅(𝑥, 𝑠)

𝜎̅(𝑥, 𝑠)
], 𝐴(𝑠) = [

𝐿1        𝐿2
𝑀1          𝑀2

] and 𝐹(𝑠) = [
−ℓ𝜛
0
]. 

 

Solutions of Eq. 33 that stay bounded for large x 
can be written as: 
 

𝐺̅(𝑥, 𝑠) = exp [−√𝐴(𝑠)  𝑥] 𝐺̅𝑜(𝑠) + 𝐷(𝑠)𝑒𝑥𝑝 (−ℎ𝑥)        (34) 

 

where, 
 

𝐺̅𝑜(𝑠) = [
𝐺1(𝑠)

𝐺2(𝑠)
] , 𝐷(𝑠) = [

𝐷1(𝑠)

𝐷2(𝑠)
]

= [ℎ2𝐼 − 𝐴(𝑠)]−1𝐹(𝑠)   𝑎𝑛𝑑 𝐼 = [
1 0
0 1

]  

 

We shall use the well-known Cayley-Hamilton 
theorem to find the form of the matrix. 

exp [√𝐴(𝑠)  𝑥]The characteristic equation of the 

matrix 𝐴(𝑠) can be written as: 
 
k2 − (𝐿1 +𝑀1)𝑘 +𝑀1(𝐿1 − 𝐿2) = 0                                    (35) 
 

The roots of this equation, namely, 𝑘1 and 𝑘2, 
satisfy the following relations: 
 
𝑘1 + 𝑘2 = 𝐿1 +𝑀1                                                                      (36) 
𝑘1𝑘2 = 𝑀1(𝐿1 − 𝐿2)                                                                   (37) 
 

The Taylor series expansion of the matrix 
exponential in Eq. 34 has the form, 
 

exp [−√𝐴(𝑠)  𝑥] = ∑
[−√𝐴(𝑠)  𝑥]

𝑛

𝑛!
∞
𝑛=0                                        (38) 

 

We can express and higher powers of the matrix 
in terms of and, where I is the unit matrix of the 
second request, using the Cayley–Hamilton 
hypothesis. As a result, the infinite series in Eq. 38 
may be reduced to: 
 

exp [−√𝐴(𝑠)  𝑥] = 𝑎𝑜(𝑥, 𝑠)𝐼 + 𝑎1(𝑥, 𝑠)𝐴(𝑠) 

 

where, 𝑎𝑜and 𝑎1 are coefficients relying upon x and s. 
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By the Cayley–Hamilton hypothesis, the 
trademark roots 𝑘1 𝑎𝑛𝑑 𝑘2 of the matrix A must 
satisfy, 
 

 exp[−√𝑘1  𝑥] = 𝑎𝑜𝐼 + 𝑎1𝑘1, exp[−√𝑘2  𝑥] = 𝑎𝑜𝐼 + 𝑎1𝑘2  

                                                                                                         (39) 
 

The solution to the above two-linear equation 
system is given by, 
 

𝑎𝑜 =
𝑘1𝑒

−√𝑘2𝑥−𝑘2𝑒
−√𝑘1𝑥

𝑘1−𝑘2
 , and 𝑎1 =

𝑒−√𝑘1𝑥−𝑒−√𝑘2𝑥

𝑘1−𝑘2
 

 

hence the entries of the matrix exp [−√𝐴(𝑠)  𝑥] =

𝐿𝑖𝑗(𝑥, 𝑠), 𝑖 , 𝑗 = 1, 2, are given by, 
 

𝐿11 =
(𝑘1 − 𝐿1)𝑒

−√𝑘2𝑥 − (𝑘2 − 𝐿1)𝑒
−√𝑘1𝑥

𝑘1 − 𝑘2
  , 𝐿12

=
𝐿2 (𝑒

−√𝑘1𝑥 − 𝑒−√𝑘2𝑥)

𝑘1 − 𝑘2
  , 

  𝐿22 =
(𝑘1−𝑀2)𝑒

−√𝑘2𝑥−(𝑘2−𝑀2)𝑒
−√𝑘1𝑥

𝑘1−𝑘2
 , 𝐿21 =

𝑀1(𝑒
−√𝑘1𝑥−𝑒−√𝑘2𝑥)

𝑘1−𝑘2
  

                                                                                                         (40) 
 

additionally, 
 

𝐷1 =
ℓ2𝜛(𝑀1 − ℎ

2)

(ℎ2 − 𝑘1)(ℎ
2 − 𝑘2)

, 𝐷2 =
ℓ2𝜛3𝑀1

(ℎ2 − 𝑘1)(ℎ
2 − 𝑘2)

  

 

we may form solution 33 into a shape. 
 

[
𝜃̅(𝑥, 𝑠)

𝜎̅(𝑥, 𝑠)

] = [
𝐿11(𝑥, 𝑠)        𝐿12(𝑥, 𝑠) 

 
𝐿21(𝑥, 𝑠)       𝐿22(𝑥, 𝑠)   

] [

𝐺1(𝑠)

𝐺2(𝑠)
] +

[

𝐷1(𝑠)

𝐷2(𝑠)
] exp (−ℎ𝑥)                                                                      (41) 

 

To get 𝐺1(𝑠) and 𝐺2(𝑠) we set 𝑥 = 0 on Eq. 41, 
and we obtain: 
 

[
𝜃̅(0, 𝑠)

𝜎̅(0, 𝑠)

] = [
𝐿11(0, 𝑠)        𝐿12(0, 𝑠)

  
𝐿21(0, 𝑠)       𝐿22(0, 𝑠)   

] [

𝐺1(𝑠)

𝐺2(𝑠)
] + [

𝐷1(𝑠)

𝐷2(𝑠)
]  

 

which implies to, 
 

[

𝐺1(𝑠)

𝐺2(𝑠)
] = [

𝜃̅(0, 𝑠)

𝜎̅(0, 𝑠)

] − [

𝐷1(𝑠)

𝐷2(𝑠)
]                                                (42) 

 

As a result, the accurate solution in the Laplace 
domain for every combination of boundary 
conditions is supplied by, 
 
𝜃̅(𝑥, 𝑠) = [𝜃̅(0, 𝑠) − 𝐷1(𝑠)]𝐿11(𝑥, 𝑠) + [𝜎̅(0, 𝑠) −
𝐷2(𝑠)]𝐿12(𝑥, 𝑠) + 𝐷1(𝑠) exp (−ℎ𝑥)                                       (43) 
𝜎̅(𝑥, 𝑠) = [𝜃̅(0, 𝑠) − 𝐷1(𝑠)]𝐿21(𝑥, 𝑠) + [𝜎̅(0, 𝑠) −
𝐷2(𝑠)]𝐿22(𝑥, 𝑠) + 𝐷2(𝑠) exp (−ℎ𝑥)                                       (44) 
 

In the absence of a magnetic field, the analogous 
formulae for Green-Naghdi of type-III with memory-
dependent derivative thermoelasticity can be 
obtained by plugging  𝛼𝑜 = 0 in Eq. 41. 

5. Application 

We investigate a semi-space with perfect 
conducting medium, and point of confinement 
conditions in the form: 
 
(i) Thermal boundary condition: 
 

We suppose that the bounding plane 𝑥 =  0, is 
exposed to harmonic heating, i.e. 
 

𝑓(𝑡) = {
sin (

𝜋𝑖

𝛽
)       0 ≤ 𝑡 ≤ 𝛽  

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 or 𝑓(̅𝑠) =
𝜋𝛽(1−𝑒−𝛽𝑠)

𝛽2𝑠2+𝜋2
       (45) 

 

(ii) Mechanical boundary condition: 
 

The bounding plane 𝑥 =  0 is taken to be 
traction-free, i.e. 
 
𝜎(0, 𝑡) = 0 or 𝜎̅(0, 𝑠) = 0.                                                        (46) 
 

Hence, we can use the conditions of 45 and 46 in 
Eqs. 43 and 44 to get the exact solution for the 
temperature and stress component in the Laplace 
transform domain in the following forms: 
 

 𝜃̅(𝑥, 𝑠) = 𝜃1(𝑠)𝑒
−√𝑘1𝑥 − 𝜃2(𝑠)𝑒

−√𝑘2𝑥 +𝐷1(𝑠)𝑒
−ℎ𝑥        (47) 

𝜎̅(𝑥, 𝑠) = 𝜎1(𝑠)𝑒
−√𝑘1𝑥 − 𝜎2(𝑠)𝑒

−√𝑘2𝑥 + 𝐷2(𝑠)𝑒
−ℎ𝑥         (48) 

 

where, 

𝜃1(𝑠) =
1

𝑘1−𝑘2
[(
𝜋𝛽(1−𝑒−𝛽𝑠)

𝛽2𝑠2+𝜋2
−𝐷1) (𝑘1 −𝑀1) − 𝐿2𝐷2]       (49) 

𝜃2(𝑠) =
1

𝑘1−𝑘2
[(
𝜋𝛽(1−𝑒−𝛽𝑠)

𝛽2𝑠2+𝜋2
− 𝐷1) (𝑘2 −𝑀1) − 𝐿2𝐷2]       (50) 

𝜎1(𝑠) =
1

𝑘1−𝑘2
[(
𝜋𝛽(1−𝑒−𝛽𝑠)

𝛽2𝑠2+𝜋2
−𝐷1)𝑀1 − 𝐷2(𝑀1 − 𝑘1)]      (51) 

𝜎2(𝑠) =
1

𝑘1−𝑘2
[(
𝜋𝛽(1−𝑒−𝛽𝑠)

𝛽2𝑠2+𝜋2
− 𝐷1)𝑀1 −𝐷2(𝑀1 − 𝑘1)]      (52) 

 

clearly, 𝜎(0 , 𝑠) = 0, in agreement with Eq. 48. 
From Eq. 27, the displacement field takes the 

form: 
 

𝑢̅(𝑥, 𝑠) = − [
1

√𝑘1
(𝜎1 + 𝜃1)𝑒

−√𝑘1𝑥 −
1

√𝑘2
(𝜎2 + 𝜃2)𝑒

−√𝑘2𝑥 +

1

ℎ
(𝐷2 + 𝐷1)𝑒

−ℎ𝑥]                                                                         (53) 

 

By substituting from Eq. 53 into Eqs. 23 and 24, 
we obtained the induced electric and magnetic fields, 
 

𝐸̅ = 𝑠 [
1

√𝑘2
(𝜎2 + 𝜃2)𝑒

−√𝑘2𝑥 −
1

√𝑘1
(𝜎1 + 𝜃1)𝑒

−√𝑘1𝑥 −

1

ℎ
(𝐷2 + 𝐷1)𝑒

−ℎ𝑥]                                                                         (54) 

ℎ̅(𝑥, 𝑠) =  (𝜎2 + 𝜃2)𝑒
−√𝑘2𝑥 − (𝜎1 + 𝜃1)𝑒

−√𝑘1𝑥(𝐷2 +
𝐷1)𝑒

−ℎ𝑥                                                                                          (55) 
 

Those complete the solution in the Laplace 
transform domain. 

6. Numerical results and discussion 

The technique dependent on a Fourier 
arrangement extension proposed by Hoing and 
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Hirdes (1984) and is created in detail in numerous 
writings, for example, the numerical code has been 
readied utilizing Fortran 77 programming language. 

So as to translate the numerical calculations, we 
consider the material properties of copper material 
 (𝜀 = 0.0168), whose physical information is given in 
Table 1. 

 
Table 1: Values of the constants (El Sherif et al., 2020) 

𝜌 =  8954 𝑘𝑔/𝑚3 𝑘 = 386 N/ 𝐾𝑠 𝑇𝑜 = 293𝐾 
𝐶𝐸 =  383.1 𝑚2/𝐾 𝜆 = 7.76(10)10 N/ 𝑚2 𝜇 = 3.86(10)10 N/ 𝑚2 

𝛾 = 210(10)4 N/ 𝑚2𝐾 𝜂𝑜 = 3.36(10)6  sec/ 𝑚2 𝑐𝑜 = 4158 m/s 
𝜇𝑜 = 1.256(10)

−6 N 𝑠2/𝐶2 𝑘∗ = 124 W / m𝐾𝑠 𝛼𝑇 = 1.78(10)−5  𝐾−1 
𝛼0 = 218(10)

11  m/𝑠 𝑐 ≈ 3(10)6 m/s 𝑣𝑜  =  4158 𝑚/𝑠 

 

Thinking about the above physical information, 
we have assessed the numerical estimations of the 
field amounts. 

The calculations were performed for an 
estimation of time, in particular 𝑡 =  0.1. The 
numerical method laid out above was utilized to get 
the temperature, displacement, and stress 
appropriations just as the electric flow segments for 
various estimations of the thought-about 
parameters. The outcomes are shown graphically at 
various places of x as appeared in Figs. 1–6. 

Fig. 1 speaks to the dimensionless estimation of 
temperature for the wide scope of outspread 
separation x (0 ≤ 𝑥 ≤ 1.4) and for different values of 
time delay. In Fig. 1, strong lines speak to the 
arrangement got in the casing of Biot theory(𝜔 = 0) 
and other lines speak to the arrangement relating to 
utilizing generalized magneto-thermoelasticity GN-
III with MDD for time-delay 0.03, 0.3  when the 
kernel function is taken as the form [1 − (𝑡 − 𝜉)/𝜔]2. 
Fig. 1 revealed that the new model's organization of 
any of the studied capabilities is limited to a certain 
location. The different kinds of these appropriations 
are less likely to occur after this point. This suggests 
that the configurations supporting the new 
generalized hypothesis demonstrate the behavior of 
restricted rates of wave spread. 

Fig. 2 displays the temperature distribution at 
different values of heat source velocity 𝑣 (𝑣 =
2, 4, 6) to show its effect, where we have noticed that 
the heat source velocity parameter v at 𝑡 =  0.1, 𝜔 =
0.09 and 𝐾 = [1 − (𝑡 − 𝜉)/𝜔] has a significant effect 
on the temperature field. The peak value of the 
temperature is found at the points when x (𝑥 =
 2, 4, 6) which mean that the heat source releases its 
maximum energy at the point 𝑥 =  𝑣 𝑡 and just after 
this point the values of that fields decrease with high 
speed.  

Figs. 3 and 4 depict the space variation of 
displacement and stress distributions. In Figs. 3 and 
4, the effect of the heat source velocity v on these 
distributions is studied. We noticed that for different 
values of the heat source velocity parameter 
𝑣 (2, 4, 6) at 𝑡 =  0.1, 𝜔 =  0.07, 𝐾(𝑡, 𝜉)  =  1.0 have 
a significant effect on all fields. We also learned from 
Figs. 3 and 4 that the increasing of the value of the 
parameter v causes increase in the magnitude of 
stress and displacement distributions. 

The effects of time-delay parameter 𝜔 =
 0.0, 0.05, 0.5 on the induced magnetic and electric 
fields are shown in Figs. 5 and 6. We noticed that the 
time delay acts to diminish both fields. This is 
generally known as attractive damping. 

 

 
Fig. 1: The temperature distribution for different values of time-delay parameter ω 
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Fig. 2: The temperature distribution for different values of heat source velocity parameter v 

 

 
Fig. 3: Displacement distribution for different values of heat source velocity parameter v 

 

 
Fig. 4: Stress distribution for different values of the heat source velocity  parameter v 
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Fig. 5: The variation of induced electric field for different valuess of time-delay parameter ω 

 

 
Fig. 6: The variation of the induced electric field at different values of time-delay parameter ω 

 
7. Conclusion 

The primary objective of this work is to take care 
of certain issues of thermal excitations in the 
hypothesis of coupled fields have a place with 
thermoelectric elastic materials. The expanding wide 
use in detecting and activation has pulled in much 
consideration towards hypotheses about materials 
displaying couplings between versatile, electric, 
attractive, and warm fields.  

The conditions of wave hypothesis of 
thermoelectric materials exposed to MDD based on 
the change of the Fourier law was built on rough 
phenomenological conditions of thermo-
electromagnetic versatility described by a limited 
speed of engendering of electromagnetic and flexible 
excitations. 

As per the aftereffects of the work, we can see the 
nearness of MDD's parameters in Fourier law of heat 
conduction can assume a crucial job in expanding or 

diminishing the speed of the wave proliferation of all 
fields through the thermoelectric medium. 

From the considered model we can set up some 
fundamental hypotheses on the straight coupled and 
generalized speculations of electro-thermo-
viscoelasticity; for example the coupled hypothesis 
(𝜔 =  0) and the generalized case hypothesis(𝜔 >
 0). 

List of symbols  

𝜆, 𝜇 Lame's constants 
𝜌 density 
𝑡 time 
𝐶𝐸 specific heat at constant strain 
𝐵𝑖  components of magnetic field strength 
𝐸𝑖  components of electric field vector 
𝐽𝑖 conduction electric density vector 
𝐻𝑖 magnetic field intensity 
𝑞𝑖  components of heat flux vector 
𝐻𝑜 constant component of magnetic field 
𝜇𝑜 magnetic permeability 
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𝜎𝑖𝑗 components of stress tensor 
𝑒𝑖𝑗 components of strain tensor 
𝑢𝑖  components of displacement vector 
𝜃 𝑇 − 𝑇𝑜 

𝑇𝑜 
reference temperature chosen so that 
|𝑇 − 𝑇𝑜|/𝑇𝑜 ≪ 1 

𝛼𝑇 
coefficient of linear thermal expansion 

𝛾 = (3𝜆 + 2𝜇)𝛼𝑇 
𝜀    

=
𝛿𝑜𝛾

𝜌𝐶𝐸
 

thermoelastic parameter 

𝜂

=
1

𝜎𝑜𝜇𝑜
 

magnetic diffusivity 

𝜂𝑜  
𝜌𝐶𝐸
𝑘

 

𝑣𝑜
2 

𝜆 + 2𝜇

𝜌
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