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Reinforced concrete approach slabs serve as a transitional component 
between the roadway pavement and the bridge deck. Due to the settlement 
of the embankment soil, the slab is bent, and its slope grade will be suddenly 
changed resulting in bumps at both ends of the deck; this may increase the 
dynamic response of bridges induced by the interaction with moving 
vehicles. In addition, the presence of such bumps not only causes an 
uncomfortable ride but also exhibits a potentially hazardous condition to the 
traffic. Since most of the studies have considered either the interaction model 
between the slab and soil or between the bridge and moving load; in this 
study, a novel finite element model is established for the bridge under traffic 
loads, considering the presence of the approach slab that is simulated as a 
beam rested on a dynamic soil model. The separated models of the approach 
slab and bridge deck are validated by previous studies and demonstrate their 
accuracy in predicting the dynamic response of the bridge-vehicle system. A 
comprehensive parametric study is then performed considering the effect of 
the soil stiffness, the stiffness of the shear layer of the foundation, and the 
approach slab length. The results of the study are useful criteria for the 
practice design of the approach slab in different embankment conditions. 
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1. Introduction 

*The problem of the embankment settlement in 
the bridge approach is being particularly concern by 
authorities and designers, which causes unsafety 
traffics, discomfort for passengers, vehicle damage 
due to shock loads, and additional effects on the 
abutment (Ha et al., 2002). The essence of the 
problem is that the stiffness of the roadway and the 
bridge deck suddenly changes, resulting in their 
different settlements. Many approaches have been 
studied and proposed to control the transient 
stiffness of these two types of structures, in which an 
approach slab has been commonly used. This 
structure enables a smoother transition between the 
roadway and bridge deck and serves to reduce the 
dynamic load imposed by heavy trucks on the bridge. 

During the service life, the slab may lose its 
contact with soil due to the embankment settlement, 
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which can result in vertical faulting to the bridge 
deck because of the redistribution of load to each 
end of the slab (Ha et al., 2002; Cai et al., 2005). The 
presence of vertical faulting between the roadway 
and the bridge deck may affect the vehicle-induced 
vibration of the bridge. 

In the past decades, many studies have focused 
on both static and dynamic characteristics of either 
approach slab or bridge deck subjected to the 
moving vehicle. Cai et al. (2005) developed a three-
dimensional (3D) finite element model (FEM) for the 
static analysis of the approach slab considering the 
interaction between the approach slab and the 
embankment soil. The internal moments in the 
approach slab due to the dead load and live load 
were then calculated for different settlement 
conditions, providing design engineers with a 
scientific basis to properly design the approach slab. 
Chen and Fan (2017) developed a simplified bridge 
approach slab model based on beam-on-elastic 
Winkler’s foundation to investigate the performance 
of the approach slab. The authors accounted for 
differential settlements between the approach slab 
and roadway pavement and soil washouts near the 
abutment joint. Most recently, Al-Abboodi et al. 
(2021) investigated the performance of the approach 
slab under moving vehicles by a 3D dynamic 
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analysis. In which, the slab is modeled using plate 
elements while the Mohr-Coulomb material model is 
adopted for the base, subbase, and subgrade soils. 
The resulting slab deformations and bending 
moments provide engineers to understand the 
response of approach slabs under different 
conditions of the slab and subgrade. 

The uneven approach slab conditions due to the 
soil settlement is an important factor that affects the 
vehicle-induced dynamic response of bridges. 
However, most of the studies often neglect the 
influence of the bridge approach condition on the 
bridge-vehicle coupled dynamic response (Deng and 
Cai, 2010; Gao et al., 2014; Yang and Yang, 2018). 
One of the few studies was presented by Shi et al. 
(2008), in which the vehicle-induced dynamic bridge 
responses are investigated considering the effect of 
the faulting condition of the approach slab. This 
faulting condition is considered by different slab 
deformations at each end and the midspan, and the 
authors neglect the embankment soil effect. The 
analysis results show that the faulting condition of 
the approach slab caused significantly large dynamic 
responses in the short-span slab bridge. 

Based on the above discussions, this study pays 
attention to a coupled numerical model of the 
interaction between the bridge and moving load 
considering the presence of the approach slab. In 
which, the approach slab rested on the embankment 
soil is modeled as a beam on a dynamic foundation 
model, considering the elastic stiffness, stiffness of 
the shear layer, and mass of the foundation. As a case 
study, a single span simply supported reinforced 

concrete bridge is examined. To simplify the 
mathematical model, the interaction model of the 
bridge deck subjected to three moving sprung 
masses is considered. The examinations of the 
dynamic response of the bridge deck are performed 
considering the effects of different embankment soil 
and approach slab conditions. 

In the following, the mathematical model of the 
bridge deck and approach slab subjected to moving 
sprung masses is presented in Section 2. Section 3 
presents the validation of the numerical model, and a 
comprehensive parametric study is then performed 
and discussed. Finally, in Section 4, conclusions 
along with future perspectives are drawn. 

2. Mathematical model 

The vehicle-bridge model with the presence of 
the approach slab is shown in Fig. 1. In which, the 
bridge and the approach slab can be modeled as two 
separated systems subjected to moving vehicles. To 
establish the equation of motion for each system, the 
following assumptions are used: 
 
 The density, modulus of elasticity, cross-section, 

and moment of inertia are constant along the 
beam. 

 The speed of the moving vehicle is constant, and 
the beam is always under the moving load. 

 The beam, approach slab, and foundation are linear 
elastic. 

 

 
Fig. 1: Vehicle-bridge model with the presence of the approach slab: (a) Schematic of a simply supported beam bridge with 

approach slab and (b) Numerical model of the bridge subjected to a moving vehicle 
 

The simply supported beam can be modeled 
using two-dimensional beam elements having 6 
degrees of freedom as shown in Fig. 2. 

 

 
Fig. 2: Beam element model 

 

The axial stiffness matrix of the beam, having 
elastic modulus 𝐸, cross-section 𝐴, and element 
length 𝑙, is determined as: 
 

𝐾𝑏ar =
𝐸𝐴

𝑙
×

[
 
 
 
 
 

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

                                     (1) 

 

and the bending stiffness matrix is given as: 
 

𝐾𝑏𝑒𝑎𝑚 =
𝐸𝐼

𝑙3
×

[
 
 
 
 
 
0 0 0 0 0 0
0 12 6𝑙 0 −12 6𝑙
0 6𝑙 4𝑙2 0 −6𝑙 2𝑙2

0 0 0 0 0 0
0 −12 −6𝑙 0 12 −6𝑙
0 6𝑙 2𝑙2 0 −6𝑙 4𝑙2 ]

 
 
 
 
 

.                  (2) 
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The beam stiffness matrix in the global 
coordinate system is then determined as: 
 
𝐾𝑒 = 𝑇𝑒

′ × (𝐾𝑏ar + 𝐾𝑏𝑒𝑎𝑚) × 𝑇𝑒 ,                                                (3) 
 

where 𝑇𝑒  is the transformation matrix given as: 
 

𝑇𝑒 =

[
 
 
 
 
 

𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 0 0 0 0
− 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0 0 0 0

0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 0
0 0 0 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0
0 0 0 0 0 1]

 
 
 
 
 

,                 (4) 

 

with 𝛼 is the inclination angle of the element. 
The mass matrix of the beam element in the 

global coordinate system is, 
 

𝑀𝑒 = 𝑇𝑒
′ × 𝜌𝐴𝑙 ×

[
 
 
 
 
 
 
 
 
 
1

3
0 0

1

6
0 0

0
13

35

11𝑙

210
0

9

70

−13𝑙

420

0
11𝑙

210

𝑙2

105
0

13𝑙

420

−𝑙2

140
1

6
0 0

1

3
0 0

0
9

70

13𝑙

420
0

13

35

−11𝑙

210

0
−13𝑙

420

−𝑙2

140
0

−11𝑙

210

𝑙2

105 ]
 
 
 
 
 
 
 
 
 

× 𝑇𝑒,     (5) 

 

where 𝜌 is the mass per unit length of the element. 
For the approach slab, an Euler-Bernoulli beam 

rested on a dynamic foundation is modeled (Nguyen 
et al., 2019). The beam with length 𝐿, height ℎ, elastic 
modulus 𝐸, and density 𝜌 is discrete into 𝑛 elements 
of length 𝑙. Each element has two nodes 𝑖 and 𝑗, and 
each node has three degrees of freedom including 
translational and rotational displacements, as shown 
in Fig. 3. 

Using a polynomial shape function matrix [𝑁]𝑤,𝐵 , 

the displacement field in the beam element is 
represented through the nodal displacement vector 
{𝑢}𝑒,𝐵 = {𝑢𝑖     𝑤𝑖 𝜃𝑖 𝑢𝑗    𝑤𝑗 𝜃𝑗}𝑇 , which is 

represented as: 
 
𝑤𝑒,𝐵 = [𝑁]𝑤,𝐵{𝑢}𝑒,𝐵.                                                                     (6) 

 

The relationship between displacement and 
deformation of a point in an element is represented 
by the nodal displacement, 
 
{𝜀}𝑒,𝐵 = [𝐵]{𝑢}𝑒,𝐵,                                                                         (7) 

 

where [𝐵] is the strain-displacement matrix of the 
beam element. Then, the stress at a point in the beam 
element obeys Hooke's law, which is expressed as: 
 
{𝜎}𝑒,𝐵 = [𝐷]{𝜀}𝑒,𝐵 = 𝐸[𝐵]{𝑢}𝑒,𝐵.                                              (8) 

 

The strain energy of the beam element is 
determined from the bending strain of the beam 
element and the foundation due to the simultaneous 
deformation of the elastic foundation layer and the 
shear layer, determined by, 
 

𝑈𝑒,𝐵 =
1

2
∫ 𝜀𝑒,𝐵𝑉𝑒

𝜎𝑒,𝐵𝑑𝑉 +
1

2
∫ 𝑘𝑤𝑒,𝐵

2𝑙

0
𝑑𝑥 +

1

2
∫ 𝑘𝑠 (

𝜕𝑤𝑒,𝐵

𝜕𝑥
)
2𝑙

0
𝑑𝑥. 

                                                                                                            (9) 

Substituting Eqs. 6, 7, and 8 into Eq. 9, the strain 
energy of the beam element is determined by, 
 

𝑈𝑒,𝐵 =
1

2
{𝑢}𝑒,𝐵

𝑇 [𝐾]𝑒,𝐵
𝑏 {𝑢}𝑒,𝐵 +

1

2
{𝑢}𝑒,𝐵

𝑇 [𝐾]𝑒,𝐵
𝑤 {𝑢}𝑒,𝐵 +

1

2
{𝑢}𝑒.𝐵

𝑇 [𝐾]𝑒,𝐵
𝑠 {𝑢}𝑒,𝐵.                                                                    (10) 

 

 
Fig. 3: Beam on dynamic foundation model 

 
Therefore, the stiffness of the beam element on 

the dynamic foundation includes the stiffness of the 
beam element under bending, the elastic foundation, 
and shear layers, given as: 
 
[𝐾]𝑒,𝐵 = [𝐾]𝑒,𝐵

𝑏 + [𝐾]𝑒,𝐵
𝑤 + [𝐾]𝑒,𝐵

𝑠 ,                                               (11) 

 

where [𝐾]𝑒,𝐵
𝑏 , [𝐾]𝑒,𝐵

𝑤  and [𝐾]𝑒,𝐵
𝑠  are the Euler-

Bernoulli beam element stiffness matrix, the 
foundation layer stiffness matrix, and the shear layer 
stiffness matrix, respectively, given as: 
 

[𝐾]𝑒,𝐵
𝑏 = ∫ [𝐵]

𝑉𝑒

𝑇
𝐸[𝐵]𝑑𝑉,                                                                          (12) 

[𝐾]𝑒,𝐵
𝑤 = ∫ [𝑁]

𝑙

0 𝑤,𝐵

𝑇
𝑘[𝑁]𝑤,𝐵𝑑𝑥,                                                               (13) 

[𝐾]𝑒,𝐵
𝑠 = ∫ [𝑁]

𝑙

0 𝑠,𝐵

𝑇
𝑘𝑠[𝑁]𝑠,𝐵𝑑𝑥,                                                              (14) 

 

where 𝑘 and 𝑘𝑠 are the stiffness of the elastic and 
shear layers in the dynamic foundation model, and 
[𝑁]𝑠 = 𝜕[𝑁]𝐵/𝜕𝑥 is the shape function matrix of the 
rotation angle. 

Since displacement is a function of time, the 
element node velocity also varies with time and is 
equal to the first derivative of the displacement, 
which is expressed as: 
 
�̇�𝑒,𝐵 = [𝑁]𝐵{�̇�}𝑒,𝐵                                                                                          (15) 

 

From that, the kinetic energy of the element is 
determined by, 
 

𝑇𝑒,𝐵 =
1

2
∫ 𝜌
𝑉𝑒

�̇�𝑒,𝐵
2 𝑑𝑉 +

1

2
∫ 𝑚�̇�𝑒,𝐵

2𝑙

0
𝑑𝑥.                                            (16) 

 

Substitute Eq. 15 into Eq. 16, the kinetic energy of 
the beam element is given as: 
 

𝑇𝑒,𝐵 =
1

2
{�̇�}𝑒,𝐵

𝑇 [𝑀]𝑒,𝐵
𝑏 {�̇�}𝑒,𝐵 +

1

2
{�̇�}𝑒,𝐵

𝑇 [𝑀]𝑒,𝐵
𝐹 {�̇�}𝑒,𝐵 .           (17) 

 

Therefore, the mass matrix of the beam element 
on the dynamic foundation is determined by, 
 
[𝑀]𝑒,𝐵 = [𝑀]𝑒,𝐵

𝑏 + [𝑀]𝑒,𝐵
𝐹 ,                                                                       (18) 

where [𝑀]𝑒,𝐵
𝑏  and [𝑀]𝑒,𝐵

𝐹  are the mass matrix of the 

beam element and the mass matrix of the 
foundation, respectively, given as: 
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[𝑀]𝑒,𝐵
𝑏 = ∫ [𝑁]𝑤,𝐵

𝑇 𝜌[𝑁]𝑤,𝐵𝑑𝑉
𝑉𝑒

,                                                             (19) 

[𝑀]𝑒,𝐵
𝐹 = ∫ [𝑁]𝑤,𝐵

𝑇 𝑚[𝑁]𝑤,𝐵𝑑𝑥
𝑙

0
.                                                            (20) 

 

The moving vehicle is modeled as a sprung-mass 
system, with two nodes associated with two lumped 
masses of the wheel and the car body, 𝑚𝑤  and 𝑀𝑣 , 
respectively. The two masses are connected by the 
spring and dashpot having the stiffness and damping 
coefficient denoted by 𝑘𝑣 and 𝑐𝑣 , respectively (Neves 
et al., 2012). By assuming the no-jump condition for 
the moving vehicle, the equation of motion of the 
vehicle system is given as: 
 

[
𝑀𝑣 0
0 𝑚𝑤

] {
�̈�𝑣

�̈�𝑤
}+[

𝑐𝑣 −𝑐𝑣

−𝑐𝑣 𝑐𝑣
] {

�̇�𝑣

�̇�𝑤
}+[

𝑘𝑣 −𝑘
−𝑘𝑣 𝑘𝑣

] {
𝑧𝑣

𝑧𝑤
} =

[𝑓𝑐  −  (𝑀𝑣 + 𝑚𝑤)𝑔],                                                                 (21) 
𝑓𝑐 = (𝑀𝑣 + 𝑚𝑤)𝑔 + 𝑀𝑣�̈�𝑣 + 𝑚𝑤�̈�𝑤,                                    (22) 
 

where 𝑓𝑐 is the contact force, 𝑧𝑣 and 𝑧𝑤  are the 
vertical displacements of two nodes, respectively. 

Considering the superstructure modeled as beam 
elements and the approach slab modeled as a beam 
on the dynamical foundation, which are both 
subjected to a moving body, the differential equation 
of motion at the moment 𝑡 + 𝛥𝑡 is expressed by, 
 
[𝑀]𝑒{�̈�𝑒}𝑡+𝛥𝑡 + [𝐶]𝑒{�̇�𝑒}𝑡+𝛥𝑡 + [𝐾]𝑒{𝑢𝑒}𝑡+𝛥𝑡 = {𝐹}𝑒,𝑡+𝛥𝑡 , 

                                                                                                         (23) 
 

where {𝐹}𝑒,𝑡+𝛥𝑡  is the load vector of the element at 
time 𝑡 + 𝛥𝑡, determined as: 
 
{𝑭}𝑒,𝑡+𝛥𝑡 = −[𝑁]𝑤𝑓𝑐,𝑡+𝛥𝑡𝛿(𝑥𝑖 − 𝑣𝑡),                                     (24) 

 

where 𝛿(𝑥𝑖 − 𝑣𝑡) is the delta Dirac function; 𝑥𝑖  are 
the coordinates of the moving load; [𝑀]𝑒, [𝐾]𝑒  and 

[𝐶]𝑒  are the element mass, stiffness, and damping 
matrices, respectively. 

By assembling the element matrices, a global 
form of the equation of motion is given as: 
 
[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑈} = {𝐹}                                          (25) 

 

where [𝑀], [𝐶],[𝐾] are the global matrix of mass, 
damping, and stiffness matrices, respectively, and 
{𝐹} and {𝑈} are load and nodal displacement vectors 
of the system. This equation can be solved utilizing 
the direct step-by-step integration method based on 
the Newmark algorithm. 

3. Numerical analysis 

3.1. Description of the case study 

The simply supported reinforced concrete bridge 
in the expressway La Son–Tuy Loan in Central 
Vietnam is selected as the case study. The bridge is 
three spans of 1.65 m I beam prestressed reinforced 
concrete with a span length of 33 m. The cross-
section consists of 5 girders spaced 2.4 m, resulting 
in a total width of the bridge of 12 m. The material 
and geometry properties of the bridge deck section 
are shown in Table 1 and the schematic of the bridge 
cross-section is shown in Fig. 4. 

 
Table 1: Material and geometry properties of the bridge 

deck section 
Quantity Value Unit 

Area of cross-section 6.193 m2 
Moment of inertial 2.333 m4 

Elastic modulus 32980×106 N/m2 
Mass density 2450 kg/m3 

 

 
Fig. 4: Schematic of the bridge cross-section 
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The reinforced concrete approach slab is at each 
end of the bridge, which serves as a transitional 
component between the roadway pavement and the 
bridge deck. The slab, having 0.2 m thickness, 12 m 
width, and 6 m length, is rested on a compacted 
embankment with simply supported ends. The soil is 
assumed to be elastic with an elastic modulus of 100 
MPa, a shear layer stiffness of 1 × 107 N/m, and a 
density of 2000 kg/m3. 

3.2. Validation of the numerical model 

Due to the lack of literature that considers the 
coupled model of the approach slab and bridge; in 
this study, the dynamic responses of the beam on the 
dynamic foundation and the bridge-vehicle models 
are separately validated with the available literature. 

For the beam on foundation model, the lowest 
natural frequency is extracted for each case of the 
dimensionless parameters 𝐾1, 𝐾2 [see Eq. 26, where 
𝑘 is the elastic stiffness, 𝑘𝑠 is the stiffness of the 
shear layer, 𝐿 is the slab length, and 𝐸𝐼 is beam 
section flexural stiffness] of the foundation model 
and compared with two numerical solutions 
presented by Matsunaga (1999), in which the 
damping effect is neglected. 
 

𝐾1 =
𝑘𝐿4

𝐸𝐼
, 𝐾2 =

𝑘𝑠𝐿
2

𝜋2𝐸𝐼
.                                                                    (26) 

 

The comparison is shown in Table 2 with 𝐾2  = 1, 
the approach slab length and depth ratio 𝐿/ℎ =  10, 
and 𝐾1 varied from 0 to 1 × 105. It can be observed 
that a very good agreement can be found with the 
CBT solution and there is a slight difference 
compared with the TBT solution (Matsunaga, 1999). 

 
Table 2: Validation of the lowest natural frequency of the present beam on the dynamic foundation model 

𝐾1 0 1 × 101 1 × 102 1 × 103 1 × 104 1 × 105 
CBT solution Matsunaga (1999) 13.9577 14.3115 17.1703 34.5661 100.9694 316.5356 
TBT solution Matsunaga (1999) 13.8162 14.1709 17.0326 34.3963 100.5564 314.9778 

Present model 13.9592 14.3129 17.1714 34.5667 100.9697 316.5358 

 

For the bridge-vehicle model, the validation is 
carried out with the work of Yang et al. (2004). In 
which, a FEM model was developed for a simply 
supported beam of length 𝐿 = 25 m subjected to a 
moving sprung-mass model. The beam is modeled 
with the cross-sectional area 𝐴 = 2 m2, the moment 
of inertia 𝐼 = 0.12 𝑚4, the mass per unit length 𝑚 = 
4800 kg/m, and the elastic modulus 𝐸 = 27.5 GN/m2. 
Whereas the vehicle is modeled with the mass 𝑚𝑣 = 
1200 kg, the spring stiffness 𝑘𝑣 = 500 kN/m, and 
zero damping; this leads to a bridge mass ratio of 
1/100. In the finite element analysis of Yang et al. 
(2004), 10 beam elements were used for the bridge. 
The comparison between the two models is shown in 
Fig. 5 for the vehicle speed 𝑉 = 10 m/s. It can be seen 
that the present model shows a high degree of 
coincidence with the previous analytical model 
(Yang et al., 2004) in terms of the vertical 
displacement of the midspan. Although very slight 
deviations exist from the validation, the present 
numerical models for both the approach slab and 
bridge are considered acceptable for identifying the 
key parameters involved. 

 

 
Fig. 5: Validation of the bridge-moving sprung-mass model 

3.3. Parametric analysis 

To examine the effects of embankment soil and 
slab conditions on the bridge-vehicle response, three 
cases of the parametric analysis are performed, 
including the effects of the elastic modulus, the 
stiffness of the shear layer of the embankment soil, 
and the approach slab length. The first two 
parameters of soil are considered the most 
important factor that affects the dynamic response of 
the foundation (Deng and Cai, 2010). At each 
analysis, the impact factor (𝐼𝑀) is calculated as the 
ratio of the maximum dynamic response and static 
response. The relationship between 1 + 𝐼𝑀 and 
different moving speeds for each case is then plotted 
and discussed. In addition, the vehicle is simplified 
as three sprung masses, which represent the design 
truck HL93 defined in AASHTO (2012) with three 
axles spaced 4.3 m and with axle loads of 35.6 kN 
and 142.3 kN in the front and the other two, 
respectively. Table 3 presents the mechanical 
properties of the sprung-mass models, namely the 
mass, damping, and stiffness collected from 
Montenegro et al. (2021) and Hu et al. (2020). 

 
Table 3: Parameters of sprung-mass models of the design 

truck HL93 
Quantity Notation Value Unit 

Mass of front car body 𝑀𝑣1 2612 kg 
Mass of rear car body 

(equally divided into middle 
and rear axles) 

𝑀𝑣2, 𝑀𝑣3 28077/2 kg 

Mass of front axle 𝑚𝑤1 490 kg 
Mass of middle axle 𝑚𝑤2 808 kg 

Mass of rear axle 𝑚𝑤3 653 kg 
Damper of the front axle 𝑐𝑣1 2190 N.s/m 

Damper of the middle axle 𝑐𝑣2 7882 N.s/m 
Damper of the rear axle 𝑐𝑣3 7182 N.s/m 

Suspension of the front axle 𝑘𝑣1 242604 N/m 
Suspension of the middle axle 𝑘𝑣2 1903172 N/m 

Suspension of the rear axle 𝑘𝑣3 1969034 N/m 
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3.3.1. Influence of elastic stiffness of the 
foundation 

One of the key factors affecting the performance 
of the approach slab subjected to traffic loads is the 
condition of the embankment soil (Deng and Cai, 
2010; Nguyen et al., 2020). In the first analysis, the 
effect of the soil stiffness is investigated through the 
elastic modulus of the soil. In Fig. 6, the time history 
of the midspan displacement of both the approach 
slab and bridge deck system is presented. While the 
dynamic responses of the approach slab for three 
cases of the elastic modulus, i.e., 𝐸𝑠 = 1, 10, and 100 
MPa varies significantly, those of the bridge deck 
show a similar trend with considerable differences in 
the peak values. This enables the effect of the 
presence of the approach slab on the dynamic 
response of the bridge system. 

To investigate in detail the effect of the soil 
stiffness on the 𝐼𝑀 factor of the bridge due to the 
moving vehicle, their relationship for different cases 
of the vehicle speed is presented in Fig. 7, in which 
the elastic modulus is varied from 1 × 105 (soft soil) 
to 1 × 108 N/m2 (stiff soil), and the horizontal axis is 
in the logarithmic scale for visualization. In most 
cases, the 1 + 𝐼𝑀 value decreases with the increase 
of the soil stiffness. Careful readers can see a 
considerable decrease in the 𝐼𝑀 value from 𝐸𝑠 = 1 ×
106 N/m2. And the amplitude of change of the 𝐼𝑀 
value for all the cases varies from 0.026 to 0.038. 

 

 
Fig. 6: Time history of the midspan vertical displacement 

of the approach slab and bridge deck system with different 
values of the soil elastic modulus 

 

 
Fig. 7: Variation of 𝐼𝑀 with the soil elastic modulus 

Regarding the vehicle speed, at low speeds, i.e., 𝑉 
= 40, 60, and 80 km/h, the 𝐼𝑀 values are almost the 
same concerning the stiffness of the embankment 
soil. Then, the value of 𝐼𝑀 increases significantly 
when the vehicle speeds reach 100 and 120 km/h. 
The maximum values of 1 + 𝐼𝑀 are 1.223 and 1.254 
are recorded at 𝐸𝑠 = 1 × 105 N/m2 according to 𝑉 = 
100 and 120 km/h, respectively. Those values are 
smaller than the critical value of 1 + 𝐼𝑀 defined by 
AASHTO (2012) for this type of bridge, i.e., 1.33. 
However, it is noticed that a given range of the 
embankment stiffness is assumed in this study that 
covers from soft to stiff soil layers. In practice, due to 
the settlement of the embankment or under 
deteriorating soil washout conditions, the approach 
slab may be subjected to large deformations (Cai et 
al., 2005; Chen and Chai, 2011), thus resulting in 
large effects on the dynamic response of the bridge 
deck system. 

3.3.2. Influence of shear stiffness of the 
foundation 

In the dynamic foundation model presented in 
this study, the stiffness of the shear layer is also an 
important parameter. To investigate the effect of this 
parameter, different shear stiffness values of the soil 
are considered, varying from 𝑘𝑠 = 1 × 105 to 1 × 108 
N/m. The time history analysis is first plotted in Fig. 
8, and the effects of the soil shear stiffness on the 1 +
𝐼𝑀 value are presented in Fig. 9. Similar 
observations with the above investigation are 
recognized. The dynamic response decreases with 
the increase of the shear stiffness. However, the 
amplitude of change is rather limited. The peak 1 +
𝐼𝑀 values for five cases of the vehicle speed are 
1.121, 1.131, 1.112, 1.211, and 1.247, respectively. 
Also of note is that at 𝑉 = 80 km/h, the dynamic 
response increases with the increase of the shear 
layer stiffness; this may be due to the occurrence of 
the resonance of the vehicle and bridge vibrations at 
the high shear layer stiffness of the foundation 
(Museros et al., 2013). 

 

 
Fig. 8: Time history of the midspan vertical displacement 

of the approach slab and bridge deck system with different 
stiffness of the shear layer 
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3.3.3. Influence of approach slab length 

In the practice design of the approach slab, the 
slab length depends on the height of the abutment 
and the embankment condition. In this study, the 
effect of the slab geometry is investigated. Slab 
lengths from 3 to 12 m are considered (Wang et al., 
2014). The time history analysis results for different 
cases of the slab length are shown in Fig. 10. As seen 
that the increase of the slab length increases the slab 
displacement, thus increasing the dynamic response 
of the bridge. 

 

 
Fig. 9: Variation of 𝐼𝑀 with the shear layer stiffness 

 

The relationship between the 1 + 𝐼𝑀 value and 
the approach slab length is shown in Fig. 11. The 
results are plotted for five cases of vehicle speed. As 
compared to the above investigations, the trend is 
different for each case of vehicle speed. While at low 
speeds, i.e., 40 to 80 km/h, the amplitude of 1 + 𝐼𝑀 
is limited (i.e., < 1.12), in the cases of 𝑉 = 100 and 
120 km/h, the value of 1 + 𝐼𝑀 is more significant; 
however, the pattern is different. At 𝑉 = 100 km/h, 
the 1 + 𝐼𝑀 reaches the peak value corresponding to 
𝐿𝑠𝑙𝑎𝑏 = 9 m, and then the dynamic factor decreases 
with the increase of the slab until 12 m. On the other 
hand, the dynamic factor of the bridge increases with 
the increase of the slab length in the case of 𝑉 = 120 
km/h. 

 

 
Fig. 10: Time history of the midspan vertical displacement 
of the approach slab and bridge deck system with different 

approach lengths 

4. Conclusion 

This study aimed at presenting a coupled 
numerical model for the vehicle-bridge interaction 
with the presence of the approach slab. The FEM was 
adopted, in which the bridge was modeled using six 
degrees of freedom beam element, and the approach 
slab was modeled as a beam rested on a dynamic 
foundation, considering the effects of elastic 
stiffness, shear stiffness, and mass of the foundation. 
The numerical model was validated and agreed well 
with previous studies. 

 

 
Fig. 11: Variation of IM with the approach slab length 

 
 The parametric study was then performed on a 

case study of a simply supported prestressed 
reinforced concrete bridge on the expressway La 
Son - Tuy Loan in Central Vietnam. The analyses 
were performed considering the effects of the 
elastic stiffness of the soil, the stiffness of the shear 
layer, and the approach length to the dynamic 
response of the bridge. The results of the 
parametric study showed significant effects of the 
examined parameters on the impact factor 1 + 𝐼𝑀 
of the bridge, resulting in the following 
conclusions: 

 The decrease of the soil elastic stiffness results in 
an increase in the dynamic response of the 
approach slab and the bridge. The amplitude of 
change is significant in the elastic modulus range 
from 1 × 106 to 5 × 107 N/m.  

 The effect of the shear layer stiffness is the same 
trend as the above observation; however, the 
amplitude of change is rather limited and is more 
significant in the cases of 𝑉 = 100 and 120 km/h. 

 The approach length has a significant effect on the 
dynamic response of the bridge, and the pattern of 
change is different with the vehicle speeds. 
Considering all the examined vehicle speeds, 
approach slab lengths of 6 to 7 m are 
recommended, in which the 1 + 𝐼𝑀 values for all 
the cases are in a suitable range. This aspect should 
be carefully considered in the practice design of the 
slab. 

 
This study was limited to a case study of the 

simply supported bridge and the vehicle was 
simplified to be three sprung-mass models. For 
further investigation, a more complex vehicle model 
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should be considered, and the effect of the road 
roughness should be examined. 

List of symbols 

𝐴 Element cross-section 
𝐸 Element elastic modulus 
𝑙 Element length 
𝐾𝑏𝑎𝑟  Axial stiffness matrix of the beam 
𝐾𝑏𝑒𝑎𝑚  Bending stiffness matrix of the beam 

𝐾𝑒 
Stiffness matrix of the beam in the global 
coordinate system 

𝑇𝑒 Transformation matrix 
ℎ Approach slab height 
𝐿 Approach slab length 
[𝑁]𝑤,𝐵 Polynomial shape function matrix 
{𝑢}𝑒,𝐵 Nodal displacement vector 
𝑢𝑖 , 𝑢𝑗  Nodal horizontal displacement 
𝑤𝑖 , 𝑤𝑗  Nodal vertical displacement 

𝑤𝑒,𝐵 
Displacement field of a point in the beam 
element 

[𝐵] Strain-displacement matrix 
𝑈𝑒,𝐵  Strain energy of the beam element 

[𝐾]𝑒,𝐵  
Stiffness of the beam element on the dynamic 
foundation model 

[𝐾]𝑒,𝐵
𝑏  Euler-Bernoulli beam element stiffness matrix 

[𝐾]𝑒,𝐵
𝑤  Foundation layer stiffness matrix 

[𝐾]𝑒,𝐵
𝑠  Shear layer stiffness matrix 

𝑘, 𝑘𝑠 
Stiffness of the elastic and shear layers in the 
foundation model 

𝐾1, 𝐾2 
dimensionless parameters of the foundation 
stiffness 

[𝑀]𝑒,𝐵
𝑏  Mass matrix of the beam element 

[𝑀]𝑒,𝐵
𝐹  Mass matrix of the foundation 

[𝑀]𝑒,𝐵  
Mass matrix of the beam element on the 
dynamic foundation 

𝑚𝑤 Lumped masses of the wheel 
𝑀𝑣 Lumped masses of the car body 
𝑐𝑣 Damping coefficient of the dashpot 
𝑘𝑣 Stiffness of the spring 
𝑓𝑐  Contact force 
𝑔 Gravity 
{𝐹}𝑒,𝑡+𝛥𝑡 Load vector 
𝑡 Time 
𝛥𝑡 Timestep 

𝑧𝑣 , 𝑧𝑤 
vertical displacements of two nodes of the 
vehicle model 

𝛼 Longitudinal slope angle of the bridge deck 
𝛿 Delta Dirac function 
{𝜀}𝑒,𝐵 Deformation of a point in the beam element 
{𝜎}𝑒,𝐵 Stress at a point in the beam element 
𝜌 Mass density of the beam 
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