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The objective of our study was to explore the influence of the current 
vaccination program and other relevant government factors to explain the 
variation in COVID-19 mortality in the world. The study involves a cross-
sectional survey of COVID-19 related and government factors from 161 
countries. We retrieved and processed publically available coronavirus 
pandemic data (July 17, 2021) from several online databases, excluding 
countries' data violating correlation and regression analysis assumptions. In 
addition, partial correlations studies and multivariate analysis were 
performed to explore the influence current vaccination program and other 
relevant government factors on the relationship between the explanatory 
variable and the total deaths due to COVID-19. The partial-correlation 
studies revealed that controlling for a complete dosage of COVID-19 vaccine 
per 100 people in the population had a significant (P<0.001)  impact on the 
strength of the relationship between some explanatory variables and the 
response variable (total COVID-19 mortality). Furthermore, the Stepwise 
Linear Regression (SLR) model shows that the covariates, namely total_cases, 
hospital patients per million, hospital beds per thousand, male smokers, and 
people fully vaccinated per hundred, added significantly (P<0.001) to the 
prediction of the response variable. Our SLR model validation study revealed 
that the observed total COVID-19 mortality was highly correlated with the 
predicted total COVID-19 mortality in various countries (r = 0.977, P<0.001). 
Our Stepwise Linear Regression model performs significantly better with an 
R-squared value of 0.958 and adjusted R-squared value of 0.956 than other 
related regression models built to predict COVID-19 mortality. Based on our 
current findings, we conclude that governments with better hospital 
infrastructure and people with complete dosages of the COVID-19 vaccine 
will have minimal COVID-19 fatalities. 
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1. Introduction 

*The highly infectious COVID-19 has infested over 
190,565,973 people, and more than 4,095,485 
people have died across the globe as of July 17, 2021 
(Lipsitch et al., 2020). However, the total COVID-19 
based death differs significantly at the country level. 
For instance, in July 2021, the total deaths attributed 
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to COVID-19 in Laos, Fiji, and Burundi were 3, 4, and 
8, respectively. On the other hand, on July 17, 2021, 
the total COVID-19 based mortality in countries, 
namely Mexico, India, Brazil, and the United States of 
America, were 230,959, 386,708, 500,800, and 
601,741, respectively.  

Such a significant country-wise discrepancy in the 
total deaths attributed to COVID-19 implies that 
factors apart from patient characteristics, namely 
government policies, play a substantial role in 
fatalities due to COVID-19. In addition, several 
COVID-19 patient-based cohort studies have 
discussed that deaths due to COVID-19 can be 
determined by age, obesity, and other chronic 
ailments, such as diabetes, hypertension and heart 
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illnesses, hospital care, clinical symptoms, prior 
immunity, and mutations in virus (Chen et al., 2020; 
Huang et al., 2020; Rubino et al., 2020; Wang et al., 
2020; Zhou et al., 2020). Moreover, as mentioned 
above, the clinical factors help the clinicians classify 
people at high risk of COVID-19 infection.  

Nevertheless, the factors mentioned earlier for 
explaining the mortality of individuals from COVID-
19 are insufficient to support effective policymaking 
by governments where the COVID-19 related 
mortality is very high (Liang et al., 2020). Several 
studies have addressed this gap in COVID-19 
research. Few academics have discussed the effect of 
government policies, namely lockdown or 
quarantine, to control the spread of COVID-19 (Hou 
et al., 2020; Iacobucci, 2020).  

Additionally, an increase in mass COVID-19 
testing and vaccination has been promoted by 
various countries to decrease the spread of COVID-
19 (Dagan et al., 2021; Peto, 2020). However, few 
researchers have also favored utilization of the 
hospital resources through the COVID-19 pandemic 
as it assures the sufficiency of means available to 
provide treatment to many patients suffering from 
COVID-19 (Moghadas et al., 2020). Scholars have 
recently analyzed the correlation between 
healthcare resources and mortality readiness 
because of COVID-19 (Ji et al., 2020). Yet, the 
available evidence in the literature to curtail the 
spread of COVID-19 has not been applied to 
accurately explain the significant country-wise 
deviation in the COVID-19 attributed deaths. 
Moreover, countries differ extensively in capabilities 
to detect, prevent, and respond to pandemics 
(Kandel et al., 2020).  

Therefore, Liang et al. 2020, aimed to explore 
factors associated with COVID-19 associated 
mortalities at the country level. However, several 
limitations were related to assessing the total 
COVID-19 mortality at the country level. The 
selection of a limited number of COVID-19 related 
and country-based factors that possibly determine 
the COVID-19 mortality rate in a country was one of 
the significant limitations of the study conducted by 
Liang et al. (2020). Therefore, we aim to explore and 
explain the influence of several new governments 
and COVID-19 related factors on COVID-19 based 
mortalities in the world. In this context, in the 
current study, cross-sectional data comprising 
various COVID-19 related and country-based 
attributes of 181 countries were retrieved and 
analyzed to screen the most informative factors 
explaining the variation in the COVID-19 mortalities 
in the world. Furthermore, the partial correlation 
studies keeping the partial and complete dosages of 
COVID-19 vaccines as controlling attributes were 
performed to understand the possible impact of the 
partial and complete dosages of the COVID-19 
vaccine on the total deaths attributed to COVID-19 in 
different countries. Specifically, the study examined 
the association of covariates such as critical cases, 
new COVID-19 cases per million, aged 65 older, aged 
70 older, and total confirmed COVID-19 cases with 

the response variable (total deaths attributed to 
COVID-19), while controlling for partial and 
complete dosage of COVID-19 vaccine. In addition, 
we have also examined and discussed the role of 
attributes, namely total confirmed cases of COVID-
19, hospital patients per million, hospital beds per 
thousand, male smokers, and people fully vaccinated 
per hundred, explaining the discrepancy in total 
COVID-19 based mortalities across the globe. 
Further, the factors screened in the present study 
might help countries severely affected by COVID-19 
formulate policies to attenuate the higher fatality of 
COVID-19. 

2. Materials and methods 

The flow diagram for implementing the Machine 
learning-based approaches to explain the attributes 
related to discrepancies in total COVID-19 based 
fatality across countries is shown in Fig. 1. 

2.1. Data source and variable description 

The COVID-19 cross-sectional dataset is a 
collection of attributes, namely Vaccinations, Tests 
and positivity, Hospital and ICU, Confirmed cases, 
Confirmed deaths, Policy responses, and other 
variables of interest were being retrieved from 
‘https://ourworldindata.org/coronavirus”, an open-
access database for Coronavirus Pandemic (COVID-
19). Furthermore, the data regarding the variables, 
namely “the number of variant sequences” and “total 
sequences since the first variant sequence,” were 
retrieved from https://cov-lineages.org/ (O'Toole et 
al., 2021).  

2.2. Data preprocessing 

2.2.1. Multiple imputations 

Missing data is a usual occurrence in cross-
sectional datasets. Multiple Imputations (Chang et 
al., 2020; Buuren, 2018) due to their easiness of 
usage are possibly the most popular approaches for 
addressing missing data from sample data. Multiple 
Imputation (MI) techniques for imputing data can be 
used where the data are missing at random, missing 
completely at random, or still when the data are not 
missing at random. In the present study, understudy 
cross-sectional data of 181 countries comprising 
COVID-19 related and country-specific attributes 
were processed for multiple missing values using the 
Multiple Imputation by Chained Equations (MICE) 
package in Azure Machine studio, assuming that the 
data are missing at random (MAR). MICE has been 
widely accepted for data imputation and has 
displayed better performance in practice (Buuren 
and Groothuis-Oudshoorn, 2011). The imputed 
cross-sectional data was further tested to satisfy the 
five regression analysis assumptions (Casson and 
Farmer, 2014). 
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2.3. Descriptive statistics for sample data 

Descriptive and inferential statistics are 
employed in scientific data analysis and are crucial 
in statistics. In the present study, we have discussed 
descriptive statistics measures to describe the data 
and popular methods to test the normality of the 
data (Kim, 2013; Mishra et al., 2019). Three primary 

types of descriptive statistics, namely 1) measures of 
frequency (e.g., Number of occurrences, percent), 2) 
measure of central tendency (e.g., mean), and 3) 
measures of variation (variance, standard error, and 
Standard Deviation) were assessed to provide an 
understanding of the simple statistical measures of 
the cross-sectional data. 
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Fig. 1: A flow diagram of the statistical approaches used to evaluate various factors explaining discrepancies in the total 

deaths attributed to COVID-19 across countries 
 

2.4. Checking for regression assumptions  

2.4.1. Testing the normality of data 

An evaluation of the normality of data is essential 
because normally distributed data is a basic 
assumption for parametric testing. Therefore, the 
most popular normality testing methods of 
continuous data are Kolmogorov–Smirnov test 
(Stephens, 1974), Shapiro–Wilk test (Shapiro and 
Wilk, 1965), kurtosis and skewness (Kim, 2017), Z-
score (Ghasemi and Zahediasl, 2012), and mean with 
SD (Davis, 2008). The factors under study were 
analyzed to detect the distribution pattern factors. 
Normality tests (Shapiro–Wilk test and Kolmogorov–
Smirnov test) were performed using the statistical 
“SPSS” software package (analyze→descriptive 
statistics→explore). 

2.4.2. Probability-based inverse distribution 
function transformations 

Inverse distribution Function Normal (IDF. 
Normal) transforms a continuous variable’s sample 

distribution to appear more normally distributed 
(Beasley et al., 2009). Upon checking for the 
normality of the sample distribution, the IDF-based 
transformation was performed using SPSS on the 
cross-sectional data of 181 countries to control the 
skewness and satisfy the normality assumption.  

2.4.3. Multivariate outlier detection, 
multicollinearity, homoscedasticity, and 
normality of the error distribution 

In cross-sectional data with multiple factors, the 
chance of the unusual observation increases, and 
only a few outliers are enough to alter the mean 
performance, thereby distorting data results. 
Therefore, in multivariate statistics, the Mahalanobis 
distance is one of the most famous methods for 
detecting outliers in multivariate data (Maesschalck 
et al., 2000; Grentzelos et al., 2021). Finally, all the 
outliers detected were removed, and a pruned cross-
sectional dataset was created for further analysis. 
Multicollinearity happens when there is a high 
correlation between the independent attributes in 
the dataset (Vatcheva et al., 2016). Multicollinear 
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features need to be removed as multicollinearity 
destabilizes the statistical significance of a predictor 
variable in a model. Multicollinearity between the 
variables in the cross-sectional data was assessed 
using the following methods (James et al., 2013) (1) 
correlation between two independent variables with 
a cutoff of 0.7. A higher correlation (r≥±0.7), i.e., 
closer to a positive or negative one between the 
predictor variables, indicates multicollinearity, (2) 
Variance Inflation Factor (VIF) with a cutoff value 
less than five, and (3) Tolerance (TOI) of each 
variable with a cut off value less than 0.2. Breusch-
Pagan Test (Breusch and Pagan, 1979) was 
performed to test the assumption that the residuals 
are distributed independently with the predictor 
variables (homoscedasticity). The Breusch-Pagan 
Test uses the following hypotheses: 
 
Null Hypothesis (Ho)=Residuals are distributed 
with equal error variance (Homoscedasticity is 
present) 
Alternative Hypothesis (HA)= the residual is not 
distributed with equal variance (Heteroscedasticity 
is present) 
 

The normality of the error distribution 
(unstandardized residuals) was tested by 
performing Kolmogorov-Smirnov and Shapiro-Wilk 
tests (Ghasemi and Zahediasl, 2012). The 
Kolmogorov-Smirnov test and Shapiro-Wilk tests use 
the following hypotheses: 
 
Null Hypothesis (Ho)= the unstandardized residuals 
are normally distributed  
Alternative Hypothesis (HA)= the unstandardized 
residuals are not normally distributed  
 

If the p-value of the Kolmogorov-Smirnov and 
Shapiro-Wilk normality tests are more than the 
significance level of 0.05, accept the null hypothesis 
and conclude that unstandardized residuals are 
normally distributed.  

2.5. Partial correlation: The relationship 
between total deaths and the independent 
variable 

Partial correlation was used to estimate the 
strength of the relationship between the predictors 
and the response variable (total deaths attributed to 
COVID-19), keeping dosages of the COVID-19 
vaccines as controlling factors. The COVID-19 
vaccines approved in the United States of America 
and European countries have shown effectiveness 
against hospitalization and death in trials and real-
time across the globe (Breusch and Pagan, 1979; 
Chodcik et al., 2021). Thus, there is consensus that 
the COVID-19 vaccination may end the COVID-19 
pandemic by 2022. However, in the current setting, 
the influence of immunization on the relationship 
between total deaths attributed to COVID-19 
(response variable) and government factors 
(predictor variable) is still not apparent. Therefore, 

in this study, we intend to explore the influence of 
the vaccination dosages (single and complete 
dosages of COVID-19 vaccine) on the relationship 
between the total death attributed to COVID-19 and 
the COVID-19 related government factors. The 
Partial Correlation between the predictors and the 
response variables while controlling for dosages of 
the COVID-19 vaccine was performed using the 
statistical “SPSS” software package 
(Correlate>partial correlation). 

2.6. The stepwise linear regression model 

Stepwise Linear regression analyses (Hocking, 
1976) were performed to study the relationship 
between the total deaths attributed to COVID-19 and 
seventeen normally distributed and non-collinear 
predictors as tabulated in Section 3.3. 

2.7. Validation study of the stepwise regression 
model 

The validity of our final stepwise regression 
model was considered by evaluating the observed 
total COVID-19 deaths against the predicted total 
deaths attributed to COVID-19 for each country. 
First, we drew a graph with observed and predicted 
total deaths due to COVID-19 on the axis of the two-
dimensional graph. We anticipated seeing the 
sample points distributed around the 45-degree 
cross line on the two-dimensional chart provided the 
model fits well. 

3. Results 

3.1. Multiple imputations using mice  

The missing data in our cross-sectional dataset 
were artificially generated, and the imputed cross-
sectional dataset was tested for the five assumptions 
of the regression analysis. 

3.2. Normality tests and descriptive statistics for 
sample data 

The cross-sectional data of 181 countries 
comprising COVID-19 related and country-based 
factors exhibited marked skewness. Therefore, using 
the inverse distribution function normal 
transformation, the skewed cross-sectional data of 
181 countries was transformed to correct the 
skewness and fulfill the assumptions of normalized 
data. In addition, the normality of the transformed 
cross-sectional data was assessed using the different 
normality testing methods. Table 1 summarizes the 
sample characteristics of the predictors (Standard 
error, mean, 95% Confidence Interval for Mean, 
Lower and upper bound, and standard deviation 
value). In addition, Table 2 summarizes the 
transformed cross-sectional data’s normality test 
and kurtosis, skewness, and normality test values. 
The results observed in Tables 1 and 2, respectively, 
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showed that the transformed data of various COVID-
19 related and country-based variables were 

normally distributed. 

 
Table 1: Descriptive statistics of COVID-19 and country-related factors post-probability-based inverse distribution function 

normal transformation 

S# Attributes (transformed using IDF) Mean Std. Error 
95% Confidence Interval for Mean 

Std. Deviation 
Lower Bound Upper Bound 

1 New_cases_per_million 30609.76 2566.57 25445.70 35674.39 34434.16 
2 Human_development_index 0.7262 .01116 .7042 .7482 .15018 
3 Life_expectancy 72.8317 .56163 71.7234 73.940 7.53508 
4 Hospital_beds_per_thousand 2.9207 .17285 2.5796 3.2618 2.31904 
5 Handwashing_facilities 74.2352 4.3971 65.5582 82.9122 58.99423 
6 male_smokers 31.5393 .90032 29.7627 33.3159 12.0790 
7 Female_smokers 9.6926 .69970 8.3119 11.0733 9.38744 
8 Diabetes_prevalence 7.6438 .27403 7.1031 8.1846 3.67656 
9 Gdp_per_capita 18909.84 1413.375 16120.82 21698.86 18962.427 

10 Aged_70_older 5.6091 .30910 4.9992 6.2191 4.14704 
11 Aged_65_older 8.7948 .45075 7.9054 9.6843 6.04743 
12 Population_density 312.3852 113.39690 88.6185 536.1519 1521.37906 
13 Population 42766008.39 11135465.14 20792334.51 64739682.27 149397942.16 
14 Stringency_index 84.4384 .96951 82.5254 86.3515 13.04336 
15 People_fully_vaccinated_per_hundred 4.9959 .52332 3.9632 6.0285 7.02102 
16 Vacination_Single_per_Hundred 9.6815 .91116 7.8835 11.4795 12.22453 
17 Total_vaccinations_per_hundred 13.8042 1.45356 10.9358 16.6725 19.50157 
18 positive_rate .2685 .00867 .2514 .2856 .11628 
19 Total_Test 14585020.40 2845999.24 8968994.63 20201046.16 38183086.59 
20 Hospital_patients_per_million 350.1778 20.60461 309.5186 390.8370 276.43988 
21 Reproduction_rate 1.9960 .05445 1.8886 2.1035 .73051 
22 Total_cases_per_million 30663.6929 2568.26478 25595.7221 35731.6637 34456.88 
23 total_deaths 16696.3128 4157.58 8492.12 24900.50 55779.898 
24 total_cases 781237.3039 210609.28 365640.85 1196833.75 2825620.10 
25 Mortality_rate .0203 .00136 .0176 .0230 .01820 
26 Number of variant sequences 2708.0580 1124.61759 488.8440 4927.2720 15088.32827 
27 Total sequences since first variant sequence 5772.7552 2066.48642 1694.9463 9850.5640 27724.82463 
28 LPI 2.8314 .03864 2.7551 2.9076 .51845 
29 Communicable diseases 2016 22.4214 1.47904 19.5028 25.3400 19.84338 
31 Gov-Effectiveness-2019 -.0553 .07308 -.1995 .0889 .98323 
32 Critical_Cases 770.6191 99.71267 573.855 967.382 1337.78 

 
Table 2: Summarizes the transformed cross-sectional data’s normality test and kurtosis, skewness, and normality test values 

S# Attributes (transformed using IDF) Skewness Kurtosis 
Kolmogorov-

Smirnova 
Shapiro-Wilk 

  Skewness 
Std. 

Error 
Z-value Kurtosis 

Std. 
Error 

Z-
value 

df Sig. df Sig 

1 New_cases_per_million .002 .181 0.011 -.242 .360 -0.672 181 .200* 181 1.00 
2 Human_development_index .070 .181 0.3867 -.152 .359 -0.423 181 .200* 181 .925 
3 Life_expectancy .006 .181 0.0331 -.242 .360 -0.672 181 .200* 181 1.00 
4 Hospital_beds_per_thousand .003 .181 0.0165 -.250 .360 -0.694 181 .200* 181 0.998 
5 Handwashing_facilities .006 .181 0.0331 -.242 .360 -0.672 181 .200* 181 1.00 
6 male_smokers .006 .181 0.0331 -.242 .360 -0.672 181 .200* 181 1.00 
7 Female_smokers .003 .181 0.0165 -.248 .360 -0.688 181 .200* 181 1.00 
8 Diabetes_prevalence .029 .181 0.1602 -.280 .360 -0.777 181 .200* 181 .847 
9 Gdp_per_capita .004 .181 0.0220 -.242 .360 -0.672 181 .200* 181 1.00 

10 Aged_70_older .006 .181 0.0331 -.242 .360 -0.672 181 .200* 181 1.00 
11 Aged_65_older .006 .181 0.0331 -.242 .360 -0.672 181 .200* 181 1.00 
12 Population_density .002 .181 0.0110 -.242 .360 -0.672 181 .200* 181 1.00 
13 Population .007 .181 0.0386 -.242 .360 -0.672 181 .200* 181 1.00 
14 Stringency_index -.076 .181 -0.419 -.435 .359 -1.211 181 .200* 181 0.43 
15 People_fully_vaccinated_per_hundred .002 .181 0.0110 -.246 .360 -0.683 181 .200* 181 1.00 
16 Vacination_Single_per_Hundred .008 .181 0.0441 -.259 .360 -0.719 181 .200* 181 0.999 
17 Total_vaccinations_per_hundred .008 .181 0.0441 -.259 .360 -0.719 181 .200* 181 0.999 
18 positive_rate .001 .181 0.0055 -.244 .360 -0.677 181 .200* 181 0.989 
19 Total_Test 0.005 .181 0.0276 -.242 .360 -.6722 181 .200* 181 1.00 
20 Hospital_patients_per_million 0.001 .181 0.0055 -.242 .360 -0.672 181 .200* 181 1.00 
21 Reproduction_rate 0.00 .181 0.0110 -.241 .360 -0.669 181 .200* 181 1.00 
22 Total_cases_per_million 0.002 .181 0.0111 -.241 .360 -0.669 181 .200* 181 1.00 
23 total_deaths .006 .181 0.0331 -.257 .360 -0.713 181 .200* 181 0.988 
24 total_cases 0.001 .181 0.0055 -.242 .360 -0.672 181 .200* 181 1.00 
25 Mortality_rate 0.001 .181 0.0055 -.242 .360 -0.672 181 .200* 181 1.00 
26 Number of variant sequences .053 .181 0.2928 -.358 .360 -0.994 181 .200* 181 0.464* 
27 Total sequences since first variant sequence .004 .181 0.0220 -.250 .360 -0.694 181 .200* 181 1.00 
28 LPI -.001 .181 -0.0055 -.243 .360 -0.67 181 .200* 181 1.00 
29 Communicable diseases 2016 -.001 .181 -0.0055 -.248 .360 -0.688 181 .200* 181 1.00 
31 Gov-Effectiveness-2019 .131 .181 0.72375 -.335 .359 -0.933 181 .200* 181 .068* 
32 Critical_Cases .035 .181 0.1933 -.324 .359 -0.902 181 .200* 181 .748 

 

3.3. Regression assumptions analysis of the 
cross-sectional data 

The multivariate outliers detected using the 
Mahalanobis distances were removed, and the 
pruned dataset was processed further for regression 
assumption analysis. The pruned cross-sectional 
dataset with thirty-one variables was further 
checked for multicollinearity, homoscedasticity, and 
normality of the error distribution of the residuals. 
As summarized in Table 3, we can observe that the 

values of the VIF and Tolerance for the seventeen 
explanatory variables are below five (1<VIF<5), and 
more than 0.2, respectively; this shows that the 
features space as shown in Table 3 are low to 
moderately correlated. Upon performing the 
Breusch-Pagan Test, a p-value of 0.165954 
corresponds to a Chi-Square (χ2) 21.336 with 16 
degrees of freedom was obtained on the pruned 
cross-sectional data. Since the p-value is larger than 
the significance level (α=0.05), we accept the null 
hypothesis, which states that the residuals are 
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distributed with equal variance (homoscedasticity is 
present in the cross-sectional data with 16 predictor 

variables).  

 
Table 3: Attributes with low to moderate correlation after multicollinearity analysis 

Coefficientsa 

S# Features 
Collinearity Statistics 

Tolerance VIF 
1 Hospital Bed Per million (IDF) .291 3.432 
2 Male Smoker (IDF) .604 1.656 
3 Female Smoker (IDF) .424 2.357 
4 Diabetes Prevalence (IDF) .615 1.627 
5 GDP (IDF) .257 3.893 
6 Population_density (IDF) .838 1.193 
7 Stringency_index (IDF) .782 1.279 
8 Positive_rate (IDF) .514 1.944 
9 Total_Test (IDF) .695 1.439 

10 Hospital Patient Per Million (IDF) .203 4.921 
11 Reproduction Rate (IDF) .438 2.282 
12 Total Cases (IDF) .303 3.305 
13 LPI (IDF) .411 2.433 
14 Communicable Disease (IDF) .352 2.840 
15 Critical Cases (IDF) .634 1.576 
16 Fully Vaccinated Per 100 (IDF) .363 2.756 

a.Dependent Variable: Total Death (IDF) 

 

Graphically the homoscedasticity of the cross-
sectional data is also represented in Fig. 2. As 
depicted in Fig. 2, the variance of the residuals is 
constant across all the standardized predicted 
values. Thus, the constant residual variance signifies 
the homoscedastic nature of the cross-sectional data. 
Finally, the normality of the error distribution 
(unstandardized residuals) was tested by 
performing Kolmogorov-Smirnov and Shapiro-Wilk 

tests. The p-value of the unstandardized residuals 
was 0.200 and 0.892, respectively. Thus, the p-values 
of the unstandardized residual calculated for the 
Kolmogorov-Smirnov and Shapiro-Wilk tests were 
greater than the significance level of 0.05. Therefore, 
we accept the null hypothesis, which states “the 
unstandardized residuals are normally distributed,” 
and reject the alternate hypothesis.  

 

 
Fig. 2: Linearity analysis of the cross-sectional data using the residuals against the predicted values 

 

3.4. Partial correlation: The relationship 
between total deaths and the explanatory 
variables  

The relationship between the total death 
attributed to COVID-19 and the seventeen 
independent variables in the pruned cross-sectional 
data was explored using partial and zero-order 

correlation while controlling for partial and 
complete dosages of the COVID-19 vaccine. Partial 
correlation of independent variable(s), namely 
critical cases, new COVID-19 cases per million, 
aged_65_older, aged_70_older, and total confirmed 
COVID-19 cases, using a partial and complete dosage 
of COVID-19 vaccine dosage, respectively as the 
controlling factor, presented a significant 
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relationship with the total deaths attributed to 
COVID-19 (dependent variable) as shown in Figs. 3a-

3j and Figs. 4a-4j, respectively.  
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Fig. 3: Figs. 3 (a-j): Where Fig. 3a represents the Zero-order and Fig. 3b displays a Partial Correlation between total deaths 

attributed to COVID-19 and critical cases while controlling for a partial dosage of COVID-19 vaccine; While Fig. 3c shows the 
Zero-order and Fig. 3d represents a Partial Correlation between total deaths attributed to COVID-19 and new COVID-19 cases 

per million while controlling for a partial dosage of COVID-19 vaccine; Fig 3e depicts the Zero-order and Fig. 3f displays a 
Partial Correlation between total death attributed to COVID-19 and aged_65_older while controlling for a partial dosage of 

COVID-19 vaccine; Fig. 3g represents the Zero-order and Fig. 3h illustrates a Partial Correlation between total death 
attributed to COVID-19 and aged_70_older while controlling for a partial dosage of COVID-19 vaccine and total confirmed 

COVID-19 cases; Fig. 3i displays the Zero-order and Fig. 3j represents a Partial Correlation between total deaths attributed to 
COVID-19 and total cases while controlling for a partial dosage of COVID-19 vaccine. Linear Lines in Figs. 3(a-j) are linear 

predictions of the dependent and the specific independent variable. The area between the two red fitted lines represents the 
95% confidence intervals of the fitted values across the cross-sectional data (r: correlation coefficient) 
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Fig. 4: Fig. 4a represents the Zero-order, and Fig. 4b shows the Partial Correlation between total death attributed to COVID-
19 and critical cases while controlling for complete dosage of COVID-19 vaccine; Fig. 4c represents the Zero-order, and Fig. 4d 

depicts the Partial Correlation between total death attributed to COVID-19 and total new confirmed COVID-19 cases per 
million while controlling for complete dosage of COVID-19 vaccine; Fig. 4e represents the Zero-order, and Fig. 4f represents 
the Partial Correlation between total death attributed to COVID-19 and aged_65_older while controlling for complete dosage 

of COVID-19 vaccine. Fig. 4g illustrates the Zero-order, and Fig. 4h depicts the Partial Correlation between total death 
attributed to COVID-19 and aged_70_older while controlling for the complete dosage of the COVID-19 vaccine. Finally, Fig. 4i 
represents the Zero-order, and Fig. 4j illustrates the Partial Correlation between total death attributed to COVID-19 and total 
cases while controlling for the complete dosage of the COVID-19 vaccine. Linear Lines in Figs. 4 (a-j) are linear predictions of 

the dependent and the specific independent variable. The area between the two red fitted lines represents the 95% 
confidence intervals of the fitted values across the cross-sectional data (r: correlation coefficient) 

 

3.5. Stepwise linear regression analysis  

Stepwise linear regression was performed using a 
set of attributes tabulated in Table 4 to build a 
regression model with variables that significantly 
predict the response variable (total death attributed 
to COVID-19). Table 4 summarizes the findings of the 

stepwise linear regression model. The variables 
total_cases, hospital patients per million, hospital 
beds per thousand, male smokers, and people fully 
vaccinated per hundred in combination significantly 
predicted the total deaths attributed to COVID-19, 
(F(6, 161)=617.691, p<0.001), R-Square=0.9584. 

 
Table 4: Final predictive model summary 

Stepwise regression model Predictors R Square Adjusted R Square df F Sig. 
Final Predictive Model 0.958367 0.956816 161 617.6914 2.26E-108 

 

Table 5 summarizes the final stepwise regression 
model predictors for predicting the total death 
attributed to COVID-19. In addition, the absolute 
value of the standardized regression coefficients can 
be compared, thereby providing a rough indication 
of the importance of the variables. For example, 
among the COVID-19 related factors, the most 
significant absolute standardized value is 0.9503 for 
the total confirmed cases of COVID-19 (95% CI 
0.0178 to 0.0193, P <0.001), suggesting that the total 
confirmed cases of COVID-19 are the most important 
of the five model predictors in predicting the total 
deaths attributed to COVID-19. Next is hospital 

patients per million, with a positive and statistically 
significant standardized coefficient value of 0.307 
(95% CI 51.165510 to 72.318343, P <0.001). Then 
again, among the government-related factors, the 
Hospital bed per thousand is the most critical factor 
with a negative standardized coefficient value of -
0.194 (95% CI -6010.567860 to -3431.576739, 
P <0.001), suggesting that a decrease of one standard 
deviation in hospital beds per thousand will result in 
an expected increase of total deaths attributed to 
COVID-19 by 0.194 standard deviations. Next most 
contributing government-related factors, with a 
negative standardized coefficient value of -0.114297 



Syed et al/International Journal of Advanced and Applied Sciences, 9(5) 2022, Pages: 18-31 

27 
 

for fully vaccinated people per hundred (95% CI -
1381.021441 to -579.197698, P <0.001), suggesting 
that a decrease of one standard deviation in hospital 
beds per thousand will result in an expected rise of 
total deaths attributed to COVID-19 by 0.114297 
standard deviations. Finally, the smallest absolute 

value is -0.112518=0.113 for male smokers (95% CI 
-647.070996 to -315.907098, P <0.001), suggesting 
that the male smokers are the least among the five 
predictors in predicting the total deaths attributed to 
COVID-19 for an individual country. 

 
Table 5: Stepwise linear regression model for predicting the total deaths attributed to COVID-19 

Final Stepwise regression 
model Predictors 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95.0% Confidence Interval for 
B 

B Std. Error Beta 
Lower 
Bound 

Upper Bound 

(Constant) 10288.95 3553.24 2.895651 4.58755 0.000009 
 

6405.1931 
16087.743688 

TotalCases (IDF) 0.0185 0.00038 0.9503 48.916 1.52E-98 0.0178 0.019337 
Hospital Patient Per 

Million (IDF) 
61.7419 5.355668 0.30679 11.528334 8.43E-23 51.165510 72.318343 

Hopital bed per thousand 
(IDF) 

-4721.072 652.9725 -0.19437 -7.230123 1.84E-11 -6010.5678 -3431.576739 

Male Smoker (IDF) 
-

481.48904 
83.847109 -0.112518 -5.742465 4.53E-8 -647.07099 -315.907098 

Fully Vaccinated Per 
hundred (IDF) 

-980.1095 203.013079 -0.114297 -4.827815 0.000003 -1381.02144 -579.197698 

 

3.6. Validation of the stepwise regression model 

The validation of the current stepwise regression 
model is pictorially represented in Fig. 5 by plotting 
the standardized predicted values of the total death 
on the x-axis and the observed total deaths due to 

COVID-19 on the y-axis. The standardized predicted 
value of the total deaths was positively and 
significantly correlated with the observed total 
deaths due to COVID-19 (r = 0.977, P < 0.001). 

 

 
Fig. 5: Correlation between predicted and observed total deaths attributed to COVID-19 

 

3.7. Comparison with similar studies 

The performance of our stepwise linear 
regression model in predicting the total mortality of 
countries was compared to model performance from 
a related study conducted by Liang et al. (2020), 
shown in Table 5. We can observe from Table 6 that 
the R-squared value and the adjusted R-squared 
value of our stepwise MLR model are 0.958 and 
0.9568, respectively. Our model’s R-squared value 

and the adjusted R-squared value are significantly 
better than the proposed regression model proposed 
by Liang et al. (2020) (R-squared value was 0.58; 
adjusted R-squared value was 0.54). Moreover, the 
correlation coefficient value (r = 0.977, P < 0.001) 
between the predicted value and the observed total 
death of our model was comparatively better than 
the model proposed by Liang et al. (2020) ((r = 0.77; 
P < 0.001). 
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Table 6: Comparative analysis of R-squared, adjusted R-square value, and the correlation coefficient between the predicted 
and the observed total deaths between regression models 

Model 
R-squared 

value 
Adjusted R-

squared value 
The correlation coefficient  of the correlation between predicted and 

observed total deaths at a significance level of p < 0.001 
Liang et al., 2020 0.58 0.54 0.77 

Our Proposed Stepwise 
MLR model 

0.958 0.9568 0.977 

 

4. Discussion 

Cross-sectional data from 181 countries with 
various COVID-19 and Government-related factors 
were preprocessed for the missing values in the 
cross-sectional data of 18 countries. First, the 
missing values were artificially created using the 
MICE package in Azure Machine Learning Studio 
Classic. Then, the imputed cross-sectional data were 
further processed to satisfy the correlation and 
regression analysis assumptions, namely normality, 
multivariate outliers, multicollinearity, linearity, 
homoscedasticity, and normality of the error 
distribution of the cross-sectional data. Finally, the 
pruned preprocessed cross-sectional dataset 
comprising sixteen attributes from 161 countries 
was further used for correlation and regression 
studies.  

Notably, the zero-order and partial correlation 
analyses as illustrated in Figs. 3a-3j and Figs. 4a-4j 
showed that controlling for a complete dosage of 
COVID-19 vaccine over a partial dosage of COVID-19 
vaccine per 100 people in the population had a 
moderate but significant influence on the strength of 
correlation between the total death attributed to 
COVID-19 (response variable) and the independent 
variables, namely critical cases, new COVID-19 cases 
per million, aged_65_older, and aged_70_older.  

However, controlling for each partial and 
complete dosage of the COVID-19 vaccine had a 
statistically significant but negligible effect on the 
relationship between the total deaths due to COVID-
19 (dependent variable) and the total confirmed 
COVID-19 cases (independent variable). The 
negligible impact of the partial and complete dosage 
of the COVID-19 vaccine can be attributed to the 
emergence of novel variants of COVID-19 (Grubaugh 
et al., 2021; Winblad et al., 2004) that have a 
selective advantage of enhancing trans-mission 
dynamics (Davies et al., 2021a; Dorp et al., 2021) and 
the capability to reduce prompt neutralization by the 
host (Planas et al., 2021; Singh et al., 2021). Thus, for 
example, the present restrictions in India and 
Europe (Priesemann et al., 2021; Singh et al., 2021) 
are in because of a more communicable (Davies et 
al., 2021a; Dorp et al., 2021) and principally more 
pathogenic (Challen et al., 2021; Davies et al., 2021b) 
B.1.1.7 variant that originated in the United Kingdom 
and is rapidly gaining dominance in a country such 
as India (Singh et al., 2021). 

Therefore, based on our current observation of 
the overall results of the partial correlation, we 
recommend that governments of different countries 
should emphasize more on immunizing their 
residents with all doses prescribed by the 
vaccination protocol rather than a partial vaccine 

dose per 100 people in the total population to 
counter the surge in the total death attributed to 
COVID-19. 

Additionally, the current country-level study 
comprehensively examines the association of 
various COVID-19 related and country-specific 
factors with COVID-19 mortality. The stepwise 
multiple regression model analysis reveals that the 
estimated regression line (predictors) of the model 
explains 95.8 % (R-square=0.958) variation in the 
response variable (total COVID-19 mortality). A 
statistically significant and higher F-statistics of the 
final stepwise regression model shows that the 
independent variables help explain total deaths 
attributed to COVID-19 (response variable) with a 
confidence greater than 99.999. The detailed 
analysis of the attributes contributing significantly to 
the stepwise multiple regression model has shown 
that total deaths attributed to COVID-19 are 
positively associated with the total confirmed cases 
of COVID-19 and the number of COVID-19 patients in 
the hospital on a given day per 1,000,000 people. 
Therefore more confirmed cases of COVID-19 are 
associated with an increase in COVID-19 mortality 
(Sarkodie and Owusu, 2020). 

Moreover, more COVID-19 patients admitted to a 
hospital on a given day are associated with increased 
total deaths attributed to COVID-19. Thus, an 
increase in total deaths of patients admitted to 
hospital with COVID-19 infection may be attributed 
to a rapid emergence of new cases, leading to rapidly 
increasing demand for patients’ facilities and 
multiple negative factors and symptoms (end-stage 
renal diseases, age, diabetes, heart diseases, etc.) 
associated with hospitalized COVID-19 patients 
(Alwafi et al., 2021; Rossman et al., 2021). 
Alternatively, our stepwise regression model also 
showed a negative association between total deaths 
attributed to COVID-19 (response variable) and the 
independent variables (hospital beds per thousand, 
male smokers, and people fully vaccinated). 

The people fully vaccinated have a significant 
negative unstandardized coefficient, which means 
that in countries where people received all doses of 
the COVID-19 vaccine prescribed by the vaccination 
protocol per 100 people in the total population, the 
total death due to COVID-19 significantly decreases 
(Haas et al., 2021), offering hopefulness that COVID-
19 vaccination will ultimately stem the COVID-19 
pandemic as vaccination programs rise across the 
globe. In addition, a negative coefficient value for a 
male smoker signifies a negative association 
between smoking and COVID-19 infection, indicating 
a reduced mortality risk in smokers due to COVID-
19. Several recent studies have shown that smoking 
reduces the risk of people getting infected with 
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COVID-19 disease (Ward et al., 2021). However, the 
current findings that smoking is inversely associated 
with COVID-19 infection challenge the fact that 
smokers are more susceptible to respiratory 
illnesses, including COVID-19 infection (Hopkinson 
et al., 2021; Westen-Lagerweij et al., 2021). 
Therefore, further investigations are needed to 
clarify the role of cigarette smoking on COVID-19 
disease and the reported low prevalence of smokers 
amongst the current patients diagnosed with COVID-
19 infection. 

Moreover, the multiple regression analyses 
indicated a negative association between COVID-19 
mortality and hospital beds per thousand people. 
Thus, the negative association between COVID-19 
mortality and hospital beds per thousand people 
suggests increasing hospital beds per thousand 
people might serve as a practical methodology to 
decrease deaths attributed to COVID-19 mortality by 
governments that were less effective in controlling 
disease outbreaks when hospital beds were not 
sufficient in providing proper healthcare to many 
patients with COVID-19 (Liang et al., 2020; Sen-
Crowe et al., 2021). Additionally, from the absolute t-
value of predictors, as shown in Table 2, we can 
presume that countries should focus more on 
hospital beds per thousand, people fully vaccinated 
per hundred, and male smokers, respectively 
counter the increase in total mortality attributed to 
COVID-19. 

Hence we can conclude from the comprehensive 
analysis of the stepwise multiple regression that the 
predictors of total cases, hospital patients per 
million, hospital beds per thousand, male smokers, 
and people fully vaccinated per hundred were added 
statistically to predict the total deaths attributed to 
COVID-19. Furthermore, the present final stepwise 
regression model was validated by plotting the 
standardized predicted values of the total death due 
to COVID-19 on the x-axis and the observed total 
deaths due to COVID-19 on the y-axis, as shown in 
Fig. 5. A very strong positive and significant 
correlation (r = 0.977, P < 0.001) was observed 
between the standardized predicted values and the 
observed values of the response variable (total 
deaths attributed to COVID-19). A significant 
correlation observed between the predicted, and the 
experimental values of the response variable (total 
deaths attributed to COVID-19) can be attributed to 
the 45° angle line between the observed and 
predicted total deaths due to COVID-19. Moreover, 
the comparative model validation study revealed 
that the correlation between the observed total 
COVID-19 mortality and the predicted total COVID-
19 mortality in various countries of the Stepwise 
Linear Regression model (r=0.977, P<0.001) was 
significantly better than Liang et al., 2020 regression 
model (r = 0.77; P < 0.001). Our Stepwise Linear 
Regression model performs significantly better in 
predicting the total COVID-19 mortality of countries 
with an R-squared value of 0.958 and an adjusted R-
squared value of 0.956 than the regression model 

proposed by Liang et al. (2020) (R-squared value 
was 0.58; adjusted R-squared value was 0.54). 

However, there are certain limitations to the 
present study. First, the presence of multivariate 
outliers limits our analyses to cross-sectional data 
from 161 countries instead of 183 countries. Second, 
is the lack of completeness of countries’ data 
(missing values). The missing values in the cross-
sectional data were artificially created using the 
MICE module, assuming that the data are missing at 
random. However, real-time data instead of 
artificially synthesized data would have provided a 
more real personification of the factor(s) influencing 
the total death attributed to COVID-19 (response 
variable). Third, a sudden surge in COVID-19 related 
deaths and inaccurate reporting of fatalities 
attributed to COVID-19 from different countries may 
significantly influence the predictive nature of our 
model. However, the prognostic factors and their 
trends for predicting the total deaths attributed to 
COVID-19 might not change. Finally, the immunity 
acquired after the global spread of COVID-19 might 
influence the prediction accuracy of our stepwise 
regression model.  

This study also has its strengths. This study 
involves analyzing many COVID-19 and government 
factors positively and negatively impacting the total 
deaths attributed to COVID-19 in a country. The 
results of our research possibly will contribute 
toward effective policymaking at the country level to 
counter the sudden surge in the number of deaths 
attributed to COVID-19 and variants of COVID-19. 
Based on our current findings, we conclude that 
governments with better hospital infrastructure and 
people with complete dosages of the COVID-19 
vaccine will have minimal COVID-19 fatalities. 

5. Conclusion 

In conclusion, we can conclude that a higher 
number of fatalities attributed to COVID-19 and its 
variants are positively associated with the total 
confirmed cases of COVID-19 and the number of 
COVID-19 patients in the hospital on a given day per 
1,000,000 people. While the total COVID-19 
mortality is negatively associated with hospital beds 
per thousand, male smokers, and people fully 
vaccinated per 100 people from the total population. 
So, based on the current regression and partial-
correlation studies, we presume that the countries 
which focus on improving the infrastructure of the 
hospitals by providing more hospital beds, providing 
better governance policies to counter the spread of 
COVID-19 and its variants, thereby a load of patients 
in hospitals are reduced. Moreover, providing a 
complete vaccination dosage of the COVID-19 
vaccine to the entire population will undoubtedly 
lower the COVID-19 related mortalities. 

Acknowledgment 

This work was supported by the Deanship of 
Scientific Research (DSR), King Abdulaziz University, 



Syed et al/International Journal of Advanced and Applied Sciences, 9(5) 2022, Pages: 18-31 

30 
 

Jeddah, under Grant G:-186-132-1442. The authors, 
therefore, gratefully acknowledge DSR’s technical 
and financial support. 

Compliance with ethical standards 

Conflict of interest 

The author(s) declared no potential conflicts of 
interest with respect to the research, authorship, 
and/or publication of this article. 

References  

Alwafi H, Naser AY, Qanash S, Brinji AS, Ghazawi MA, Alotaibi B, 
and Shabrawishi M (2021). Predictors of length of hospital 
stay, mortality, and outcomes among hospitalised COVID-19 
patients in Saudi Arabia: A cross-sectional study. Journal of 
Multidisciplinary Healthcare, 14: 839-852.  
https://doi.org/10.2147/JMDH.S304788                
PMid:33883900 PMCid:PMC8055273 

Beasley TM, Erickson S, and Allison DB (2009). Rank-based 
inverse normal transformations are increasingly used, but are 
they merited? Behavior Genetics, 39(5): 580-595.  
https://doi.org/10.1007/s10519-009-9281-0 
PMid:19526352 PMCid:PMC2921808 

Breusch TS and Pagan AR (1979). A simple test for 
heteroscedasticity and random coefficient variation. 
Econometrica: Journal of the Econometric Society, 47: 1287-
1294. https://doi.org/10.2307/1911963 

Buuren VS (2018). Flexible imputation of missing data. CRC Press, 
Boca Raton, USA. 

Buuren VS and Groothuis-Oudshoorn K (2011). Mice: Multivariate 
imputation by chained equations in R. Journal of Statistical 
Software, 45(3): 1-67. https://doi.org/10.18637/jss.v045.i03 

Casson RJ and Farmer LD (2014). Understanding and checking the 
assumptions of linear regression: A primer for medical 
researchers. Clinical and Experimental Ophthalmology, 42(6): 
590-596.                                         
https://doi.org/10.1111/ceo.12358 PMid:24801277 

Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova 
K, and Danon L (2021). Risk of mortality in patients infected 
with SARS-CoV-2 variant of concern 202012/1: Matched 
cohort study. British Medical Association: Peer-Reviewed 
Journal, 372: n579.                          
https://doi.org/10.1136/bmj.n579                        
PMid:33687922 PMCid:PMC7941603 

Chang C, Deng Y, Jiang X, and Long Q (2020). Multiple imputation 
for analysis of incomplete data in distributed health data 
networks. Nature Communications, 11(1): 1-11.  
https://doi.org/10.1038/s41467-020-19270-2 
PMid:33122624 PMCid:PMC7596726 

Chen T, Wu DI, Chen H, Yan W, Yang D, Chen G, and Ning Q (2020). 
Clinical characteristics of 113 deceased patients with 
coronavirus disease 2019: Retrospective study. British 
Medical Association: Peer-Reviewed Journal, 2020: 368.  
https://doi.org/10.1136/bmj.m1091                       
PMid:32217556 PMCid:PMC7190011 

Chodick G, Tene L, Patalon T, Gazit S, Tov AB, Cohen D, and 
Muhsen K (2021). Assessment of effectiveness of 1 dose of 
BNT162b2 vaccine for SARS-CoV-2 infection 13 to 24 days 
after immunization. JAMA Network Open, 4(6): e2115985-
e2115985. 
https://doi.org/10.1001/jamanetworkopen.2021.15985 
PMid:34097044 PMCid:PMC8185600 

Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, and 
Balicer RD (2021). BNT162b2 mRNA COVID-19 vaccine in a 
nationwide mass vaccination setting. New England Journal of 

Medicine, 384(15): 1412-1423.  
https://doi.org/10.1056/NEJMoa2101765              
PMid:33626250 PMCid:PMC7944975 

Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday 
JD, and Edmunds WJ (2021b). Estimated transmissibility and 
impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science, 
372(6538).                          
https://doi.org/10.1126/science.abg3055              
PMid:33658326 PMCid:PMC8128288 

Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, and 
Keogh RH (2021a). Increased mortality in community-tested 
cases of SARS-CoV-2 lineage B. 1.1. 7. Nature, 593(7858): 270-
274.                                                        
https://doi.org/10.1038/s41586-021-03426-1 
PMid:33723411 

Davis JW (2008). Medical statistics: A textbook for the health 
sciences. The American Statistician, 62(4): 362.  
https://doi.org/10.1198/tas.2008.s274 

Dorp, C. H. V., Dorp CH, Goldberg EE, Hengartner N, Ke R, and 
Romero-Severson EO (2021). Estimating the strength of 
selection for new SARS-CoV-2 variants. Nature 
Communications, 12(1): 1-13.  
https://doi.org/10.1038/s41467-021-27369-3 
PMid:34907182 PMCid:PMC8671537 

Ghasemi A and Zahediasl S (2012). Normality tests for statistical 
analysis: A guide for non-statisticians. International Journal of 
Endocrinology and Metabolism, 10(2): 486-489.  
https://doi.org/10.5812/ijem.3505                           
PMid:23843808 PMCid:PMC3693611 

Grentzelos C, Caroni C, and Barranco‐Chamorro I (2021). A 
comparative study of methods to handle outliers in 
multivariate data analysis. Computational and Mathematical 
Methods, 3(3): e1129. https://doi.org/10.1002/cmm4.1129 

Grubaugh ND, Hodcroft EB, Fauver JR, Phelan AL, and Cevik M 
(2021). Public health actions to control new SARS-CoV-2 
variants. Cell, 184(5): 1127-1132.  
https://doi.org/10.1016/j.cell.2021.01.044              
PMid:33581746 PMCid:PMC7846239 

Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, and 
Alroy-Preis S (2021). Impact and effectiveness of mRNA 
BNT162b2 vaccine against SARS-CoV-2 infections and COVID-
19 cases, hospitalisations, and deaths following a nationwide 
vaccination campaign in Israel: An observational study using 
national surveillance data. The Lancet, 397(10287): 1819-
1829. https://doi.org/10.1016/S0140-6736(21)00947-8 

Hocking RR (1976). A Biometrics invited paper: The analysis and 
selection of variables in linear regression. Biometrics, 32: 1-
49. https://doi.org/10.2307/2529336 

Hopkinson NS, Rossi N, El-Sayed_Moustafa J, Laverty AA, Quint JK, 
Freidin M, and Falchi M (2021). Current smoking and COVID-
19 risk: Results from a population symptom app in over 2.4 
million people. Thorax, 76(7): 714-722.  
https://doi.org/10.1136/thoraxjnl-2020-216422 
PMid:33402392 PMCid:PMC7789201 

Hou C, Chen J, Zhou Y, Hua L, Yuan J, He S, and Jia E (2020). The 
effectiveness of quarantine of Wuhan city against the Corona 
Virus Disease 2019 (COVID‐19): A well‐mixed SEIR model 
analysis. Journal of Medical Virology, 92(7): 841-848.  
https://doi.org/10.1002/jmv.25827 PMid:32243599 

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, and Cao B (2020). 
Clinical features of patients infected with 2019 novel 
coronavirus in Wuhan, China. The Lancet, 395(10223): 497-
506. https://doi.org/10.1016/S0140-6736(20)30183-5 

Iacobucci G (2020). COVID-19: UK lockdown is “crucial” to saving 
lives, say doctors and scientists. British Medical Association: 
Peer-Reviewed Journal, 368: m1091.  
https://doi.org/10.1136/bmj.m1204 PMid:32209548 

https://doi.org/10.2147/JMDH.S304788
https://doi.org/10.1007/s10519-009-9281-0
https://doi.org/10.2307/1911963
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1111/ceo.12358
https://doi.org/10.1136/bmj.n579
https://doi.org/10.1038/s41467-020-19270-2
https://doi.org/10.1136/bmj.m1091
https://doi.org/10.1001/jamanetworkopen.2021.15985
https://doi.org/10.1056/NEJMoa2101765
https://doi.org/10.1126/science.abg3055
https://doi.org/10.1038/s41586-021-03426-1
https://doi.org/10.1198/tas.2008.s274
https://doi.org/10.1038/s41467-021-27369-3
https://doi.org/10.5812/ijem.3505
https://doi.org/10.1002/cmm4.1129
https://doi.org/10.1016/j.cell.2021.01.044
https://doi.org/10.1016/S0140-6736(21)00947-8
https://doi.org/10.2307/2529336
https://doi.org/10.1136/thoraxjnl-2020-216422
https://doi.org/10.1002/jmv.25827
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1136/bmj.m1204


Syed et al/International Journal of Advanced and Applied Sciences, 9(5) 2022, Pages: 18-31 

31 
 

James G, Witten D, Hastie T, and Tibshirani R (2013). An 
introduction to statistical learning. Volume 112, Springer, 
New York, USA. https://doi.org/10.1007/978-1-4614-7138-7 

Ji Y, Ma Z, Peppelenbosch MP, and Pan Q (2020). Potential 
association between COVID-19 mortality and health-care 
resource availability. The Lancet Global Health, 8(4): e480.  
https://doi.org/10.1016/S2214-109X(20)30068-1 

Kandel N, Chungong S, Omaar A, and Xing J (2020). Health security 
capacities in the context of COVID-19 outbreak: An analysis of 
International Health Regulations annual report data from 182 
countries. The Lancet, 395(10229): 1047-1053.  
https://doi.org/10.1016/S0140-6736(20)30553-5 

Kim HY (2013). Statistical notes for clinical researchers: Assessing 
normal distribution (2) using skewness and kurtosis. 
Restorative Dentistry and Endodontics, 38(1): 52-54.  
https://doi.org/10.5395/rde.2013.38.1.52              
PMid:23495371 PMCid:PMC3591587 

Kim HY (2017). Statistical notes for clinical researchers: Chi-
squared test and Fisher's exact test. Restorative Dentistry and 
Endodontics, 42(2): 152-155.  
https://doi.org/10.5395/rde.2017.42.2.152           
PMid:28503482 PMCid:PMC5426219 

Liang LL, Tseng CH, Ho HJ, and Wu CY (2020). COVID-19 mortality 
is negatively associated with test number and government 
effectiveness. Scientific Reports, 10(1): 1-7.  
https://doi.org/10.1038/s41598-020-68862-x 
PMid:32709854 PMCid:PMC7381657 

Lipsitch M, Swerdlow DL, and Finelli L (2020). Defining the 
epidemiology of COVID-19-Studies needed. New England 
Journal of Medicine, 382(13): 1194-1196.  
https://doi.org/10.1056/NEJMp2002125 PMid:32074416 

Maesschalck DR, Jouan-Rimbaud D, and Massart DL (2000). The 
mahalanobis distance. Chemometrics and Intelligent 
Laboratory Systems, 50(1): 1-18.  
https://doi.org/10.1016/S0169-7439(99)00047-7 

Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, and Keshri A 
(2019). Descriptive statistics and normality tests for statistical 
data. Annals of Cardiac Anaesthesia, 22(1): 67-72.  
https://doi.org/10.4103/aca.ACA_157_18              
PMid:30648682 PMCid:PMC6350423 

Moghadas SM, Shoukat A, Fitzpatrick MC, Wells CR, Sah P, Pandey 
A, and Galvani AP (2020). Projecting hospital utilization 
during the COVID-19 outbreaks in the United States. 
Proceedings of the National Academy of Sciences, 117(16): 
9122-9126.                      
https://doi.org/10.1073/pnas.2004064117           
PMid:32245814 PMCid:PMC7183199 

O'Toole Á, Hill V, Pybus OG, Watts A, Bogoch II, Khan K, and COVID 
T (2021). Tracking the international spread of SARS-CoV-2 
lineages B. 1.1. 7 and B. 1.351/501Y-V2. Wellcome Open 
Research, 6: 121. 

Peto J (2020). COVID-19 mass testing facilities could end the 
epidemic rapidly. British Medical Association: Peer-Reviewed 
Journal, 368: m1163.                  
https://doi.org/10.1136/bmj.m1163 PMid:32201376 

Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, 
Rajah MM, and Schwartz O (2021). Reduced sensitivity of 
SARS-CoV-2 variant Delta to antibody neutralization. Nature, 
596(7871): 276-280.                        
https://doi.org/10.1038/s41586-021-03777-9 
PMid:34237773 

Priesemann V, Balling R, Brinkmann MM, Ciesek S, Czypionka T, 
Eckerle I, and Szczurek E (2021). An action plan for pan-
European defence against new SARS-CoV-2 variants. The 
Lancet, 397(10273): 469-470.  
https://doi.org/10.1016/S0140-6736(21)00150-1 

Rossman H, Meir T, Somer J, Shilo S, Gutman R, Arie AB, and 
Gorfine M (2021). Hospital load and increased COVID-19 

related mortality in Israel. Nature Communications, 12: 1904. 
https://doi.org/10.1038/s41467-021-22214-z 
PMid:33771988 PMCid:PMC7997985 

Rubino S, Kelvin N, Bermejo-Martin JF, and Kelvin D (2020). As 
COVID-19 cases, deaths and fatality rates surge in Italy, 
underlying causes require investigation. The Journal of 
Infection in Developing Countries, 14(03): 265-267.  
https://doi.org/10.3855/jidc.12734 PMid:32235086 

Sarkodie SA and Owusu PA (2020). Investigating the cases of 
novel coronavirus disease (COVID-19) in China using dynamic 
statistical techniques. Heliyon, 6(4): e03747.  
https://doi.org/10.1016/j.heliyon.2020.e03747 
PMid:32289090 PMCid:PMC7128585 

Sen-Crowe B, Sutherland M, McKenney M, and Elkbuli A (2021). A 
closer look into global hospital beds capacity and resource 
shortages during the COVID-19 pandemic. Journal of Surgical 
Research, 260: 56-63.  
https://doi.org/10.1016/j.jss.2020.11.062              
PMid:33321393 PMCid:PMC7685049 

Shapiro SS and Wilk MB (1965). An analysis of variance test for 
normality (complete samples). Biometrika, 52(3/4): 591-611. 
https://doi.org/10.1093/biomet/52.3-4.591 

Singh J, Rahman SA, Ehtesham NZ, Hira S, and Hasnain SE (2021). 
SARS-CoV-2 variants of concern are emerging in India. Nature 
Medicine, 27: 131–1133.                   
https://doi.org/10.1038/s41591-021-01397-4 
PMid:34045737 

Stephens MA (1974). EDF statistics for goodness of fit and some 
comparisons. Journal of the American Statistical Association, 
69(347): 730-737.  
https://doi.org/10.1080/01621459.1974.10480196 

Vatcheva KP, Lee M, McCormick JB, and Rahbar MH (2016). 
Multicollinearity in regression analyses conducted in 
epidemiologic studies. Epidemiology (Sunnyvale, Calif.), 6(2): 
227.                                                        
https://doi.org/10.4172/2161-1165.1000227 
PMid:27274911 PMCid:PMC4888898 

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, and Peng Z (2020). 
Clinical characteristics of 138 hospitalized patients with 2019 
novel coronavirus–infected pneumonia in Wuhan, China. 
Journal of the American Medical Association: Peer-Reviewed 
Journal, 323(11): 1061-1069.  
https://doi.org/10.1001/jama.2020.1585               
PMid:32031570 PMCid:PMC7042881 

Ward H, Atchison C, Whitaker M, Ainslie KE, Elliott J, Okell L, and 
Elliott P (2021). SARS-CoV-2 antibody prevalence in England 
following the first peak of the pandemic. Nature 
Communications, 12: 905.                 
https://doi.org/10.1038/s41467-021-21237-w 
PMid:33568663 PMCid:PMC7876103 

Westen-Lagerweij VNA, Meijer E, Meeuwsen EG, Chavannes NH, 
Willemsen MC, and Croes EA (2021). Are smokers protected 
against SARS-CoV-2 infection (COVID-19)? The origins of the 
myth. NPJ Primary Care Respiratory Medicine, 31: 10.  
https://doi.org/10.1038/s41533-021-00223-1 
PMid:33637750 PMCid:PMC7910565 

Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund 
LO, and Petersen RC (2004). Mild cognitive impairment–
Beyond controversies, towards a consensus: Report of the 
international working group on mild cognitive impairment. 
Journal of Internal Medicine, 256(3): 240-246.  
https://doi.org/10.1111/j.1365-2796.2004.01380.x 
PMid:15324367 

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, and Cao B (2020). Clinical 
course and risk factors for mortality of adult inpatients with 
COVID-19 in Wuhan, China: A retrospective cohort study. The 
Lancet, 395(10229): 1054-1062.  
https://doi.org/10.1016/S0140-6736(20)30566-3 

 

https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1016/S2214-109X(20)30068-1
https://doi.org/10.1016/S0140-6736(20)30553-5
https://doi.org/10.5395/rde.2013.38.1.52
https://doi.org/10.5395/rde.2017.42.2.152
https://doi.org/10.1038/s41598-020-68862-x
https://doi.org/10.1056/NEJMp2002125
https://doi.org/10.1016/S0169-7439(99)00047-7
https://doi.org/10.4103/aca.ACA_157_18
https://doi.org/10.1073/pnas.2004064117
https://doi.org/10.1136/bmj.m1163
https://doi.org/10.1038/s41586-021-03777-9
https://doi.org/10.1016/S0140-6736(21)00150-1
https://doi.org/10.1038/s41467-021-22214-z
https://doi.org/10.3855/jidc.12734
https://doi.org/10.1016/j.heliyon.2020.e03747
https://doi.org/10.1016/j.jss.2020.11.062
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1038/s41591-021-01397-4
https://doi.org/10.1080/01621459.1974.10480196
https://doi.org/10.4172/2161-1165.1000227
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1038/s41467-021-21237-w
https://doi.org/10.1038/s41533-021-00223-1
https://doi.org/10.1111/j.1365-2796.2004.01380.x
https://doi.org/10.1016/S0140-6736(20)30566-3

	COVID-19 vaccine dosages and government factors role on the global variation in COVID-19 mortality: A statistical and regression analysis
	1. Introduction
	2. Materials and methods
	2.1. Data source and variable description
	2.2. Data preprocessing
	2.2.1. Multiple imputations

	2.3. Descriptive statistics for sample data
	2.4. Checking for regression assumptions
	2.4.1. Testing the normality of data
	2.4.2. Probability-based inverse distributionfunction transformations
	2.4.3. Multivariate outlier detection,multicollinearity, homoscedasticity, andnormality of the error distribution

	2.5. Partial correlation: The relationship between total deaths and the independent variable
	2.6. The stepwise linear regression model
	2.7. Validation study of the stepwise regression model

	3. Results
	3.1. Multiple imputations using mice
	3.2. Normality tests and descriptive statistics for sample data
	3.3. Regression assumptions analysis of the cross-sectional data
	3.4. Partial correlation: The relationship between total deaths and the explanatory variables
	3.5. Stepwise linear regression analysis
	3.6. Validation of the stepwise regression model
	3.7. Comparison with similar studies

	4. Discussion
	5. Conclusion
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References


