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Parallel computing has recently gained widespread acceptance as a means of 
handling very large computational data. Since iterative methods are 
appealing for large systems of equations, and they are the prime candidates 
for implementations on parallel architectures, We presented based on 
exploration, through virtual technology having 30 cores, in literature 
solutions of Helmholtz equation is available up to 12 cores by Jacobi method, 
here we increased the number of cores and virtual machine having 30 cores 
first time used to find the solution of Helmholtz equation, our findings are 
encouraging and found that parallel computing by OpenMP implementations 
is effective on current supercomputing as well as virtual machine platforms 
and that is an auspicious programming model to use for applications to be 
run on emerging and future platforms with accelerated nodes. 
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1. Introduction 

*Parallel computing means doing things 
simultaneously, we may be doing the same thing or 
something different simultaneously, or parallel 
computing (Eisenstat et al., 1983; Bogaerts et al., 
2002). The idea of a single processor computer is 
fast becoming outmoded and gorgeous. Before 
taking an excise on Parallel Processing, first of all, let 
us look at the background of computations of 
computer software and why it is futile for the 
modern era. The performance of the computer is an 
increase in speed, that is if we use a single computer, 
it takes 𝑇 amount of time to perform a job, then 
using two computers the same computers should cut 

the time, and, it takes to perform that same job in 
𝑇

2
 

(half time of amount) and, whereas using four of the 
same computers should cut the time it takes to 

perform a job, in 
𝑇

4
, and so on, a kind of embarrassing 

parallel computing, however, in practical terms, this 
is impossible. The computer software was written 
conventionally for sequential processing. This meant 
that to evaluate a program, an execution divides the 
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program into smaller instructions. These discrete 
instructions are then executed on the CPU of a 
computer one by one after one instruction is 
finished, the next will start, but dealing with a 
massive size of problems, it is impossible to do so, 
but need a fast solution for practical point of view, 
and the fastest solution iterative method is not 
always the best solution method (Ianculescu and 
Thompson, 2006; Operto et al., 2007). The change in 
the strategy; parallel computing played a role to 
adjust the strategies when it comes to computing. 
Meanwhile, it is impossible to improve the speed of a 
computer with the help of a single processor, which 
consumes unacceptable power causing heat issues, 
on the contrary, if an application is not running fast 
on a single computer machine; it will run even 
slower on new machines having many processors 
unless it takes the advantage of parallel processing. 
Nowadays, parallel computing is a dominant player 
in simulation analysis and scientific computing. 
Parallel computing refers to the process of breaking 
down the larger tasks into smaller, independent, 
usually similar tasks, that can be executed 
simultaneously by multiple processors and these 
processors will communicate through shared 
memory. The primary goal of parallel computing is 
to take the advantage of all available resources of the 
computer. OpenMP parallel Computing examines 
with the help of a virtual machine to solve the 
Helmholtz differential equation (Nabavi et al., 2007; 
Umetani et al., 2009; Zhu et al., 2010), by, the 
Jacobean Method iteratively with a different number 
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of cores, speed, and efficiency tested with a different 
number of processors. 

2. OpenMP 

The OpenMP is a computer language; it works 
together with either standard Fortran or C/C++. It is 
comprised of a set of compiler directives that 
demonstrate the parallelism in the foundation code, 
along with a supporting library of subroutines 
existing to applications. Jointly, these directives and 
library routines are properly described by the 
application programming interface (API), now a 
day’s OpenMP (Puzyrev et al., 2013), which allows 
sending "request" any number of threads of 
execution. This is not every time a suitable request. If 
the system has four to thirty processors available, 
and they're not busy doing other things or serving 
else one another, maybe four or more than four, 
threads are what we want. Moreover, if we run the 
same program by using one thread and four or more 
than four threads, we may find that using more than 

one thread, the machine may slow down, either 
because we don't actually have four processors or 
because the processors are also busy doing other 
things. 

2.1. Fork join 

OpenMP works based on the Fork-Join model for 
parallel execution in Fig. 1 that is all OpenMP parallel 
programs start with a single thread a master thread. 
The master thread executes instructions sequentially 
till interned in the parallel region, after interning in 
the parallel region the master thread creates a 
spawn of threads, several threads depending on the 
CPU possesses, (also the number of threads 
requested), and after completing the execution 
simultaneously all the threads will join the master 
thread (Ping and Ali, 2014), and all threads will 
terminate except master thread, again master create 
a threads spawn to execute the instruction and this 
process will continue till the final result of the 
execution as shown in Fig. 1. 

 

 
Fig. 1: Fork-join model with, 4 threads to execute the data 

 
2.2. Shared memory 

Multiple processors can operate independently 
but share the same resources of memory, or one 
large bank of memory, different computer cores 
acting on it, and each code is assigned threads of 
execution of a single program that acts on data. The 
changes in memory locations caused by one CPU are 
visible to all processors. Different CPUs 
communicate with each other through shared 
memory, in the language of Parallel computing cores 
are renowned as Threads. 

3. Root mean square 

The Residual-Root-Mean-Square represents the 
square root of the second sample instant of the 
differences between predicted values and observed 
values. These deviations are called Residuals when 
the calculations are performed over the data, which 
were used for errors when computed out of the data. 
RMS is always non-negative, and a value of zero 
(almost impossible in real life) which indicates a 
perfect solution. 

Master thread executes serial portion of codes.  

Mater thread enters saxpy subroutine. 

Master thread encounters parallel do directives. Creates 
Slave threads. 

Master and slave threads divide iterations of parallel do 
loops and execute them concurrently. 

Implicit barrier: Wait for all threads to finish the 
iterations. 

Master thread resume execution after the do loop. Slave 
threads disappear. 
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3.1. Model problem Helmholtz equation by Jacobi 
method 

The solution of discretized Helmholtz Equation 
employing Parallel Computing with OpenMP. The 
two-dimensional region given is: 
 
−1 ≤ 𝑥 ≤ 1, 𝑎𝑛𝑑 − 1 ≤ 𝑦 ≤ 1.                                               (1) 
 

The region is discretized by a set of 𝑀 × 𝑁 grid 
points: 
For, 
 
0 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑗 ≤ 𝑁 − 1, (C/C++).                                (2) 
 

The Helmholtz problem for the unknown function 
𝑢(𝑥, 𝑦) is: 
 
−𝑈𝑥𝑥(𝑥, 𝑦) − 𝑈𝑦𝑦(𝑥, 𝑦) + 𝐾 ∗ 𝑢(𝑥, 𝑦) = 𝐺(𝑥, 𝑦).                 (3) 

 

The discretized differential equation becomes a 
set of a linear system of equations of the form: 

 
𝐴 ∗ 𝑈 = 𝐺.                                                                                        (4) 

This linear system is then solved using a form of 
the Jacobi method with 𝜔=1.5. 

3.2. Solution of the Helmholtz equation 

OpenMP version (This program ran in parallel). 
# Available Processors=30 
# Requested Thread=1 
The region is [-1,1] x [-1,1]. 
 

The grid points in the 𝑥-axis direction 𝑀=10000, 
and grid points in the 𝑦-axis 𝑁=10000, therefore, the 
variables in the linear system 𝑀 × 𝑁=100000000. 
The constant wavenumber is taken 𝐾=100. The 
relaxation is: 
 
𝜔=1.5, and the tolerance is, Tol=0.0E-12, Its-Max=50. 
 

For the sake of simplicity, only two results are 
presented in the form of Tables 1 and 2. The results 
with different numbers of threads are presented in 
the form of Table 3 and Fig. 2. 

 
Table 1: Iterations obtained requesting one thread by visual studio 2017 by (C/C++) 

1 Residual RMS 5.601189e-11 
2 Residual RMS 5.601180e-11 
3 Residual RMS 5.601171e-11 
4 Residual RMS 5.601162e-11 
5 Residual RMS 5.601153e-11 
6 Residual RMS 5.601144e-11 
7 Residual RMS 5.601135e-11 
8 Residual RMS 5.601126e-11 
9 Residual RMS 5.601117e-11 

10 Residual RMS 5.601108e-11 
11 Residual RMS 5.601099e-11 
12 Residual RMS 5.601090e-11 
13 Residual RMS 5.601081e-11 
14 Residual RMS 5.601072e-11 
15 Residual RMS 5.601063e-11 
16 Residual RMS 5.601054e-11 
17 Residual RMS 5.601045e-11 
18 Residual RMS 5.601036e-11 
19 Residual RMS 5.601027e-11 
20 Residual RMS 5.601018e-11 
21 Residual RMS 5.601010e-11 
22 Residual RMS 5.601001e-11 
23 Residual RMS 5.600992e-11 
24 Residual RMS 5.600983e-11 
25 Residual RMS 5.600974e-11 

26 Residual RMS 5.600965e-11 
27 Residual RMS 5.600956e-11 
28 Residual RMS 5.600947e-11 
29 Residual RMS 5.600938e-11 
30 Residual RMS 5.600929e-11 
31 Residual RMS 5.600920e-11 
32 Residual RMS 5.600912e-11 
33 Residual RMS 5.600903e-11 
34 Residual RMS 5.600894e-11 
35 Residual RMS 5.600885e-11 
36 Residual RMS 5.600876e-11 
37 Residual RMS 5.600867e-11 
38 Residual RMS 5.600858e-11 
39 Residual RMS 5.600849e-11 
40 Residual RMS 5.600840e-11 
41 Residual RMS 5.600832e-11 
42 Residual RMS 5.600823e-11 
43 Residual RMS 5.600814e-11 
44 Residual RMS 5.600806e-11 
45 Residual RMS 5.600801e-11 
46 Residual RMS 5.600807e-11 
47 Residual RMS 5.600854e-11 
48 Residual RMS 5.601055e-11 
49 Residual RMS 5.601834e-11 
50 Residual RMS 5.604793e-11 

Computed solution L2 norm: 0.420073; Time taken by execution=22.166349; # Available processors=30# requested threads=30; The region is [-1,1] x [-1,1] 
 

 
Fig. 2: Speedup with an increasing number of cores 
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Table 2: Iterations obtained requesting and thirty cores (threads) by visual studio 2017 by (C/C++) 
1 Residual RMS 5.601189e-11 
2 Residual RMS 5.601180e-11 
3 Residual RMS 5.601171e-11 
4 Residual RMS 5.601162e-11 
5 Residual RMS 5.601153e-11 
6 Residual RMS 5.601144e-11 
7 Residual RMS 5.601135e-11 
8 Residual RMS 5.601126e-11 
9 Residual RMS 5.601117e-11 

10 Residual RMS 5.601108e-11 
11 Residual RMS 5.601099e-11 
12 Residual RMS 5.601090e-11 
13 Residual RMS 5.601081e-11 
14 Residual RMS 5.601072e-11 
15 Residual RMS 5.601063e-11 
16 Residual RMS 5.601054e-11 
17 Residual RMS 5.601045e-11 
18 Residual RMS 5.601036e-11 
19 Residual RMS 5.601027e-11 
20 Residual RMS 5.601018e-11 
21 Residual RMS 5.601010e-11 
22 Residual RMS 5.601001e-11 
23 Residual RMS 5.600992e-11 
24 Residual RMS 5.600983e-11 
25 Residual RMS 5.600974e-11 

26 Residual RMS 5.600965e-11 
27 Residual RMS 5.600956e-11 
28 Residual RMS 5.600947e-11 
29 Residual RMS 5.600938e-11 
30 Residual RMS 5.600929e-11 
31 Residual RMS 5.600920e-11 
32 Residual RMS 5.600912e-11 
33 Residual RMS 5.600903e-11 
34 Residual RMS 5.600894e-11 
35 Residual RMS 5.600885e-11 
36 Residual RMS 5.600876e-11 
37 Residual RMS 5.600867e-11 
38 Residual RMS 5.600858e-11 
39 Residual RMS 5.600849e-11 
40 Residual RMS 5.600840e-11 
41 Residual RMS 5.600832e-11 
42 Residual RMS 5.600823e-11 
43 Residual RMS 5.600814e-11 
44 Residual RMS 5.600806e-11 
45 Residual RMS 5.600801e-11 
46 Residual RMS 5.600807e-11 
47 Residual RMS 5.600854e-11 
48 Residual RMS 5.601055e-11 
49 Residual RMS 5.601834e-11 
50 Residual RMS 5.604793e-11 

Computed U L2 norm: 0.420073; Time taken by execution=65.262351 

 
Table3: Comparative time taken by different numbers of threads 

Speedup and efficiency of Helmholtz differential equation by Jacobi with C/C++ 
Time taken by different threads, with dimensions N*N=108 

# Threads #1 #2 #4 #8 #12 #16 #20 #24 #28 #30 
Time(S) 65.26 37.18 23.10 19.69 20.41 19.86 21.07 21.48 20.86 22.16 
Speedup 1 1.76 2.83 3.31 3.20 3.29 3.10 3.04 3.13 2.84 

Efficiency 100 88 71 41 27 21 16 13 11 09 

 
4. Conclusion 

The main Server with the help of a virtual 
Technology having 30 (Thirty Processors) is applied, 
to solve the Helmholtz Equation, by the Jacobi 
method, and relaxation parameter "1.5" with 
OpenMP Parallel Computing, to examine with a 
different number of cores. It is notable that as we 
increase the number of Threads/Processors/Cores 
performance also increases, but huge increase in the 
number of Cores may get either no any improvement 
in performance or may decrease the performance, it 
means an increase number of processors is not 
giving a guarantee of good performance sometimes 
increases the number of processors put extra burden 
on computation, resulting slow down the 
performance, this shows from Fig. 2, we started with 
simply 1 processor, 2 processors, then 4 processors 
to solve same Helmholtz equation, using Visual 
Studio 2017 in C/C++, after that 8 processors each 
times an increase the number of processors getting 
increases in the performance, but when we further 
increase the number of cores resulting decrease the 
speed (performance), rather than increase the 
performance, it put an extra burden on CPU causes 
hindrance in execution, so an increase the number of 
cores will increases the performance, but generally it 
is not true, that is an increase the number of cores 
will increase the performance of computation. Few 
results with one thread and thirty threads in terms 
of Residual Roots Mean Square in Tables 1 and 2 and 
found satisfactory. 
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