
 International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 36-42

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

36

A design in system architecture based on mobile cloud computing for a
virtual try-on solution

Duong Van Ngoc, Nguyen Tien Dat *

Modeling and Simulation, Viettel High Technology Industries Corporation, Hanoi, Vietnam

A R T I C L E I N F O A B S T R A C T

Article history:
Received 20 December 2021
Received in revised form
24 March 2022
Accepted 25 March 2022

Cloud computing is an emerging technology in this digital century. It
provides an excellent but low-cost source for database storage, computing
power, applications, and services through an internet-delivered cloud
platform. Thanks to the cost savings in investing and maintaining physical
data centers, as well as the stability of Quality of Service (QoS), it has no
restrictions on company size or sector for enterprises to shift their
operations to a cloud platform. The fashion industry, particularly the fashion
e-commerce sector, is a case study in leveraging the cloud platform via a
technology called “Virtual try-on” (VTO). VTO solution allows fashion brands
to increase the shopping experience, however, requires installing and
maintaining a bulky system for implementation. There are different methods
and approaches to design architectures using cloud computing, however,
there have not been many studies addressing tasks related to machine
learning that uses the high Graphics Processing Unit (GPU) encountered in
VTO solutions. To design a scheduler that could optimize the system
performance while lowering operational expenses in VTO solutions, this
research proposes a system to (1) handle synchronous model and
asynchronous model separately and clearly, (2) perform multi-layered task
processing architecture by hashing task ID and implementing a queue
management system. This method would satisfy three major requirements:
(1) Avoid complex hardware requirements for users, (2) Ensure the system
stability and the ease of horizontal and vertical extension, and (3) Protect
user information privacy.

Keywords:
Cloud computing
Amazon web service
Virtual try-on

© 2022 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*This research presents a solution for building
and designing an architecture for use in the fashion
industry. Due to the severe impact of Covid-19 and
the trend in digital transformation, E-commerce,
particularly Fashion E-commerce, is exploding more
than ever. This rapid development has had a
profound impact on global fashion business models.
According to Statista (2020), the Fashion E-
commerce Industry is the largest E-commerce
market segment with a global market value
estimated at $752,5 billion in 2020 and a projected
increase to $1164,7 billion by the end of 2025
(Statista, 2020). Despite consistent sales growth in
recent years, online retailers have experienced a

* Corresponding Author.
Email Address: datnt65@viettel.com.vn (N. T. Dat)

https://doi.org/10.21833/ijaas.2022.06.005
 Corresponding author's ORCID profile:

https://orcid.org/0000-0002-7537-8708
2313-626X/© 2022 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

frustrating product return rate, which is an
unavoidable consequence of online shopping’s
disadvantage: customers do not have a trial room as
in brick-and-mortar stores, and they are unable to
try products on their bodies. Due to the lack of
physical interaction, the size mismatch is the biggest
reason for clothes returns. One of the best solutions
for solving this issue is Virtual Try-On (VTO). This
technology allows consumers to try clothing on a 3D
model that simulates their body shape and
determine whether a product suits them well. Not
only does VTO resolve the misfit concerns but it also
provides a joyful and personalized shopping
experience, thereby increasing customer satisfaction
and sellers’ competitiveness. VTO can be employed
in immersive and non-immersive technologies for a
range of applications such as Virtual Fitting Room
and Online Virtual Try-on Tool. Commercializing a
VTO solution, however, could be a significant
challenge because it especially necessitates the
utilization of technological devices, computing
power and resources. Managing a large database of
3D assets, equipping expensive hardware and

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:datnt65@viettel.com.vn
https://doi.org/10.21833/ijaas.2022.06.005
https://orcid.org/0000-0002-7537-8708
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2022.06.005&domain=pdf&

Duong Van Ngoc, Nguyen Tien Dat/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 36-42

37

protecting user information are barriers that system
operators face.

To address the aforementioned issues, a mobile
application for both Android and IOS operating
systems has been developed and integrated with the
technologies in 3D human body reconstruction,
physics simulation and 3D rendering. These
technologies are packed under containers and then
uploaded to a cloud platform. Each container on the
cloud would contain the application, libraries and
dependencies, then combined with the local server
to store the users’ database. Businesses are using
cloud computing platforms for a variety of
objectives. Netflix provided a video streaming
service on a global scale with over 209 million
subscribers in 2021, known as “Insider intelligence.”
The architecture of Netflix includes three main parts:

1. Client: Providing a front-end as browsers on

laptops, desktops or apps on mobile, and television
to send requests and receive responses.

2. Backend, where services, databases and storage
are immigrated and operated on Amazon Web
Services (AWS).

3. Open Connect, used for optimizing storing and
streaming directly videos to users.

Another cloud printing solution is proposed and

implemented by Xeros. It allows users to access the
printer from any location with unlimited
authentication: NFC, QR code or Pin Code, All
activities such as managing, updating and patching
are operated and controlled by Xeros’s cloud. Several
big companies in designing and manufacturing such
as Altium (with PCB and mechanical design) and
Autodesk (with mechanical design, BIM) also
presented full services on a cloud from sketch,
modeling, and simulation to centralized cloud
storage. The main contributions of this research are:

1. Proposing a complete architecture system applied

for virtual try-on solutions that combine mobile
agent-based cloud with a local server.

2. Providing case studies to demonstrate the
performance and stability of QoS of the proposed
system.

This research is organized as follows: Section 2

gives a brief description of related works. The
proposed architecture is presented in Section 3.
Section 4 provides and analyzes research results
when deploying the proposed system on a mobile
application. Finally, conclusions and future works
are mentioned in section 5.

2. Literature survey

Victor’s research in Ribes et al. (2020) proposed
an architecture solution using mobile cloud
computing in 3D designing and simulation for the
traditional manufacturing industry. 3D databases
such as designs and drawings are uploaded to the
cloud from client computers through Transmission

Control Protocol (TCP)/Internet Protocol (IP).
Applications and software known as Computer-
Aided Design (CAD)/Computer-Aided Manufacturing
(CAM) are installed on cloud computing to run
simulation and modeling in manufacturing
processes. Furthermore, this research combines
cloud offloading with GPU processing to improve
system performance and efficiency. Benedetto et al.
(2018) presented a code offloading framework
named “MobiCOP.” His key contribution is a new
paradigm for implementing code offloading that
contains a library, which is compatible with most
Android devices available at that time. An
architecture system connects clients with the server
through the MobiCOP library contains android
services and middleware by TUS protocol, an open-
source of HTTP. Accordingly, it requires developers
to implement and code in a thread-safe manner to
ensure system synchronization and security. Zhang
et al. (2012) developed an algorithm regarding code
partition for mobile code offloading. The main
challenges are real-time adaptability and code
partition precision. A call graph model is defined to
describe the calling relationship of the application.
Besides, to locate the best offloading and integrating
points, a depth-first search and a linear time search
are applied. Biswas and Whaiduzzaman (2018) and
Fernando et al. (2013) proposed an overview of
different offloading techniques in the wireless
heterogeneous network. They gave definitions of
mobile cloud computing, provided several benefits of
offloading and brought some suggestions for
applying the MCC model in the future mobile
industry. Kemp et al. (2010) presented a “cuckoo”
computation offload framework for Android
smartphones. It includes a runtime system that
boosts computational speed or reduces energy
consumption, as well as a resource manager
application that integrates with the Eclipse build
system. Alsboui et al. (2019) introduced an emerging
IoT platform called “IOTA.” Their main distribution is
creating a new scalable and energy-efficient
distribution for IoT devices. The core part of IOTA is
the tangle, which is defined as a concept of a
Directed Acyclic Graph. Meanwhile, cloud-based
computer numerical control (C-CNC) (Lu et al., 2019)
is proposed as a solution for manufacturing
machines as a service. CNC functionalities are
configured in local devices such as laptops or
desktops via interface and then transmitted to the
Google cloud platform. Liu et al. (2019) suggested a
method for enabling high accuracy object detection
in an AR/VR system running at 60 fps. The main idea
is to employ low latency offloading techniques, then
decouple the rendering pipeline and apply a fast
object tracking method to maintain detection
accuracy.

3. Methodology

The design goal of the proposed architecture for
implementing the Virtual Try-On solution is divided
into three main parts:

Duong Van Ngoc, Nguyen Tien Dat/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 36-42

38

1. Maintaining the system’s high stability and
reliability so that it can handle thousands of
application requests at the same time.

2. Ensuring scalability, which allows the system to
scale both in the number of clients (horizontal)
and the requirements of hardware specifications
(vertical) without affecting customers’
experiences.

3. Keeping the customer data secure.

3.1. Overview

Fig. 1 indicates the detailed architecture for the
Virtual try-on system. It includes three main parts:

1. Client
2. Public cloud
3. Private cloud

Pubilc cloud - AWSClient Device

Application controller

Product manager

User manager API gateway

3D model manager Media gateway

Try-on engine

Physic engine

Render engine

Screen

API Gateway

service

AWS ELB

Application API

User API Group

Product API Group

Size

Recommendation

API

3D Body

Reconstruction API

3D Face

Reconstruction API

ID hashing service

Message Queue for

Asynchronous Operation

Micro service

gateway

CACHE

Request data

Database

Private cloud – managed by VHT

3D model storage

TCP/IP

TCP/IP

TCP/IP

SSL Connection

Application micro

service

Fig. 1: The linear relationship between weight and volume

Client devices are smartphones, tablets, or other
hardware equipment that are used to receive
requests and provide services to customers. We
developed an IOS and Android application (Virtual
Try-on solution) to interact with customers by
controlling the request through SDK and API
services. The public cloud consists of services and
several storages that are deployed and run entirely
on Amazon Web Services Cloud. The private cloud is
an infrastructure of a local server that is built and
operated by Viettel Military Industry and Telecoms
Group (Vietnam). The public cloud will package data
and send them to the private cloud by using a Secure
Socket Layer (SSL). The private cloud is responsible
for archiving databases to protect customers’
information security. Each component will be
described in detail below.

3.1.1. Client

There are five components in the “client device”
module:

1. API gateway
2. 3D model manager
3. Media gateway
4. Application controller
5. Try-on engine

The API gateway would handle and manage the
requests to the Amazon server

The authentication token header is created and
linked to the Application Programming Interface
(API) of the user manager such as saving the user
name or changing the password. On the other hand,

the authentication token is used to create the path
and connect to the cloud via Hypertext Transfer
Protocol (HTTP), as well as classify the API into two
types: public or authentication. By utilizing the API
gateway, the latency of API requests could be
controlled to a bare minimum; user behaviors are
tracked and monitored by API calls as well.
Furthermore, it is flexible and straightforward to
scale up the system or add more APIs with no impact
on clients. Similar to the API gateway, the Media
gateway creates a bridge connecting clients and the
cloud; however, it focuses on 3D model storage
which is put on Amazon Simple Storage Service (S3).
3D storage includes images of clothing products and
their 3D models in the FBX file format (which is a 3D
object storage). The Media gateway saves the
Product Uniform Resource Locator (Product URL) of
each product in brands and saves the structure
system of media files. Like the API gateway, it is in
charge of adding authentication tokens into the
headers of requests that require access to users’
libraries. By applying the Media gateway, it is easy to
replace or expand the system’s memory zone
without affecting the customer experience.
Meanwhile, the Application Controller Module
controls the whole actions of clients and connects to
the AWS via the API gateway. It comprises two
sections:

1. Product Manager: Used to manage information

about clothing products as types, colors, sizes, and
3D cloth model indexes.

2. User Manager: used to manage information about
users such as personal information, passwords, 3D
human model indexes, purchase history, and
selected items.

Duong Van Ngoc, Nguyen Tien Dat/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 36-42

39

The next module would manage 3D human
models and 3D cloth models, in which, clothes are
classified into three types: Upper body (Shirt, T-shirt,
Casual Jacket, Sleeveless top); Lower body (Pants,
Shorts, Skirt), Entire Body (Dress, Jumpsuit). The 3D
model manager receives the indexes of the 3D cloth
model or 3D human model from the Application
Controller Module and then sends the request to the
Media gateway to collect the 3D model’s meshes and
textures. The 3D models are displayed on the screen
using a specific feature that automatically
loads/unloads to release the computer memory. The
final is the Try-on module which includes a Physics
engine and a Render engine. The Physics engine
takes meshes of the cloth and human body as input
and provides a solver that calculates the interaction
between the cloth and human body in both with
motion and without motion. Besides, the Render
engine receives the command of the physics engine
to perform and render graphics on hardware
devices. It includes shading, material, texture
mapping, and special effects like fog or light
reflection. Both engines are run parallel on the
device GPU to ensure the application’s performance.

3.1.2. Public cloud

This part outlines the system’s structure
deployed on the Amazon cloud. Elastic load
balancing of AWS is used to arrange the input
requests from client devices following a pre-
configured distribution, then send them to the API
Gateway. Using load balancing ensures the capacity
to scale up and boosts the system's performance.
Similar to the API gateway, which is deployed on the
mobile application, the API gateway on the cloud
serves two purposes:

1. Decoding the request from the balancer.
2. Encoding the data from API applications.

The decoding process would check the validation
of requests via two steps:

1. General checking in content type and content

length.
2. Specific checking in authentication token regard to

human API such as Validation of JWT token,
validation of JWT signature, validation of JWT exp
time, validation of JWT ISS.

On the other hand, the API Gateway receives data

from the API application and adds the headers to
them if necessary. The next part is Application API
which is configured and set up to expand
horizontally. Requests received from the API
gateway would pre-process like unpack/pack data,
convert the data type to ensure the input’s
correction, and send them to micro-services. Due to
the characteristics of each API service, transferring
data is executed in two methods: Synchronous and
Asynchronous, along with the process of ID hashing
service, message queue, microservices gateway, and

application service would be described in the
following parts.

3.2. Asynchronous OS schedule

Fig. 2 indicates the detail in the Asynchronous
Outsourcing schedule. The key factors are 2 APIs of
body reconstruction and face reconstruction which
require specific hardware to deploy. Here, APIs are
contained and built on EC2 g4dn.xlarge of Amazon.
As mentioned above, after receiving the request from
the API gateway, the data would be pre-processed in
the Application API and divided into two parts:

 Images data: Saved in the cache.
 Others under the text/string format: Transferred

to a module named “ID Hashing Service (IDHS),”
whose major objective is to arrange, classify and
select the clients’ request ID.

IDHS uses the hashing algorithm to map request

ID (32 bytes) to queue ID (2 bits). Each queue has
the corresponding node ID, APIs get the requests
from the queue including request ID and data that
would not be saved in the cache, and collect the data
in the cache with the corresponding request ID. After
that, 3D Fault Face/Pose Detection (3DFP) checks
the input images to ensure the quality of
microservices. If satisfied, APIs process the requests
and transfer the results to the database. By adding
IDHS, a general service for storage to map ID with
queue ID would be diminished, reducing the
complexity of the system and ensuring system
stability. Besides, using a random ID with length-32
bytes (32x8 bits) makes the identical statistic ID
becomes approximately zero.

3.3. Synchronous OS schedule

Fig. 3 describes the structure of the synchronous
outsourcing schedule with regard to APIs such as
Login service, Sign up service, Size recommendation
service, and Product service APIs. These APIs are
deployed on the Amazon cloud without any specific
hardware requirements.

Similar to the Asynchronous OS, Application API
receives input requests from the API gateway,
managing and distributing them to microservices by
a module called “microservices gateway.” The agents
regarding the client in the Application API include:
signing in/signing up, managing 3D models and
products, and managing passwords. Different from
the Asynchronous Os schedule, the microservices
gateway is created to receive request data and
distribute them to microservices. Its primary goal is
to manage the lists and addresses of microservices,
even if services change the IP address or add-on, the
microservices gateway would monitor and update
correspondingly without affecting the Application
API. Because the configuration now is completed in
the gateway, it is easy to maintain and upgrade the
whole system in the future.

Duong Van Ngoc, Nguyen Tien Dat/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 36-42

40

Application API

Node ID 11

API

Gateway

ID hashing service

Mode ID 09

Mode ID 01

Mode ID 10

Message Queue for

Asynchronous Operation

3D fault pose/face

detection micro service

3D body/face

reconstruction micro

service

CACHE

Request data

Database

ID hashing: 32

bytes -> 2 bits1

3D Face

Reconstruction API

3D Body

Reconstruction API

2

2

3
4

5

67

Fig. 2: Asynchronous OS schedule

Application API

API

Gateway

Authentication API

Product API

Micro service

gateway

Login Service

Signup Service

Size

recommendation

Service

Product Service

Fig. 3: Synchronous OS schedule

4. Results

A set of experiments has been designed and
configured to verify the performance of the proposed
architecture. The test cases involve three steps:

 Comparing the performance of APIs which

requires a specific GPU when computing on a local
server versus on AWS.

 Reviewing the communication time with variation
of technologies.

 Validating the performance of the system.

4.1. Comparison between the performance of
cloud server and local server

Table 1 provides the detailed configuration of the
cloud server and physical server in the experiment.
Three APIs:

 Body Reconstruction with Image.
 Body Reconstruction with measurements.

Duong Van Ngoc, Nguyen Tien Dat/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 36-42

41

 Face Reconstruction (which require massive
specification for processing) and the 3D model’s
outcome are used to verify the performance in
response time.

In the scope of this experiment, the

communication time (sending requests and receiving
responses) is not included in the response time.

Table 2 indicates the average time in 100
processing between the cloud server and the local
server. It could be seen that the local server with
RTX 8000 brings better results when handling APIs
with regard to images, 0.63s (9.3%) and 0.58s
(21.3%) respectively. Overall, the difference
between processing APIs on the cloud and on local is
small, and the unequal time is acceptable to the
user’s requirements.

Table 1: Computing platform in detail
No Computing platform Specification Detail

1 AWS cloud g4dn.xlarge
- vCPUs: 4

- Memory: 16 GB
- GPU: 1 NVIDIA Tesla T4

2 Dell Precision 5820 Tower
- vCPUs: 16

- Memory: 64 GB
- GPU: 1 NVIDIA Quadro RTX 8000

Table 2: Average processing time (s)
 AWS cloud Dell Precision 5820 Tower

/predict_body/from_image 6.77 6.14
/predict_body/from_measu-rements 33.11 33.88

/predict_face 2.72 2.14

4.2. The effect in difference of communication
technologies

In this experiment, the communication time that
includes sending the load and receiving the results is
considered based on the variation of communication
technologies. There are four types used to compare:

 Lan (on local server)
 Wi-Fi
 4G

 3G

Table 3 illustrates the average communication
time 100 times continuously. 3G provides the worst
results, with approximately 30%, 25%, and 100%
slower than Lan, Wi-fi, and 4G, respectively.
Meanwhile, the difference in the fastest and slowest
communication time between LAN, Wi-Fi, and 4G is
quite small, 7%, 2%, and 8% respectively with each
API. It proved the similarity in deploying the system
on the cloud and physical server.

Table 3: Communication time with multi-communication technologies(s)

 Local (dell) Wifi 4G 3G
/predict_body/from_image 7.67 7.50 7.11 10.72

/predict_body/from_measu-rements 36.25 36.91 36.56 43.51
/predict_face 3.97 3.96 4.30 10.72

4.3. Stability and reliability of system

In this part of the research, two experiments are
designed to observe the response time and the
stability of the system. There are 7 APIs with multi-
output and input which are used to simulate the
main flow of clients. Two experiments are:

 2k clients request all APIs (one by one) at the same

time.
 2k clients request one of the APIs at the same time.

Table 4 and Table 5 indicate the average time and
error rate of these experiments. It could be seen that
the time for processing images and reconstructing
the face in Table 4 is the largest due to the serial
configuration, and vice versa for other APIs which
are configured to process parallel. Meanwhile, when
20k clients request 1 API at the same time, the time
for processing parallel APIs is much slower,
approximately 6 times than before. However, two
serial APIs bring similar results. The most important
factor of this experiment is the error rate with a non-
error rate. It proves the efficiency and stability of
Virtual Try-on architecture.

Table 4: Communication time with multi-communication technologies

No API Client
Duration

(s)
Sample

Average
(ms)

Min
(ms)

Max
(ms)

Error (%)

1 from_image 2000 1 2000 54865 6209 103004 0
2 predict_face 2000 1 2000 35354 4511 61533 0

3
predict_body

/from_measurements
2000 10 20000 99 87 115 0

4 get_cloth_model 2000 10 20000 91 78 108 0
5 get_hair_model 2000 10 20000 90 77 108 0
6 change_human_skin 2000 10 20000 3438 80 14553 0
7 recommend_size 2000 10 20000 94 80 111 0

Duong Van Ngoc, Nguyen Tien Dat/International Journal of Advanced and Applied Sciences, 9(6) 2022, Pages: 36-42

42

Table 5: The performance of system in receiving of client’s request to process one of APIs at the same time

No API Client
Duration

(s)
Sample

Average
(ms)

Min
(ms)

Max
(ms)

Error (%)

1 from_image 2000 1 2000 56890 6903 114601 0
2 predict_face 2000 1 2000 40923 18045 63693 0

3
predict_body

/from_measurements
2000 10 20000 617 80 3554 0

4 get_cloth_model 2000 10 20000 815 85 19806 0
5 get_hair_model 2000 10 20000 584 77 8537 0
6 change_human_skin 2000 10 20000 12408 1416 23747 0
7 recommend_size 2000 10 20000 749 85 18920 0

5. Conclusion

The research presents a state-of-the-art cloud-
based architecture for Virtual Try-on solutions. A
hybrid design combining Amazon Web Services with
a local server is proposed to ensure the flexibility
and security of the system. Deploying APIs has
diversity in data’s input and output, especially with
3D data that requires a specific process and
hardware device to ensure system synchronization
and stability. The research has proposed a
synchronous outsourcing schedule combined with
an asynchronous out-sourcing schedule to guarantee
the performance of the whole system with 50k
clients using at the same time. Besides, the
architecture would ensure scalability both in
horizontal and vertical extension in the future. The
results from different case studies have validated
and verified the performance and efficiency of the
proposed architecture. In the future, this application
would be public on App Store and CH Play to collect
users’ opinions, together with deploying more
services to enhance user experiences. In addition,
the researchers would focus on improving the
performance of APIs and invest in deploying several
APIs on the client’s device with thread
parallelization techniques to reduce operating costs.

Acknowledgment

The authors would like to thank all members of
the 3DR team for their contribution. This research is
fully funded by Viettel High Technology Industries
Corporation.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Alsboui TA, Qin Y, and Hill R (2019). Enabling distributed
intelligence in the internet of things using the IOTA tangle
architecture. In the 4th International Conference on Internet of
Things, Big Data and Security (IoTBDS 2019), Science and
Technology Publications, Heraklion, Greece: 392-398.
https://doi.org/10.5220/0007751403920398

Benedetto JI, Valenzuela G, Sanabria P, Neyem A, Navon J, and
Poellabauer C (2018). MobiCOP: A scalable and reliable
mobile code offloading solution. Wireless Communications
and Mobile Computing, 2018: 8715294.
https://doi.org/10.1155/2018/8715294

Biswas M and Whaiduzzaman MD (2018). Efficient mobile cloud
computing through computation offloading. International
Journal of Advancements in Technology, 10(1): 1000225.

Fernando N, Loke SW, and Rahayu W (2013). Mobile cloud
computing: A survey. Future Generation Computer Systems,
29(1): 84-106. https://doi.org/10.1016/j.future.2012.05.023

Kemp R, Palmer N, Kielmann T, and Bal H (2010). Cuckoo: A
computation offloading framework for smartphones. In the
International Conference on Mobile Computing, Applications,
and Services, Springer, Santa Clara, USA: 59-79.
https://doi.org/10.1007/978-3-642-29336-8_4

Liu L, Li H, and Gruteser M (2019). Edge assisted real-time object
detection for mobile augmented reality. In The 25th Annual
International Conference on Mobile Computing and
Networking, Association for Computing Machinery, Los Cabos,
Mexico: 1-16. https://doi.org/10.1145/3300061.3300116

Lu X, Kumaravelu G, and Okwudire CE (2019). An evaluation of
data size reduction techniques for improving the reliability of
cloud-based CNC for a 3D printer. Procedia Manufacturing, 34:
903-910. https://doi.org/10.1016/j.promfg.2019.06.157

Ribes VS, Mora H, Sobecki A, and Gimeno FJM (2020). Mobile
cloud computing architecture for massively parallelizable
geometric computation. Computers in Industry, 123: 103336.
https://doi.org/10.1016/j.compind.2020.103336

Statista (2020). Fashion eCommerce report 2021: Statista digital
market outlook. Available online at:
https://www.statista.com/study/38340/ecommerce-report-
fashion/

Zhang Y, Liu H, Jiao L, and Fu X (2012). To offload or not to
offload: An efficient code partition algorithm for mobile cloud
computing. In the 1st International Conference on Cloud
Networking (CLOUDNET), IEEE, Paris, France: 80-86.
https://doi.org/10.1109/CloudNet.2012.6483660

https://doi.org/10.5220/0007751403920398
https://doi.org/10.1155/2018/8715294
https://doi.org/10.1016/j.future.2012.05.023
https://doi.org/10.1007/978-3-642-29336-8_4
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1016/j.promfg.2019.06.157
https://doi.org/10.1016/j.compind.2020.103336
https://www.statista.com/study/38340/ecommerce-report-fashion/
https://www.statista.com/study/38340/ecommerce-report-fashion/
https://doi.org/10.1109/CloudNet.2012.6483660

	A design in system architecture based on mobile cloud computing for a virtual try-on solution
	1. Introduction
	2. Literature survey
	3. Methodology
	3.1. Overview
	3.1.1. Client
	3.1.2. Public cloud

	3.2. Asynchronous OS schedule
	3.3. Synchronous OS schedule

	4. Results
	4.1. Comparison between the performance ofcloud server and local server
	4.2. The effect in difference of communication technologies
	4.3. Stability and reliability of system

	5. Conclusion
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References

