
 International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 154-158

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

154

Advanced efficient iterative methods to the Helmholtz equation

A. G. Shaikh 1, *, Wajid Shaikh 2, A. H. Shaikh 3, Muhammad Memon 1

1Department of BS and RS, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
2Department of Mathematics and Statistics, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah,
Pakistan
3Department of Mathematics, Institute of Business Management, Karachi, Pakistan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 10 December 2021
Received in revised form
24 March 2022
Accepted 12 April 2022

Parallel computing has recently gained widespread acceptance as a means of
handling very large computational data. Since iterative methods are
appealing for large systems of equations, and they are the prime candidates
for implementations on parallel architectures, We presented based on
exploration, through virtual technology having 30 cores, in literature
solutions of Helmholtz equation is available up to 12 cores by Jacobi method,
here we increased the number of cores and virtual machine having 30 cores
first time used to find the solution of Helmholtz equation, our findings are
encouraging and found that parallel computing by OpenMP implementations
is effective on current supercomputing as well as virtual machine platforms
and that is an auspicious programming model to use for applications to be
run on emerging and future platforms with accelerated nodes.

Keywords:
API
Fork join
Master thread
Parallel computing
OpenMP

© 2022 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Parallel computing means doing things
simultaneously, we may be doing the same thing or
something different simultaneously, or parallel
computing (Eisenstat et al., 1983; Bogaerts et al.,
2002). The idea of a single processor computer is
fast becoming outmoded and gorgeous. Before
taking an excise on Parallel Processing, first of all, let
us look at the background of computations of
computer software and why it is futile for the
modern era. The performance of the computer is an
increase in speed, that is if we use a single computer,
it takes 𝑇 amount of time to perform a job, then
using two computers the same computers should cut

the time, and, it takes to perform that same job in
𝑇

2

(half time of amount) and, whereas using four of the
same computers should cut the time it takes to

perform a job, in
𝑇

4
, and so on, a kind of embarrassing

parallel computing, however, in practical terms, this
is impossible. The computer software was written
conventionally for sequential processing. This meant
that to evaluate a program, an execution divides the

* Corresponding Author.
Email Address: agshaikh@quest.edu.pk (A. G. Shaikh)

https://doi.org/10.21833/ijaas.2022.06.020
 Corresponding author's ORCID profile:

https://orcid.org/0000-0001-7367-993X
2313-626X/© 2022 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

program into smaller instructions. These discrete
instructions are then executed on the CPU of a
computer one by one after one instruction is
finished, the next will start, but dealing with a
massive size of problems, it is impossible to do so,
but need a fast solution for practical point of view,
and the fastest solution iterative method is not
always the best solution method (Ianculescu and
Thompson, 2006; Operto et al., 2007). The change in
the strategy; parallel computing played a role to
adjust the strategies when it comes to computing.
Meanwhile, it is impossible to improve the speed of a
computer with the help of a single processor, which
consumes unacceptable power causing heat issues,
on the contrary, if an application is not running fast
on a single computer machine; it will run even
slower on new machines having many processors
unless it takes the advantage of parallel processing.
Nowadays, parallel computing is a dominant player
in simulation analysis and scientific computing.
Parallel computing refers to the process of breaking
down the larger tasks into smaller, independent,
usually similar tasks, that can be executed
simultaneously by multiple processors and these
processors will communicate through shared
memory. The primary goal of parallel computing is
to take the advantage of all available resources of the
computer. OpenMP parallel Computing examines
with the help of a virtual machine to solve the
Helmholtz differential equation (Nabavi et al., 2007;
Umetani et al., 2009; Zhu et al., 2010), by, the
Jacobean Method iteratively with a different number

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:agshaikh@quest.edu.pk
https://doi.org/10.21833/ijaas.2022.06.020
https://orcid.org/0000-0001-7367-993X
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2022.06.020&domain=pdf&

Shaikh et al/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 154-158

155

of cores, speed, and efficiency tested with a different
number of processors.

2. OpenMP

The OpenMP is a computer language; it works
together with either standard Fortran or C/C++. It is
comprised of a set of compiler directives that
demonstrate the parallelism in the foundation code,
along with a supporting library of subroutines
existing to applications. Jointly, these directives and
library routines are properly described by the
application programming interface (API), now a
day’s OpenMP (Puzyrev et al., 2013), which allows
sending "request" any number of threads of
execution. This is not every time a suitable request. If
the system has four to thirty processors available,
and they're not busy doing other things or serving
else one another, maybe four or more than four,
threads are what we want. Moreover, if we run the
same program by using one thread and four or more
than four threads, we may find that using more than

one thread, the machine may slow down, either
because we don't actually have four processors or
because the processors are also busy doing other
things.

2.1. Fork join

OpenMP works based on the Fork-Join model for
parallel execution in Fig. 1 that is all OpenMP parallel
programs start with a single thread a master thread.
The master thread executes instructions sequentially
till interned in the parallel region, after interning in
the parallel region the master thread creates a
spawn of threads, several threads depending on the
CPU possesses, (also the number of threads
requested), and after completing the execution
simultaneously all the threads will join the master
thread (Ping and Ali, 2014), and all threads will
terminate except master thread, again master create
a threads spawn to execute the instruction and this
process will continue till the final result of the
execution as shown in Fig. 1.

Fig. 1: Fork-join model with, 4 threads to execute the data

2.2. Shared memory

Multiple processors can operate independently
but share the same resources of memory, or one
large bank of memory, different computer cores
acting on it, and each code is assigned threads of
execution of a single program that acts on data. The
changes in memory locations caused by one CPU are
visible to all processors. Different CPUs
communicate with each other through shared
memory, in the language of Parallel computing cores
are renowned as Threads.

3. Root mean square

The Residual-Root-Mean-Square represents the
square root of the second sample instant of the
differences between predicted values and observed
values. These deviations are called Residuals when
the calculations are performed over the data, which
were used for errors when computed out of the data.
RMS is always non-negative, and a value of zero
(almost impossible in real life) which indicates a
perfect solution.

Master thread executes serial portion of codes.

Mater thread enters saxpy subroutine.

Master thread encounters parallel do directives. Creates
Slave threads.

Master and slave threads divide iterations of parallel do
loops and execute them concurrently.

Implicit barrier: Wait for all threads to finish the
iterations.

Master thread resume execution after the do loop. Slave
threads disappear.

Shaikh et al/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 154-158

156

3.1. Model problem Helmholtz equation by Jacobi
method

The solution of discretized Helmholtz Equation
employing Parallel Computing with OpenMP. The
two-dimensional region given is:

−1 ≤ 𝑥 ≤ 1, 𝑎𝑛𝑑 − 1 ≤ 𝑦 ≤ 1. (1)

The region is discretized by a set of 𝑀 × 𝑁 grid
points:
For,

0 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑗 ≤ 𝑁 − 1, (C/C++). (2)

The Helmholtz problem for the unknown function
𝑢(𝑥, 𝑦) is:

−𝑈𝑥𝑥(𝑥, 𝑦) − 𝑈𝑦𝑦(𝑥, 𝑦) + 𝐾 ∗ 𝑢(𝑥, 𝑦) = 𝐺(𝑥, 𝑦). (3)

The discretized differential equation becomes a
set of a linear system of equations of the form:

𝐴 ∗ 𝑈 = 𝐺. (4)

This linear system is then solved using a form of
the Jacobi method with 𝜔=1.5.

3.2. Solution of the Helmholtz equation

OpenMP version (This program ran in parallel).
Available Processors=30
Requested Thread=1
The region is [-1,1] x [-1,1].

The grid points in the 𝑥-axis direction 𝑀=10000,
and grid points in the 𝑦-axis 𝑁=10000, therefore, the
variables in the linear system 𝑀 × 𝑁=100000000.
The constant wavenumber is taken 𝐾=100. The
relaxation is:

𝜔=1.5, and the tolerance is, Tol=0.0E-12, Its-Max=50.

For the sake of simplicity, only two results are
presented in the form of Tables 1 and 2. The results
with different numbers of threads are presented in
the form of Table 3 and Fig. 2.

Table 1: Iterations obtained requesting one thread by visual studio 2017 by (C/C++)

1 Residual RMS 5.601189e-11
2 Residual RMS 5.601180e-11
3 Residual RMS 5.601171e-11
4 Residual RMS 5.601162e-11
5 Residual RMS 5.601153e-11
6 Residual RMS 5.601144e-11
7 Residual RMS 5.601135e-11
8 Residual RMS 5.601126e-11
9 Residual RMS 5.601117e-11

10 Residual RMS 5.601108e-11
11 Residual RMS 5.601099e-11
12 Residual RMS 5.601090e-11
13 Residual RMS 5.601081e-11
14 Residual RMS 5.601072e-11
15 Residual RMS 5.601063e-11
16 Residual RMS 5.601054e-11
17 Residual RMS 5.601045e-11
18 Residual RMS 5.601036e-11
19 Residual RMS 5.601027e-11
20 Residual RMS 5.601018e-11
21 Residual RMS 5.601010e-11
22 Residual RMS 5.601001e-11
23 Residual RMS 5.600992e-11
24 Residual RMS 5.600983e-11
25 Residual RMS 5.600974e-11

26 Residual RMS 5.600965e-11
27 Residual RMS 5.600956e-11
28 Residual RMS 5.600947e-11
29 Residual RMS 5.600938e-11
30 Residual RMS 5.600929e-11
31 Residual RMS 5.600920e-11
32 Residual RMS 5.600912e-11
33 Residual RMS 5.600903e-11
34 Residual RMS 5.600894e-11
35 Residual RMS 5.600885e-11
36 Residual RMS 5.600876e-11
37 Residual RMS 5.600867e-11
38 Residual RMS 5.600858e-11
39 Residual RMS 5.600849e-11
40 Residual RMS 5.600840e-11
41 Residual RMS 5.600832e-11
42 Residual RMS 5.600823e-11
43 Residual RMS 5.600814e-11
44 Residual RMS 5.600806e-11
45 Residual RMS 5.600801e-11
46 Residual RMS 5.600807e-11
47 Residual RMS 5.600854e-11
48 Residual RMS 5.601055e-11
49 Residual RMS 5.601834e-11
50 Residual RMS 5.604793e-11

Computed solution L2 norm: 0.420073; Time taken by execution=22.166349; # Available processors=30# requested threads=30; The region is [-1,1] x [-1,1]

Fig. 2: Speedup with an increasing number of cores

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

S
p

e
e

d
u

p

Number of Threads

Speedup and Efficiency of Helmholtz Equation by Jacobi (N*N=10^8)

Shaikh et al/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 154-158

157

Table 2: Iterations obtained requesting and thirty cores (threads) by visual studio 2017 by (C/C++)
1 Residual RMS 5.601189e-11
2 Residual RMS 5.601180e-11
3 Residual RMS 5.601171e-11
4 Residual RMS 5.601162e-11
5 Residual RMS 5.601153e-11
6 Residual RMS 5.601144e-11
7 Residual RMS 5.601135e-11
8 Residual RMS 5.601126e-11
9 Residual RMS 5.601117e-11

10 Residual RMS 5.601108e-11
11 Residual RMS 5.601099e-11
12 Residual RMS 5.601090e-11
13 Residual RMS 5.601081e-11
14 Residual RMS 5.601072e-11
15 Residual RMS 5.601063e-11
16 Residual RMS 5.601054e-11
17 Residual RMS 5.601045e-11
18 Residual RMS 5.601036e-11
19 Residual RMS 5.601027e-11
20 Residual RMS 5.601018e-11
21 Residual RMS 5.601010e-11
22 Residual RMS 5.601001e-11
23 Residual RMS 5.600992e-11
24 Residual RMS 5.600983e-11
25 Residual RMS 5.600974e-11

26 Residual RMS 5.600965e-11
27 Residual RMS 5.600956e-11
28 Residual RMS 5.600947e-11
29 Residual RMS 5.600938e-11
30 Residual RMS 5.600929e-11
31 Residual RMS 5.600920e-11
32 Residual RMS 5.600912e-11
33 Residual RMS 5.600903e-11
34 Residual RMS 5.600894e-11
35 Residual RMS 5.600885e-11
36 Residual RMS 5.600876e-11
37 Residual RMS 5.600867e-11
38 Residual RMS 5.600858e-11
39 Residual RMS 5.600849e-11
40 Residual RMS 5.600840e-11
41 Residual RMS 5.600832e-11
42 Residual RMS 5.600823e-11
43 Residual RMS 5.600814e-11
44 Residual RMS 5.600806e-11
45 Residual RMS 5.600801e-11
46 Residual RMS 5.600807e-11
47 Residual RMS 5.600854e-11
48 Residual RMS 5.601055e-11
49 Residual RMS 5.601834e-11
50 Residual RMS 5.604793e-11

Computed U L2 norm: 0.420073; Time taken by execution=65.262351

Table3: Comparative time taken by different numbers of threads

Speedup and efficiency of Helmholtz differential equation by Jacobi with C/C++
Time taken by different threads, with dimensions N*N=108

Threads #1 #2 #4 #8 #12 #16 #20 #24 #28 #30
Time(S) 65.26 37.18 23.10 19.69 20.41 19.86 21.07 21.48 20.86 22.16
Speedup 1 1.76 2.83 3.31 3.20 3.29 3.10 3.04 3.13 2.84

Efficiency 100 88 71 41 27 21 16 13 11 09

4. Conclusion

The main Server with the help of a virtual
Technology having 30 (Thirty Processors) is applied,
to solve the Helmholtz Equation, by the Jacobi
method, and relaxation parameter "1.5" with
OpenMP Parallel Computing, to examine with a
different number of cores. It is notable that as we
increase the number of Threads/Processors/Cores
performance also increases, but huge increase in the
number of Cores may get either no any improvement
in performance or may decrease the performance, it
means an increase number of processors is not
giving a guarantee of good performance sometimes
increases the number of processors put extra burden
on computation, resulting slow down the
performance, this shows from Fig. 2, we started with
simply 1 processor, 2 processors, then 4 processors
to solve same Helmholtz equation, using Visual
Studio 2017 in C/C++, after that 8 processors each
times an increase the number of processors getting
increases in the performance, but when we further
increase the number of cores resulting decrease the
speed (performance), rather than increase the
performance, it put an extra burden on CPU causes
hindrance in execution, so an increase the number of
cores will increases the performance, but generally it
is not true, that is an increase the number of cores
will increase the performance of computation. Few
results with one thread and thirty threads in terms
of Residual Roots Mean Square in Tables 1 and 2 and
found satisfactory.

Acknowledgment

The authors would like to thank all researchers
who participated in this study and gratefully
acknowledge the support of the Quaid-e-Awam
University of Engineering, Science and Technology
Nawabshah Pakistan.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Bogaerts A, Neyts E, Gijbels R, and Van der Mullen J (2002). Gas
discharge plasmas and their applications. Spectrochimica Acta
Part B: Atomic Spectroscopy, 57(4): 609-658.
https://doi.org/10.1016/S0584-8547(01)00406-2

Eisenstat SC, Elman HC, and Schultz MH (1983). Variational
iterative methods for nonsymmetric systems of linear
equations. SIAM Journal on Numerical Analysis: Peer-
Reviewed Journal, 20(2): 345-357.
https://doi.org/10.1137/0720023

Ianculescu C and Thompson LL (2006). Parallel iterative solution
for the Helmholtz equation with exact non-reflecting
boundary conditions. Computer Methods in Applied
Mechanics and Engineering, 195(29-32): 3709-3741.
https://doi.org/10.1016/j.cma.2005.02.030

Nabavi M, Siddiqui MK, and Dargahi J (2007). A new 9-point sixth-
order accurate compact finite-difference method for the

https://doi.org/10.1016/S0584-8547(01)00406-2
https://doi.org/10.1137/0720023
https://doi.org/10.1016/j.cma.2005.02.030

Shaikh et al/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 154-158

158

Helmholtz equation. Journal of Sound and Vibration, 307(3-5):
972-982. https://doi.org/10.1016/j.jsv.2007.06.070

Operto S, Virieux J, Amestoy P, L’Excellent JY, Giraud L, and Ali
HBH (2007). 3D finite-difference frequency-domain modeling
of visco-acoustic wave propagation using a massively parallel
direct solver: A feasibility study. Geophysics, 72(5): SM195-
SM211. https://doi.org/10.1190/1.2759835

Ping TW and Ali NHM (2014). Higher order rotated iterative
scheme for the 2D Helmholtz equation. In the AIP Conference
Proceedings: 21st National Symposium on Mathematical
Sciences, AIP Publishing LLC, Penang, Malaysia, 1605: 155-
160. https://doi.org/10.1063/1.4887581

Puzyrev V, Koldan J, de la Puente J, Houzeaux G, Vázquez M, and
Cela JM (2013). A parallel finite-element method for three-

dimensional controlled-source electromagnetic forward
modelling. Geophysical Journal International, 193(2): 678-
693. https://doi.org/10.1093/gji/ggt027

Umetani N, MacLachlan SP, and Oosterlee CW (2009). A multigrid‐
based shifted Laplacian preconditioner for a fourth‐order
Helmholtz discretization. Numerical Linear Algebra with
Applications, 16(8): 603-626.
https://doi.org/10.1002/nla.634

Zhu J, Ping XW, Chen RS, Fan ZH and Ding DZ (2010). An
incomplete factorization preconditioner based on shifted
Laplace operators for FEM analysis of microwave structures.
Microwave and Optical Technology Letters, 52(5): 1036-1042.
https://doi.org/10.1002/mop.25111

https://doi.org/10.1016/j.jsv.2007.06.070
https://doi.org/10.1190/1.2759835
https://doi.org/10.1063/1.4887581
https://doi.org/10.1093/gji/ggt027
https://doi.org/10.1002/nla.634
https://doi.org/10.1002/mop.25111

	Advanced efficient iterative methods to the Helmholtz equation
	1. Introduction
	2. OpenMP
	2.1. Fork join
	2.2. Shared memory

	3. Root mean square
	3.1. Model problem Helmholtz equation by Jacobi method
	3.2. Solution of the Helmholtz equation

	4. Conclusion
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References

