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Cryptography facilitates selective communication through encryption of 
messages and or data. Block-cipher processing is one of the prominent 
methods for modern cryptographic symmetric encryption schemes. The rise 
in attacks on block-ciphers led to the development of more difficult 
encryption schemes. However, attackers decrypt block-ciphers through 
generic attacks given sufficient time and computing. Recent research had 
applied machine learning classification algorithms to develop intrusion 
detection systems to detect multiple types of attacks. These intrusion 
detection systems are limited by misclassifying generic attacks and suffer 
reduced effectiveness when evaluated for detecting generic attacks only. 
Hence, this study introduced and proposed k-nearest neighbors, an instance-
based machine learning classification algorithm, for the detection of generic 
attacks on block-ciphers. The value of k was varied (i.e., 1, 3, 5, 7, and 9) and 
multiple nearest neighbors classification models were developed and 
evaluated using two distance functions (i.e., Manhattan and Euclidean) for 
classifying between generic attacks and normal network packets. All nearest 
neighbors models using the Manhattan distance function performed better 
than their Euclidean counterparts. The 1-nearest neighbor (Manhattan 
distance function) model had the highest overall accuracy of 99.6%, a generic 
attack detection rate of 99.5% which tallies with the 5, 7, and 9 nearest 
neighbors models, and a false alarm rate of 0.0003 which is the same for all 
Manhattan nearest neighbors classification models. These instance-based 
methods performed better than some existing methods that even 
implemented an ensemble of deep-learning algorithms. Therefore, an 
instance-based method is recommended for detecting block-ciphers generic 
attacks. 
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1. Introduction 

*Cryptography is the art of coding messages or 
information to facilitate selective communication 
(Bhattacharyya and Chakrabarti, 2022). In other 
words, it is the art and science of introducing secrecy 
into information security (Samoriski, 2020). 
Traditionally, cryptography involves manipulating 
letters or digits and it is based on providing security 
through obscurity (Aswath et al., 2022). Traditional 
block cipher involves the encryption of data via the 
manipulation of letters and digits (Nahar and 
Chakraborty, 2020). Traditional ciphers are usually 
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encrypted using the symmetric key encryption 
method, which uses the same key for encryption and 
decryption (Kshirsagar and Shah, 2021). However, 
modern cryptography is built on the concepts of 
mathematics number theory, probability theory, and 
computational complexity theory for the encryption 
of data (Saračević et al., 2020). It deals with the 
security of digital data which is represented as 
strings of binary digits (Easttom, 2021). Modern 
cryptography utilizes one of those mathematical 
concepts to convert strings of plain binary digits into 
coded binary strings for encryption to take place. 
Modern symmetric encryption schemes are 
categorized into block ciphers and stream ciphers 
based on how plain binary strings are processed 
(Sevin and Mohammed, 2021). This study is 
interested in block ciphers. 

Block ciphers encryption scheme processes plain 
strings of binary text in blocks (i.e., groups) of bits at 
a time. For example, the modern Advanced 
Encryption Standard (AES) scheme processes 128 
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bits of a plain string of binary texts at a time (Awan 
et al., 2020). Block ciphers are developed by 
selecting a block of plain strings of bits, performing 
an encryption function on the selected bits, 
generating a block of block cipher, and repeating 
these processes until all plain strings of bits are 
transformed into their corresponding bits of block 
ciphers (Bahadori et al., 2021). 

To protect data integrity, cryptographic experts 
developed various complicated schemes of block 
ciphers to deter attackers from decrypting block 
ciphers. However, with enough computational 
resources, most block ciphers can be decrypted 
(Shetty et al., 2020). Attackers are usually aware that 
data or information is being communicated or 
transmitted, although they are encrypted or 
scrambled messages. Thus, they usually intrude on a 
digital network to attack encrypted data or 
information. One of these dangerous attacks is 
referred to as a ‘generic attack on block ciphers’. A 
generic attack on block ciphers (Moustafa and Slay, 
2015; Kumar et al., 2020) usually involves running a 
brute-force attack on the block ciphers regardless of 
the encryption structure of such block ciphers. 

Cybersecurity aims to ensure the integrity, 
confidentiality, and availability of data, information, 
and resources (Gauthama Raman et al., 2020) across 
cyberspace consisting of billions of connected users 
and devices (Faker and Dogdu, 2019). Hence, various 
countermeasures against generic attacks are being 
developed (Dutta et al., 2019). One of the prominent 
countermeasures is the use of classification machine 
learning algorithms for detecting intrusions 
(attacks) (Wei et al., 2020). Intrusion detection 
systems detect network packets as a normal network 
packets or one of the various forms of attacks 
(Idhammad et al., 2018; Alsariera et al., 2020a; 
2020b; 2021a; 2021b). Most of the existing multi-
classification intrusion detection systems suffer from 
the misclassification of attacks that shares the same 
characteristics (Salman et al., 2017). Salman et al. 
(2017) demonstrated how multiclassification 
intrusion detection system tends to misclassify 
generic attack as exploited attacks at about 51% 
error. Therefore, it becomes essential to develop 
intrusion detection models specifically for the 
detection of the nefarious generic attacks on block 
ciphers to appropriately defend against this form of 
attack. 

To develop such an intrusion detection model, 
data becomes pivotal. Most of the publicly available 
network data such as NSL-KDD intrusion network 
data (i.e., an improved KDDCup’99) does not capture 
generic attacks (Xin et al., 2018). The UNSW-NB15 
dataset (Moustafa and Slay, 2015) captured generic 
attacks and other forms of attacks. Meanwhile, the 
UNSW-NB15 dataset is usually used in research for 
developing multi-classification (Nawir et al., 2018) 
or anomaly (Feng et al., 2019) intrusion detection 
models. Hence, this study aims to develop a generic 
attack detector through the implementation of an 
instance-based machine learning classification 
algorithm. As such, the contributions to knowledge 

made by this research include introducing an 
instance-based machine learning classification 
algorithm to detect generic attacks at a higher 
detection rate and lower false alarm rate. Another 
contribution of this study is conducting a robust 
empirical analysis of various instance-based 
classification models to identify the best-performing 
model(s) to classify between generic attacks and 
normal packets.  

The remaining sections of this study include the 
review of related works, methodology, results, 
discussion, conclusion, and future works. 

2. Review of related works 

There is more research on multi-classification 
models for detecting generic attacks than stand-
alone generic attack detectors. However, most of the 
research on multi-classification methods does not 
report the performance of their model for each type 
of attack. In this study, we reviewed some of the 
published works on multi-classification models for 
detecting attacks that provided the performance of 
their model for generic attacks. 

Thaseen et al. (2020a; 2020b) identified the 
performance results of implementing an integration 
of a majority voting ensemble of long-short-term 
memory deep learning method and embedded 
feature extraction module to detect generic attacks 
and other forms of attacks in a multi-classification 
method. The original performance of this method 
was a 99.9% overall accuracy for multiclassification 
which reduced to 95.23% accuracy for detecting 
generic attacks. 

Another study by Gharaee and Hosseinvand 
(2017) developed a genetic algorithm to select the 
best variables to detect attacks and used a support 
vector machine learning algorithm to fit a multi-
classification model to detect generic and other 
forms of attacks contained in the UNSW-NB15 
datasets. The study provided the specific 
performance of its method for detecting generic 
attacks. Their method was reported to detect generic 
attacks at a 96.69% true positive rate, misclassified 
normal packets, and other attacks as generic attacks 
at a 0.01% false alarm rate, and resulted in an overall 
accuracy of 97.51%. 

Olasehinde (2020) implemented k-Nearest 
neighbor, Naïve Bayes, and Decision Tree 
classification algorithms as a base-learner for three 
different implementations of stacked ensemble 
methods. The stacked ensemble methods were 
Multiple Model Trees (MMT), Meta Decision Trees 
(MDT), and Multi-Response Linear Regression 
(MLR). This study reported the performance of 
various stacked ensemble models with the 
integration of the feature selection method for multi-
classification rather than each attack. It was 
reviewed as an instance-based method (i.e., k-
nearest neighbors) and was included as a based 
learner. The MMT ensemble method produced 
96.89% overall accuracy, the MLR method had 
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97.8% overall accuracy, and the MDT ensemble 
method had 98.08% overall accuracy. 

Kumar et al. (2020) published a novel rule-based 
multi-classification method on the Generic, DOS, 
Exploit, and Probe attacks contained in the UNSW-
NB15 dataset. The performance of the rule-based 
method was reported to be an overall average 
accuracy of 65.21{% for all classes of attacks and a 
False Alarm Rate of 2.01%. 

Through the review of literature, multi-
classification models are seen to have reduced 
effectiveness in detecting generic attacks. More so, 
the performances of the multi-classification models 
need improvements considering the dangerous 
effect of the successful execution of generic attacks. 

3. Method 

3.1. Dataset 

This study considers the UNSW-NB15 dataset as 
it contains contemporary normal network packets 
and generic attacks among others (Moustafa and 
Slay, 2015). The KDDCup’99 (Li et al., 2018) and 
NSL-KDD datasets do not contain the attack 
considered in this study (Mabayoje et al., 2016; Saleh 
et al., 2019). 

The data used in this study is a balanced 
extraction of all generic attack instances in the 
UNSW-NB15 dataset and enough normal packet 
instances. This developed dataset contains all 
features of the original dataset besides the features 
‘id’ and ‘attack_cat’ which are not relevant to this 
study. Therefore, the developed data contain forty-
two (42) independent features and one dependent 
feature with two values (i.e., generic and normal). 

Hence, the developed data for this study 
contained 18,871 generic attack instances and 
18,954 normal packets. 

3.2. Implemented models 

The instance-based classification machine 
learning algorithm is also referred to as memory-
based reasoning, lazy learning, example-based 
reasoning, or case-based reasoning (Verma and 
Shakya, 2021). It is one of the available non-
parametric categories of machine learning 
algorithms. It does not assume the inherent data 
distribution to develop a classification model rather 
it waits until the testing phase to compute the class 
an instance belongs to Mabayoje et al. (2019) and 
Sharma et al. (2019). 

Although the Nearest neighbor algorithm can be 
used for regression and classification, it is 
implemented and used as a classification algorithm 
for detecting generic attacks on a network as 
befitting to this study. Regarding classification, the 
Nearest Neighbor algorithm simply classifies an 
instance based on its distance to the specified 
number of nearest instance(s) as illustrated in 
Pseudocode 1. 

 

Algorithm 1: k-Nearest Algorithm 

 
Let (Xi, Ci) where i = 1, 2, …, n be data points. 

Xi denotes feature values and Ci denotes labels for Xi for 
each i. 

 
Assuming the number of classes as ‘c’, ci ∈ [1,2,3, …, c] for 

all values of i 

 
Let x be a point for an unknown label, and k-NN find the 

label. 

1: 
Calculate d(x, xi), i = 1, 2, …,n; where d represent the 

distance between those points. 
2: Arrange the calculate n distance in non-decreasing order 

3: 
Let k be a positive number, select the first k distances 

from number 2 above. 

4: 
Find those k-points corresponding to the selected k-

distances 

5: 
Assign class i to x, where i is the majority label of the 

selected k-distances 

 

Theoretically, Nearest Neighbor assumes that 
data is in a feature space and its instances (or data 
points) are at distance among themselves. Each data 
instance is made up of independent variables and a 
class label. Also, it assumes a single positive number 
“k” is given which determines the number of 
neighbors useful for classification. 

Given the fact that the value of k is pivotal in 
implementing a Nearest Neighbor classification 
algorithm and there are two class labels in the 
‘Generic’ attack dataset, this study considered 
evaluating the odd values contained within the range 
of 1 to 10 (i.e., 1, 3, 5, 7 and 9). 

A typical 1-Nearest Neighbor classification model 
assigns the class label of the closest instance to the 
predicted instance. The other k-Nearest Neighbor 
classification models assign most of the class labels 
of k instances to the predicted instance. Therefore, 
this study implemented 1-Nearest Neighbor and four 
different types of k-Nearest Neighbor to classify 
network traffics into either normal traffic or generic 
attack. 

The experimental framework of this study is 
graphically depicted in Fig. 1. All generic network 
attack instances were extracted from the UNSW-
NB15 training dataset to develop a dataset. An 
adequate number of normal traffic instances were 
also extracted and appended to the data to form a 
balanced dataset. The balanced dataset was 
randomly shuffled to mingle the generic attack 
instances and normal traffic instances within the 
dataset. Two distance functions were implemented 
(i.e., Euclidean and Manhattan) for each instance-
based method before model development. Each 
nearest neighbors method was fitted on the 
randomly shuffled dataset via 10-fold cross-
validation. The 10-fold cross-validation technique 
fits a robust model by splitting the dataset into 10 
partitions. It trains the model using the first 9 splits 
and tests on the set-aside split. This is repeated 10 
times until all splits are used for training and testing. 

The 10 models are then aggregated to produce a 
robust model. The total number of generic attacks 
and normal traffic instances that were correctly and 
falsely classified by the fitted models (i.e., 1, 3, 5, 7, 9-
Nearest Neighbor classification models) were 
reported as a confusion matrix. 



Yazan Ahmad Alsariera/International Journal of Advanced and Applied Sciences, 9(5) 2022, Pages: 60-68 

63 
 

 

 
Fig. 1: 1 : Experimental framework 

 

3.3. Performance evaluation metrics 

This study aims to develop instance-based 
machine learning models for classifying between 
generic attacks and normal traffic. This is typically a 
binary type of classification (i.e., two class values) 
model. Using the populated values in the confusion 
matrix, (i.e., True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN)), the 
performances of the proposed instance-based 
methods were evaluated by deriving these 
evaluation scores, namely: Matthews Correlation 
Coefficient (MCC), True Positive (TP) Rate (i.e., 
Detection Rate), False Positive (FP) Rate (i.e., False 
Alarm Rate), F-Measure, and Area Under Curve 
(AUC) (Elijah et al., 2019; Alsariera et al., 2020a; 
2020b; 2021a; 2021b; Kasongo and Sun, 2020; 
Mebawondu et al., 2020; Sarumi et al., 2020; 
Thaseen et al., 2020a; 2020b). Additionally, the 
kappa value and overall accuracy (i.e., the 
percentage of correctly classified ‘Generic’ attack and 
normal network traffic) were calculated for each 
instance-based model. 

Through the review of literature, the MCC score is 
optimal for evaluating binary classification models 
because it uses all the populated counts or values in 
the confusion matrix table (Li et al., 2020; Thaseen et 

al., 2020a; 2020b). MCC metric is calculated as seen 
in Eq. 1. 
 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

Eq. 1 shows Matthews Correlation Coefficient (Li 
et al., 2020).  

MCC measure tells the correlation coefficient 
among the detected and expected predictions, and its 
value ranges from 0 to 1 (Mebawondu et al., 2020). 
In this study, the MCC value of each instance-based 
model is used to compare the performance of each 
model alongside other performance evaluation 
measures. 

4. Results 

The 1-Nearest Neighbor model for detecting 
generic attacks using the Euclidean distance function 
correctly classified 18,773 of 18,871 generic attacks 
and 18,869 of 18,954 normal traffic (Table 1). 

 
Table 1: Confusion matrix for 1-nearest neighbor 

(Euclidean distance) 
 Generic Normal 

Generic 18,773 98 
Normal 85 18,869 

 

Model Development 
(i.e., 10- fold C.V.) 

Instance-Based 
Methods 

1-Nearest 
Neighbor 

3-Nearest 
Neighbor 

5-Nearest 
Neighbor 

7-Nearest 
Neighbor 

9-Nearest 
Neighbor 

Performance Evaluation 
MCC, Overall Accuracy, 

Detection Rate, Recall, AUC, 
False Alarm Rate, F-Measure, 

TN Rate etc. 

Random Shuffling  
(i.e., seed set to 42) 

Fitted Models 
 

1-Nearest Neighbor and k-Nearest Neighbor 
Generic Attack Detector 

Results, Discussion and 
Comparative analysis. 

UNSW-NB 
Data 

Generic attack 
network instances  

Normal network 
instances 

Balanced Dataset 

Distance Functions 
1) Euclidean 
2) Manhattan 
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From Table 1, the 1-Nearest Neighbor model with 
Euclidean distance falsely classified 98 generic 
attacks as normal traffic, and 85 normal traffic were 
falsely classified as generic attacks. The 1-Nearest 
Neighbor model for detecting generic attacks using 
the Manhattan distance function correctly classified 
18,783 of 18,871 generic attacks and 18,895 of 
18,954 normal traffic. Table 2 shows the confusion 
matrix for 1-Nearest Neighbor (Manhattan Distance). 

 
Table 2: Confusion matrix for 1-nearest neighbor 

(Manhattan distance) 
 Generic Normal 

Generic 18,783 88 
Normal 59 18,895 

 

From Table 2, the 1-Nearest Neighbor model with 
Manhattan distance falsely classified 88 generic 
attacks as normal traffic and just 59 normal traffic 
instances as generic attacks. The values of the 
derived performance measures are revealed in Table 
3. 

 
Table 3: Performance scores of 1-NN models 

Evaluation Metric 
1-NN Euclidean 

Distance 
1-NN Manhattan 

Distance 
Accuracy 99.52% 99.61% 

Kappa 0.9903 0.9922 
Detection Rate 0.995 0.995 

False Alarm Rate 0.004 0.003 
F-measure 0.995 0.996 

MCC 0.99 0.992 
AUC 0.997 0.998 

“NN”: Nearest Neighbor 

 

The comparison of performance scores of the 1-
Nearest Neighbor models reveals that the 1-Nearest 
Neighbor model developed via Manhattan distance is 
better for detecting generic attacks. With higher 
overall accuracy, lower false alarm rate, and a higher 
MCC value among others, the Manhattan distance 1-
Nearest Neighbor classification model for detecting 
generic attacks in the presence of normal network 
traffic is better than the Euclidean distance 1-
Nearest Neighbor. 

The 3-Nearest Neighbor model for detecting 
generic attacks using the Euclidean distance function 
correctly classified 18,763 of 18,871 generic attacks 
and 18,881 of 18,954 normal traffic (Table 4). 

 
Table 4: Confusion matrix for 3-nearest neighbor 

(Euclidean distance) 
 Generic Normal 

Generic 18,765 106 
Normal 73 18,881 

 

From Table 4, the 3-Nearest Neighbor model with 
Euclidean distance falsely classified 106 generic 
attacks as normal traffic while 73 normal traffic 
were falsely classified as generic attacks. The 3-
Nearest Neighbor model for detecting generic 
attacks using the Manhattan distance function 
correctly classified 18,765 of 18,871 generic attacks 
and 18,906 of 18,954 normal traffic. Table 5 shows 
confusion matrix for 3-nearest neighbor (Manhattan 
distance). 

 

Table 5: Confusion matrix for 3-nearest neighbor 
(Manhattan distance) 

 Generic Normal 
Generic 18,765 106 
Normal 48 18,906 

 

From Table 5, the 3-Nearest Neighbor model with 
Manhattan distance falsely classified 106 generic 
attacks as normal traffic and just 48 normal traffic 
instances as generic attacks. The values of the 
performance measures derived from the confusion 
matrix are revealed in Table 6. 

 
Table 6: Performance scores of 3-NN models 

Evaluation Metric 
3-NN Euclidean 

Distance 
3-NN Manhattan 

Distance 
Accuracy 99.53% 99.59% 

Kappa 0.9905 0.9919 
Detection Rate 0.994 0.994 

False Alarm Rate 0.004 0.003 
F-measure 0.995 0.996 

MCC 0.991 0.992 
AUC 0.999 0.999 

“NN”: Nearest Neighbor 

 

The comparison of performance scores of the 3-
Nearest Neighbor models is like the results of 1-
Nearest Neighbor classification models where the 
Manhattan distance Nearest Neighbor had the better 
performance. 

The 5-Nearest Neighbor model for detecting 
generic attacks using the Euclidean distance function 
correctly classified 18,762 of 18,871 generic attacks 
and 18,877 of 18,954 normal traffic (Table 7). 

 
Table 7: Confusion matrix for 5-nearest neighbor 

(Euclidean distance) 
 Generic Normal 

Generic 18,762 109 
Normal 77 18,877 

 

From Table 7, the 5-Nearest Neighbor model with 
Euclidean distance falsely classified 109 generic 
attacks as normal traffic, and 77 normal traffic were 
falsely classified as generic attacks. The 5-Nearest 
Neighbor model for detecting generic attacks using 
the Manhattan distance function correctly classified 
18,769 of 18,871 generic attacks and 18,899 of 
18,954 normal traffic. Table 8 shows confusion 
matrix for 5-nearest neighbor (Manhattan distance). 

 
Table 8: Confusion matrix for 5-nearest neighbor 

(Manhattan distance) 
 Generic Normal 

Generic 18,769 102 
Normal 55 18,899 

 

From Table 8, the 5-Nearest Neighbor model with 
Manhattan distance falsely classified 102 generic 
attacks as normal traffic and 55 normal traffic 
instances as generic attacks. The values of the 
performance measures derived from the confusion 
matrix are revealed in Table 9. 

The comparison of performance scores of the 5-
Nearest Neighbor models is like the 3-Nearest 
Neighbor classification models where the Manhattan 
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distance Nearest Neighbor had the better 
performance. 

The 7-Nearest Neighbor model for detecting 
generic attacks using the Euclidean distance function 
correctly classified 18,761 of 18,871 generic attacks 
and 18,878 of 18,954 normal traffic (Table 10). 

 
Table 9: Performance scores of 5-NN models 

Evaluation Metric 
5-NN Euclidean 

Distance 
5-NN Manhattan 

Distance 
Accuracy 99.51% 99.59% 

Kappa 0.9905 0.9917 
Detection Rate 0.994 0.995 

False Alarm Rate 0.004 0.003 
F-measure 0.995 0.996 

MCC 0.99 0.992 
AUC 0.999 0.999 

“NN”: Nearest Neighbor 

 
Table 10: Confusion matrix for 7-nearest neighbor 

(Euclidean distance) 
 Generic Normal 

Generic 18,761 110 
Normal 76 18,878 

 

From Table 10, the 7-Nearest Neighbor model 
with Euclidean distance falsely classified 110 generic 
attacks as normal traffic, and 76 normal traffic were 
falsely classified as generic attacks. The 7-Nearest 
Neighbor model for detecting generic attacks using 
the Manhattan distance function correctly classified 
18,770 of 18,871 generic attacks and 18,898 of 
18,954 normal traffic. Table 11 shows confusion 
matrix for 7-nearest neighbor (Manhattan distance). 

 
Table 11: Confusion matrix for 7-nearest neighbor 

(Manhattan distance) 
 Generic Normal 

Generic 18,770 101 
Normal 56 18,898 

 

From Table 11, the 7-Nearest Neighbor model 
with Manhattan distance falsely classified 101 
generic attacks as normal traffic and 56 normal 
traffic instances as generic attacks. The values of the 
performance measures derived from the confusion 
matrix are contained in Table 12. 

 
Table 12: Performance scores of 7-NN models 

Evaluation Metric 
7-NN Euclidean 

Distance 
7-NN Manhattan 

Distance 
Accuracy 99.51% 99.59% 

Kappa 0.9905 0.9917 
Detection Rate 0.994 0.995 

False Alarm Rate 0.004 0.003 
F-measure 0.995 0.996 

MCC 0.99 0.992 
AUC 0.999 0.999 

“NN”: Nearest Neighbor 

 

The 7-Nearest Neighbor (Manhattan Distance) 
classification model performed better than its 
Euclidean distance counterpart. 

The 9-Nearest Neighbor model for detecting 
generic attacks using the Euclidean distance function 
correctly classified 18,760 of 18,870 generic attacks 
and 18,873 of 18,873 normal traffic (Table 13). 

 

Table 13: Confusion matrix for 9-Nearest Neighbor 
(Euclidean Distance) 

 Generic Normal 
Generic 18,760 111 
Normal 81 18,873 

 

The 9-Nearest Neighbor model with Euclidean 
distance falsely classified 111 generic attacks as 
normal traffic and 81 normal traffic were falsely 
classified as generic attacks. On the other hand, the 
9-Nearest Neighbor model for detecting generic 
attacks using the Manhattan distance function 
correctly classified 18,774 of 18,871 generic attacks 
and 18,898 of 18,954 normal traffic. Table 14 shows 
the confusion matrix for 9-Nearest Neighbor 
(Manhattan Distance). 

 
Table 14: Confusion matrix for 9-Nearest Neighbor 

(Manhattan Distance) 
 Generic Normal 

Generic 18,774 97 
Normal 56 18,898 

 

From Table 14, the 9-Nearest Neighbor model 
with Manhattan distance falsely classified 97 generic 
attacks as normal traffic and 56 normal traffic 
instances as generic attacks. The values of the 
performance measures derived from the confusion 
matrix are contained in Table 15. 

 
Table 15: Performance scores of 9-NN models 

Evaluation Metric 
7-NN Euclidean 

Distance 
7-NN Manhattan 

Distance 
Accuracy 99.49% 99.56% 

Kappa 0.9898 0.9919 
Detection Rate 0.994 0.995 

False Alarm Rate 0.004 0.003 
F-measure 0.995 0.996 

MCC 0.99 0.992 
AUC 0.999 1 

“NN”: Nearest Neighbor 

 

The comparison of performance scores of the 9-
Nearest Neighbor models reveals that the 9-Nearest 
Neighbor model developed via Manhattan distance is 
better for detecting generic attacks. 

5. Discussion 

This study aims to develop an optimal instance-
based machine learning model capable of detecting 
generic attacks on block ciphers. The 
implementation of the proposed experimental 
framework led to the development of ten (10) 
instance-based classification models. Five (5) 
numbers of nearest neighbors values were set (i.e., 1, 
3, 5, 7, and 9) and two distance functions were 
implemented (i.e., Euclidean and Manhattan distance 
functions). The models were developed using a 10-
fold cross-validation model and their classification 
performances were reported via a confusion matrix. 
Other performance metrics values were calculated 
from the confusion matrix values. 

The better instance-based classification model 
(based on the accuracy, detection rate, and false 
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alarm rate) for each k value were all selected and 
tabulated (Table 16). 

 
Table 16: Comparative analysis of proposed methods 

Classification 
Models 

Accuracy 
(%) 

Detection Rate 
(%) 

False 
Alarm 
Rate 

1-NN (Man.) 99.6114 99.5 0.003 
3-NN (Man.) 99.5929 99.4 0.003 
5-NN (Man.) 99.5849 99.5 0.003 
7-NN (Man.) 99.5849 99.5 0.003 
9-NN (Man.) 99.5955 99.5 0.003 

“NN”: Nearest Neighbor 

 

From the comparative results, all nearest 
neighbors classification models using the Manhattan 
distance function are better than their Euclidean 
distance counterparts across all k values for 
detecting generic attacks and correctly identifying 
normal network packets. This performance can be 
safely attributed to how both distance function 
calculates the distance between two data points. 

All nearest neighbors classification models using 
the Manhattan distance function shared the same 
MCC value of 0.922. Similarly, they shared the same 
AUC value of 0.99 except for the 9-nearest Neighbor 
(Manhattan distance) classification model with an 
AUC value of 1.0. 

The nearest neighbors (Manhattan distance) 
classification models were all able to classify 
between normal packets and generic attacks at the 
lowest accuracy of 99.5849% and the highest 
accuracy of 99.6114%. These models detected 
generic attacks at 99.5% except for the 3-nearest 
neighbors (Manhattan distance) classification model 
with a detection rate of 99.4%. 

Considering the false alarm rate, the nearest 
neighbors classification models using the Manhattan 
distance function shared the same value (i.e., 0.003). 
However, the 3-nearest Neighbor (Manhattan 
distance) had the lowest number of false positives. 
This model misclassified only 48 normal traffic as 
generic attacks (Table 6), at the expense of 
increasing false negatives (i.e., 106 misclassified 
generic attacks as normal packets). 

Across all Manhattan distance nearest neighbors 
for classifying between normal network packets and 
generic attacks, the 1-nearest neighbor's 
classification model had scored the highest accuracy 
and higher number of detected generic attacks. 
However, the 3-nearest neighbor's classification 
model detected more normal packets and lower false 
alarm rates. This can be safely translated into a real-
time application that for every host on a network 
under a generic attack, the next host is more likely to 
be under the same attack. Also, for every 3 closely 
distanced hosts transmitting normal packets, the 
fourth host is more likely to transmit packets. 

In comparison to existing methods, the instance-
based classification method of this study performed 
better than the reviewed methods. This study’s 
instance-based models detected generic attacks 
better than the 95.25% detection rate of the majority 
vote ensemble deep learning method published by 
Thaseen et al. (2020a; 2020b). This study’s instance-

based methods detected generic attacks on block-
ciphers better than all three stacked ensemble 
methods of study Olasehinde (2020) with 96.89%, 
97.8%, and 98.08% accuracies. The novel rule-based 
method (Kumar et al., 2020) of 65.21% overall 
accuracy and 2.01% false alarm rate was 
outperformed by all implemented instance-based 
classification models for detecting generic attacks. 
Given the fact that the instance-based method of this 
study is specifically trained to detect between 
normal packets and generic attacks, the successful 
performance of this study’s method is plausible. 

6. Conclusion and future works 

In conclusion, the aim of this study to introduce, 
implement and evaluate an instance-based for 
detecting generic attacks on block ciphers was 
fulfilled. 

The development and evaluation of various 
nearest neighbors classification methods showed 
great performance in detecting generic attacks on 
block ciphers. The overall accuracies of the various 
methods that were implemented in this study were 
over 99% while detecting generic attacks at a 99.4% 
rate at the very least. All nearest neighbors models 
for detecting generic attacks on block ciphers 
maintain a low false alarm rate of 0.0003. 

In comparison with existing methods, the 
proposed instance-based methods of this study 
performed better than all existing multi-
classification methods as the study’s method is 
customized to detect generic attacks. 

This study does not consider feature selection of 
the generic attacks variable to investigate if a lesser 
number of variables can also lead to such high 
detection performance of generic attacks. 
Conducting such empirical research to ascertain if 
feature selection will make or mar the performance 
of instance-based generic attack detection is the 
most prominent future work of this study. 
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