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Reconstructing 3D human models has a variety of applications in areas such 
as entertainment, medical, manufacturing, and design. Reconstruction 
techniques are classified based on characteristics such as data input, devices 
used, and algorithms employed, in which using anthropometric 
measurements is one of the most widely used methods. Traditional methods 
of 3D human reconstruction from anthropometric measurements rely on 
technologies like Convolutional Neutral Network (CNN), and Linear 
Regression to generate an accurate model in a reasonable amount of time. 
This paper presents a picture of heuristic optimization methods to find the 
optimal solution in 3D body reconstructions from anthropometric 
measurements. In terms of output accuracy, the methods discussed in this 
paper have the potential to outperform CNN and similar technologies. 
Results are verified and validated on a real dataset to evaluate the 
performances of each method. 
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1. Introduction 

*Due to the global impact of Coronavirus disease 
(Covid-19), almost all industries are actively 
transforming their business model to survive and 
thrive after this unprecedented crisis. One of the 
most adversely affected sectors is the apparel and 
fashion industry. Offline retailers and department-
store chains had already seen massive declines in 
sales and traffic during the lockdown period. As 
more consumers find themselves at home scrolling 
mobile phones and social media, e-commerce is 
booming into a dominant shopping channel. Fashion 
companies are quickly trying their best to drive 
consumers online and rapidly scale e-commerce 
operations. However, as in online shopping, 
consumers can not physically try products; the size 
issues and doubts about their actual appearance are 
likely to challenge online sales. The term “3D virtual 
try-on” comes in this regard. This technology allows 
consumers to try on products without touching 
them, offering a personalized and immersive 
shopping experience. Hwangbo et al. (2020) have 
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tested and proved the effectiveness of 3D virtual try-
on in boosting sales and decreasing products' return 
rate. 

The main idea of Virtual Try-on technology is to 
create a 3D virtual model that simulates customers' 
body shape, and customers can then use “their” 
model to try-on, mix-and-match, and decide whether 
a garment looks good and fits them well. There are 
different technologies developed for Virtual Try-on 
technology, such as employing 3D scanners, applying 
machine learning techniques, and using 
anthropometric measurements. In which, 3D human 
reconstruction using anthropometric measurements 
could satisfy three criteria: (1) a method that is easy-
to-implement, easy-to-use, serving for real 
applications; (2) a method that protects the privacy 
of users’ personal information; (3) a method that is 
affordable and accessible for common customers. 

To reshape the 3D human body from 
anthropometric measurements, Zeng et al. (2017) 
from Sun Yat-sen University introduced a method 
using a feature-selection-based local mapping 
technique. First, the authors employ a module called 
“Imputer” to estimate anthropometric parameters 
that users do not remember when entering data. The 
obtained data is then passed to the “Selector” 
module for mesh calculation, and lastly, the 
“Mapper” module is used to synthesize a final 3D 
human body mesh for users. The key point here is 
using the “Selector” module, trained on the dataset 
published by Yang et al. (2014). The dataset contains 
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1531 female and 1517 male meshes, which have the 
same resolution. However, the weakness of this 
method is that it requires users to input a large 
number of parameters (19 parameters, even if they 
have an “Imputer” to preprocess missing data), and 
it does not contain the details in realistic localized 
shape. Wuhrer and Shu (2013) proposed another 
approach that combines a linear learned correlation 
with a non-linear optimization to extrapolate the 
shapes with local variation not presented in training 
data. The first step is to find a realistic shape 
describing the measurements and then use a quasi-
Newton optimization to deform locally. Their 
method’s efficiency has been demonstrated using 
both synthetic data and real human measurements. 
Apart from the above methods, Streuber et al. (2016) 
developed a new method that focuses on increasing 
processing speed while maintaining acceptable 
accuracy in shape generation. The main idea is to 
have a matrix learned and then employ that matrix 
to create a mapping between identified body space 
and geometric body space. Body descriptor words 
(fit, small, long, skinny, and lean) represent the 
identified body space. The matrix is created using 
linear regression and an SMPL-generated dataset. 
Pujades et al. (2019) contributed to the field by 
developing a software application for quickly 
generating 3D body shapes using measurements 
based on linear regressors. The research’s core part 
is finding a reliable set of body measurements 
(including Overall Height, Arm Span Fingers, Inseam 
Height, Hip Width, and Arm Length) to generate a 
realistic body shape. This approach, however, has a 
problem with output accuracy since it produces 
unnatural body shapes and could not be applied in 
industries that demand great precision. Nguyen and 
Hoang (2021) suggested a method that uses 
Diversity Control Oriented Genetic algorithm to find 
the optimum solution for body shape generation. 
The research results are evaluated and validated on 
both synthetic and real data to show the method’s 
usefulness. However, their study did not discuss 
other aspects of heuristic optimization. 

Concerning the ease of implementation and the 
applicability for non-linear mathematical issues, in 
this paper, we choose to investigate a collection of 
heuristic optimization methods to discover the 
optimal solution for human shape generation. The 
main contributions of this paper are to (1) 
Summarize techniques for finding an approximate 
solution; (2) Analyze the advantages and 
disadvantages of each heuristic method in 
generating an optimal 3D body model, (3) Apply 
heuristic optimization methods to a real dataset and 
evaluate their accuracy and time consumption. This 
research is divided into four main parts: Section 2 
summarizes the parametric model used, the 
generally applied optimization model, and problems 
that must be solved. A review of heuristic methods, 
including (1) Simulated Annealing, (2) Particle 
Swarm Optimization, (3) Genetic Algorithm, and (4) 
Diversity Control Oriented Genetic Algorithm is 
provided in Section 3. Section 4 contains an 

evaluation and analysis of the results. Section 5 
concludes the paper and opens future works.  

2. Overview of 3D body reconstruction using 
optimization method 

This part is organized as follows: (1) Summarize 
the parametric model used, (2) Demonstrate the 
fitness function and constraint when using 
optimization methods. 

2.1. Parametric model (SMPL model) 

This research uses a parametric model-The 
Skinned Multi-Person Linear (SMPL) model (Loper 
et al., 2015). A template model 𝑇 is deformed to 
generate approximate bodies by controlling the 
shape and pose parameters. The largest commercial 
dataset (Caesar) contained approximately 4000 
human bodies with different shapes and poses, both 
males and females, and was used to develop and 
create SMPL. The body was deformed using a global 
vertex-based method applied to 3D displacements 
directly to vertices. Vertices are mapped by shape 
and pose parameters of SMPL model 

𝑀(𝛽, 𝜃⃗, Φ): ℝ|𝜃⃗⃗⃗|×|𝛽⃗⃗⃗| ↦ ℝ3𝑁 . The SMPL template-

based model is a pre-defined topology with 6890 
vertices and the type of surface mesh is a triangle. 
The vertices 𝑣 ∈ ℝ3 are described linearly by 𝛽 as 
follows: 
 

𝑀(𝛽, 𝜃, Φ) = 𝑊𝐺(𝜃, 𝐽(𝛽))(𝑇𝑟 + 𝐵𝑆(𝛽) + 𝐵𝑄(𝜃)) 

 

with 𝛽: Shape parameters, 𝜃: Pose parameters could 
be variation; 𝑇: Rest template, 𝑊: Weight, joint 
locations, and blend shapes/blend poses are learned 
from the Caesar dataset.  

2.2. Methodology 

Fig. 1 illustrates the general process of applying 
the heuristic method for 3D human model 
reconstruction using anthropometric measurements. 

Input parameters are nine expected body 
measurements of users, and output is a 3D model 
with estimated equivalent measurements. The 
evaluation function (𝑓) is created based on the loss 
function between the input parameters and the 
estimated measurements which is created from the 
shape parameter (𝛽) of the parametric model.  
 

𝑓 = √∑(𝑦𝑖 − 𝑦𝑖̂)
2                                                                          (1) 

 

where 𝑦-the expected parameter of measurements 
and 𝑦̂-the estimated parameter of measurements 
created from shape parameters. 

Based on the above-mentioned characteristics of 
the parametric model, the constraints of 𝛽 are 
defined in the range [−3, 3]. The process of setting 
up an initial value and hyperparameters varies is 
depended on each optimization method and will be 
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discussed in Section 3. The pseudo-code (Algorithm 1) indicates basic implementation steps. 
 

Anthropometric 

measurements 

Expectation

Optimization methods Parametric Model

Constraints

x β 

Init_value/

Hyperparameter

Termination 

Condition

Δe no

Stop

yes

Measurements Conversion
x_estimate Desired value

 
Fig. 1: Process to apply heuristics method in 3D body human reconstruction. (1) The input measurements are entered, (2) 

the whole process continuously optimizes the 3D model until satisfying the termination condition 
 

Algorithm 1: General heuristics mathematical optimization 
 Input: 9 Measurements expected 
 Output: 3D Avatar user model 

1 Initialize: 𝛽, hyperparameter 
2 While (True) do 
3  Calculate Anthropometric measurements from 𝛽 
4  Evaluate Fitness Function 
5  If terminating condition is satisfied then 
6   STOP 
7  End if 
8  Generate 𝛽𝑢𝑝𝑑𝑎𝑡𝑒𝑑 from optimization method 
9  𝛽 ←  𝛽𝑢𝑝𝑑𝑎𝑡𝑒𝑑 

10 End while 

 

Table 1 indicates the relationship between linear 
measurements and volume measurements. The 
linear measurements and shape parameters have a 
linear relationship and are approximately by linear 
regression as Pujades et al. (2019). However, it poses 
a significant challenge for circumferences such as 
chest, waist, pelvis, and thigh with a non-linear 
relationship. 

 
Table 1: Shape parameters have a linear relationship with 

linear measurements and a non-linear relationship with 
volume measurements 

No. Measurements Error (Mean ± Std) (mm) 

1 Height 0.00 ± 0.00 
2 Shoulder Breadth 0.00 ± 0.00 
3 Chest Width 0.00 ± 0.00 
4 Waist Width 0.00 ± 0.00 
5 Pelvis Width 0.00 ± 0.00 
6 Inseam Width 0.00 ± 0.00 
7 Arm Length 0.36 ± 0.35 
8 Inside Leg Length 0.00 ± 0.00 
9 Back Length 0.00 ± 0.00 

10 Chest Circumference 29.46 ± 23.74 
11 Waist Circumference 68.22 ± 47.56 
12 Pelvis Circumference 32.25 ± 27.96 

13 Thigh Circumference 60.57 ± 46.79 

3. Heuristic optimization in detail 

This section discusses four heuristic optimization 
methods, including Simulated Annealing, Particle 
Swarm Optimization, Genetic Algorithm, and 
Diversity Control oriented Genetic Algorithm. The 

history, main algorithms, and implementation 
process of each method are described in detail.  

3.1. Simulated annealing 

Simulated Annealing Optimization (SA) was first 
defined by Kirkpatrick et al. (1983). It is based on 
the philosophy of physical annealing: A material is 
heated up until its molecular structure weakens and 
changes. The temperature of the material is cooled 
down after archiving the desired structure. The 
simulated Annealing method mimics the annealing 
process by applying the Thermodynamic equation. It 
is used to find the global optimal while avoiding the 
local. In fact, there are two main factors directly 
affecting Simulated Annealing: (1) Temperature, 
which includes the initial and final value for 
reduction progress, (2) how to choose neighbor 
candidates after each iteration. Based on the above 
algorithm, Simulated Annealing provides two key 
benefits: (1) Simple to implement into an issue and 
deploy to a large number of applications, (2) Avoids 
being stuck at the local minimum. However, it has 
several disadvantages because of the algorithm itself. 
Finding an optimal solution could take a long time, 
and many hyperparameters require experience to 
adjust. The process (Algorithm 2) describes how to 
apply Simulated Annealing optimization to this issue. 

As previously stated, two critical aspects, namely 
(1) the neighborhood of candidate value and (2) the 
process to decrease the temperature, would be 
selected carefully to ensure the issue’s requirement. 
Firstly, values of the candidate are generated as a 
normal distribution in the range [−3, 3] which is 
similar to the variety of shape parameters 𝛽. To 
identify the neighborhood value of candidates after 
each iteration, a condition of the vicinity is created as 

follows: 𝐵(𝛽𝑖 , 𝑟) = {𝑥 ∈ ℝ: |𝛽𝑖 − 𝑥| < 𝑟}, 𝑟 =
3

𝑘
, 𝑘 is 

adjusted parameter, the higher 𝑘 the lower of 
convergent and vice versa. However, if 𝑘 is too small, 
the moving process could be fast enough to pass over 
the global optimal. For temperature reduction, a 
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linear rule is applied as below: 𝑇 = 𝑇high  −

 
(𝑇ℎ𝑖𝑔ℎ − 𝑇𝑙𝑜𝑤) ∗ 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
. The candidate with a worse 

value than the global value is selected based on the 

probability 𝑝 =  𝑒
−𝛥𝐶

𝑇 . If 𝑇 is much larger compared 
to 𝛥𝐶, a new candidate is frequently updated with a 
higher probability and vice versa. After investigating 
and surveying the space solution, the values of 𝑇ℎ𝑖𝑔ℎ  

and 𝑇𝑙𝑜𝑤  are chosen respectively as: 0.005 and 0. 
 

Algorithm 2: Simulated annealing 
1 Initialize: Init temperature, randomly initialized candidate 
2 𝑁 ← number of new candidates in each iteration 
3 For Iteration =  1 → Number of iterations do 
4  For 𝑖 =  1 →  𝑁 do 
5   Generate neighbor 𝛽𝑛𝑒𝑤 of current candidate 𝛽𝑐𝑢𝑟 
6   Update best candidate 
7   If 𝛽𝑛𝑒𝑤 is better than 𝛽𝑐𝑢𝑟 then 
8    𝛽𝑐𝑢𝑟 ← 𝛽𝑛𝑒𝑤 
9   Else 

10    Δ𝐶 = 𝑓(𝛽𝑐𝑢𝑟) − 𝑓(𝛽𝑛𝑒𝑤) 

11    𝑝 =  𝑒
−𝛥𝐶

𝑇  
12    Generate a random number 𝑟𝑎𝑛𝑑 ∈ [0, 1] 
13    If 𝑟𝑎𝑛𝑑 < 𝑝 then 
14     𝛽𝑐𝑢𝑟 ← 𝛽𝑛𝑒𝑤 
15    End if 
16   End if 
17  End for 
18  If terminating condition is satisfied then 
19   STOP 
20  End if 
21  Decrease the temperature 
22 End for 

3.2. Particle swarm optimization 

Particle Swarm Optimization (PSO) is similar to 
other evolutionary computation techniques. It was 
first announced by Kennedy and Eberhart (1995) 
based on the social behavior of birds or fish: A large 
number of individuals in a swarm and the method 
they corporate to quickly find food in an area. The 
particle of Particle Swarm Optimization plays a 
similar role as birds in a swarm. Each particle has a 
relevant velocity and is updated in both magnitude 
and direction via personal and social information. 
Near to SA, the advantage of PSO is finding the 
optimal global solution. However, the latter requires 
fewer hyperparameters used to customize, and the 
problem is not differentiable. There are two main 
factors in PSO, including  

 
(1) Determining the coefficient for exploitation and 

exploration of the particle after each iteration, 
and  

(2) Defining the random initial value. 
 
Similar to the Simulated Annealing algorithm, the 

normal distribution is used to initialize the value of 
particle and velocity of each particle respectively in 

[−3, 3] and [−
3

𝑘
,

3

𝑘
] with 𝑘 is the customized variable. 

The inertia (𝑤), cognitive (𝑐1) and social (𝑐2) 
coefficients would represent exploitation and 
exploration of particles to find the best solution. In 
this research, adaptive hyperparameters are applied 
to update the coefficients over the iterations as 

follows: 𝑤𝑡 = 𝑤𝑠𝑡𝑎𝑟𝑡 −
(𝑤𝑠𝑡𝑎𝑟𝑡−𝑤𝑒𝑛𝑑) ∗ 𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
, and 𝑐1

𝑡 =
−3𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
+ 3.5, 𝑐2

𝑡 =
3𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
+ 0.5 

(according to the research by Sermpinis et al. 
(2013)). The purpose of this process is to increase 
the exploration at the beginning with the strong 
initial value of 𝑐1 and 𝑤, the weak initial value of 𝑐2 
and to exploit the global optimal by converging 
towards the best results by decreasing 𝑐1, 𝑤 and 
increasing 𝑐2. 

 
Algorithm 3: Particle swarm optimization 

1 
Initialize: hyperparameters, randomly initialized position 𝑝 
and velocity 𝑣 of particles 

2 Set personal best and global best from initial particles 
3 For 𝑡 =  1 → Number of iterations do 
4  Update 𝑤𝑡, 𝑐1

𝑡, 𝑐2
𝑡 

5  For each particle: 
6   Update position 𝑝𝑖

𝑡 = 𝑝𝑖
𝑡−1 + 𝑣𝑖

𝑡−1 
7   Update personal best 𝑝𝑏𝑖 
8   Update global best 𝑔𝑏 
9  End for 

10  If terminating condition is satisfied then 
11   STOP 
12  End if 
13  For each particle: 
14   Random 𝑟1, 𝑟2 ∈ [0, 1] 

15   
Update velocity 𝑣𝑖

𝑡 = 𝑤𝑡𝑣𝑖
𝑡−1 + 𝑟1𝑐1

𝑡(𝑝𝑏𝑖 − 𝑝𝑖
𝑡) +

𝑟2𝑐2
𝑡(𝑔𝑏 − 𝑝𝑖

𝑡) 
16  End for 
17 End for 

3.3. Genetic algorithm (GA)/diversity control 
oriented genetic algorithm (DCGA) 

Genetic Algorithm (GA) was one of the first 
developed heuristic optimization methods in 1950 
and became well known by Professor John Holland 
(Holland, 1975) after his book “Adaptation in 
Natural and Artificial Systems” was published. It is 
inspired by Charles Darwin’s theory of natural 
selection. Like other meta-heuristic methods, the 
best candidate or fittest individual (Genetic 
Algorithm) would be chosen after a large number of 
iterations. There are five main phases which are 
known  

 
(1) Initial Population,  
(2) Objective function,  
(3) Selection,  
(4) Crossover, and  
(5) Mutation.  

 
The strong points of the Genetic Algorithm are: 

(1) It can solve a wide range of problems; (2) it can 
be implemented with both discontinuous and 
continuous parameters; (3) it does not require 
derivatives. However, a time-consuming process is a 
significant barrier to deploy a Genetic Algorithm, and 
results could be trapped in local optimal. Parallel 
implementation and customizing the initial 
population could handle a part of the issues. 
Diversity Control Oriented Genetic Algorithm 
(DCGA) is a variant of the Genetic Algorithm 
developed to improve the latter's weaknesses. First 
announced in by professor Hisashi Shimodaira in 
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1997 (Shimodaira, 2001), Diversity Control Oriented 
Genetic Algorithm creates diversity for the 
population and updates the generation using a 
variable called “hamming distance” to select a better 
candidate for the next generation. 

 
Algorithm 4: Genetic algorithm 

1 Generation of the initial population 
2 Repeat 
3  Calculation of fitness 
4  Selection 
5  Crossover 
6  Mutation 
7 Until terminating condition is satisfied. 

 

To apply Genetic Algorithm and Diversity Control 
Oriented Genetic Algorithm to this issue, the initial 
population is generated based on the normal 
distribution as the above algorithm with a range of 
shape parameters as [−3, 3]. This research uses 
Laplace crossover and exponential mutation as ref 
(Deep and Thakur, 2007a; 2007b) for Genetic 
Algorithm and Diversity Control Oriented Genetic 
Algorithm. The detailed implementation is available 
in Nguyen and Hoang (2021). Different from the 
reproduction process, the selection process of the 
two methods would be divided into two strategies. A 
popular selection known as Tournament is chosen to 
apply to the Genetic Algorithm to select individuals 
from a population. The selection in Diversity Control 
Oriented Genetic Algorithm, on the other hand, is 
divided into three primary steps: (1) Eliminating 
duplicated individuals in the population, the 
“duplicated individuals” are defined as follows: 𝛽1, 𝛽2 
individuals have: |𝑥𝑖

1 − 𝑥𝑖
2| ≤ 𝜀 ∀1 ≤ 𝑖 ≤ 10 where 

𝑥𝑖
1 ∈ 𝛽1, 𝑥𝑖

2 ∈ 𝛽2, (2) Cross-generational Probabilistic 
Survival Selection (CPSS) method is used to select 
individuals. After arranging individuals in ascending 
order of fitness function’s value, the process to select 
the first individual and the next ones is defined by 
the following equation: 
 

𝑝 = [(1 − 𝑐)
ℎ

𝑀
+ 𝑐]

𝛼
                                                                    (2) 

 

where ℎ is the hamming distance between a 
candidate individual and the individual which have 
corresponding genes satisfied: |𝑥𝑖

1 − 𝑥𝑖
2| > 𝜀, 0 <

 𝜀 ≪ 1; 𝑀 is the number of genes in an individual; 𝑐 
and 𝛼 are the coefficients for shape and exponent 
whose values are in the range of [0, 1]. 

(3) After step (2), if the number of individuals is 
smaller than 𝑁, new individuals will be generated 
randomly in the initial population. 

4. Results and discussion 

4.1. Dataset and configurations in detail 

The dataset used for validation and verification in 
this paper is collected by Viettel Military Industry 

and Telecoms Group (Vietnam). This dataset was 
generated as part of a project to build a body 
database of Vietnamese people aged 18-65, living in 
Hanoi and Ho Chi Minh City, the two largest cities in 
Vietnam. These cities have about 20 million people, 
accounting for 20% of Vietnam’s total population. 
The population density is approximately 1000 
people per km2 with thousand business sectors. Data 
collection is collected using representative samples 
for gender, mass, occupation, religion, and ethnicity 
to ensure the distribution and diversity of the 
population in Vietnam. The database has around 900 
file samples, including: (1) object files in the obj 
format, (2) the anthropometric measurements of 
each sample, and (3) 2D images of the front view and 
side view of each sample. 

4.2. Real dataset in Vietnam 

4.2.1. Convergence 

As the process mentioned above, the selection of 
hyperparameters for heuristic methods is 
approached via Appendix A. It includes two main 
factors: (1) the average error on the dataset both in 
males and females, (2) the meantime processing. The 
results indicate that the processing time is inversely 
proportional to the accuracy for Simulated 
Annealing, Diversity Control Oriented Genetic 
Algorithm, and Particle Swarm Optimization; only 
the Genetic Algorithm has a minor difference, but the 
variation is only approximately 0.6%. According to 
Appendix A, for Diversity Control Oriented Genetic 
Algorithm and Genetic Algorithm, the difference in 
the best value and the worst value is 16% and 20%, 
respectively, and the distances in time processing 
are 0.3% and 0.6% at the same time. In contrast, 
Simulated Annealing brings an obvious difference 
between time and accuracy with 259% and 8%, 
respectively. Particle Swarm Optimization gives a 
balanced result with changes of around 1% and 8%.  

Fig. 2 depicts the convergence time of four 
methods and Appendix A considers the dependence 
of them on hyperparameters. It can be seen that 
Simulated Annealing is pretty straightforward to 
implement and less dependent on hyperparameters 
changes; however, its convergence time is rather 
slow. The Genetic Algorithm is highly reliant on the 
hyperparameters to produce results and quickly 
converge to the local optimal. Diversity Control 
Oriented Genetic Algorithm improves GA’s 
performance, allowing faster convergence and better 
results thanks to diversifying population after the 
selection process but this method still rapidly 
converges to the local optima. From the study’s 
experiment, PSO outperforms the remaining 
methods as it is simple to conduct, less reliant on 
hyperparameters, and provides optimal value closest 
to the global optimal value.  
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Fig. 2: Convergence time: DCGA quickly converges to the local optima while PSO gives the results closest to the global optima 

 

4.2.2. Comparison of time consumption and 
accuracy between Heuristics methods 

First, we investigate the accuracy of nine input 
anthropometric measurements, including overall 
height, shoulder breadth, chest circumference, waist 
circumference, arm length, inside leg length, and 
thigh circumference. Figs. 3a and 3b illustrate the 
average errors in these nine measurements. Overall, 
the Genetic Algorithm produces the least accurate 
output in both males and females, with the mean 
errors of roughly 6.36mm and 5.64mm, respectively, 
nearly double 2.62mm and 3.53mm of Particle 
Swarm Optimization, which gains the lowest errors 
among the four methods. Diversity Control Oriented 
Genetic Algorithm and Simulated Annealing rank 
second and third with mean errors around 5mm and 
4mm, respectively. However, to process time, it can 
be seen that the more accurate the output, the longer 
the processing time. In particular, while the Genetic 
Algorithm has the highest mean error, its processing 
time is the fastest (about 320.24s). Meanwhile, the 
most accurate methods, Particle Swarm 
Optimization and Diversity Control Oriented Genetic 
Algorithm require the longest time to process 
(362.7s and 392.88s, respectively). Simulated 
Annealing maintains a relatively stable ranking of 
two criteria. 

After optimizing 3D human models using four 
methods, we continue measuring the remaining 
anthropometric measurements as wrist 
circumference, forearm circumference, neck width, 
burst height, etc. Overall, the mean errors of the 
remaining measurements are 1.5 to 2 times higher 
than those of input measurements, with 6.68mm for 
males and 8.57 for females. Interestingly, the 
rankings of the four methods are completely 
opposed. If the Genetic Algorithm has the highest 
mean error in input measurements, the same is true 
for Particle Swarm Optimization in the remaining 

measurements. Its most inaccurate output is hip 
height, which has a mean error of up to 16.5mm. 
Performance rankings of Diversity Control Oriented 
Genetic Algorithm and Simulated Annealing remain 
unchanged on two types of measurements. 

Taking all measurements into account, there is no 
significant difference in mean errors between the 
four heuristic methods. All differences are in the 6-
7mm range for males and 5-6mm for females.  

Research results also show a slight gap in the 
mean errors of linear measurements and volume 
measurements. In general, four methods performed 
better for length than circumference: Linear 
measurements have mean errors of 6.41mm for 
males and 5.06 for females, compared to 6.71mm 
and 7.07mm of volume measurements. More 
specifically, four methods calculate the model height 
quite accurately, resulting in the lowest mean error 
for overall height. The opposite is true for forearm 
circumference with mean errors up to about 10 mm 
in male and female datasets.  

Regarding gender difference, Diversity Control 
Oriented Genetic Algorithm and Genetic Algorithm 
always perform more precisely in male models than 
female models, whereas Particle Swarm 
Optimization and Simulated Annealing fluctuate in 
input measurements and other measurements. 
However, it could not conclude which gender has the 
advantage in 3D human reconstructions from 
anthropometric measurements using heuristic 
optimization because the mean errors of male and 
female models are only about 1mm apart (6.67mm 
and 5.59mm, respectively). 

Fig. 4 shows reconstructing male and female 
model-Average errors in other anthropometric 
measurements are 1.5 to 2 times higher than input 
measurements. Due to a large number of results, the 
detail would be put in Appendix B. 
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a: Reconstructing male model 

 
b: Reconstructing female model 

Fig. 3: Reconstructing male and female model–average errors of input anthropometric measurements: PSO has the lowest 
mean error while GA produces the least accurate output 

 

 
a: Reconstructing male model 
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b: Reconstructing female model 

Fig. 4: Reconstructing male and female model-Average errors in other anthropometric measurements are 1.5 to 2 times 
higher than input measurements; PSO did the worst 

 

5. Conclusion and future work 

This research provides a summary of applying 
meta-heuristics optimization methods for 3D human 
reconstruction from anthropometric measurements. 
In the context of this study, Simulated Annealing and 
Particle Swarm Optimization are simple to 
implement and require fewer hyper-parameter 
adjustments. In contrast, changing hyperparameters 
could significantly affect the results of the Genetic 

Algorithm. This method, similar to Diversity Control 
Oriented Genetic Algorithm, could both quickly 
converge to the local optima. We also provided 
detailed instructions for deploying four methods 
under pseudo code to provide a guideline for future 
research.  

Appendix A. The dependence of output on 
variation of heuristic parameters 

 
Table A1: Simulated annealing 

 Iteration Step size 
Number of 
neighbors 

High temperature Low temperature Female Male Runtime (s) 

1 500 [
−3

12
,

3

12
] 45 0.005 0 5.73 6.78 359.48 

2 500 [
−3

13
,

3

13
] 40 0.005 0 5.80 6.84 319.03 

3 500 [
−3

14
,

3

14
] 30 0.005 0 5.80 6.81 242.07 

4 500 [
−3

15
,

3

15
] 30 0.005 0 5.84 6.80 243.80 

5 500 [
−3

15
,

3

15
] 20 0.005 0 5.92 6.84 161.90 

6 500 [
−3

16
,

3

16
] 20 0.005 0 5.85 6.90 162.32 

 
Table A2: Diversity control oriented genetic algorithm 

 Iteration Number of parents Mutation probability a b p Female Male Runtime (s) 

1 500 50 0.1 0 1 0.75 5.69 6.71 392.88 
2 500 40 0.1 0 0.5 0.65 6.80 7.59 309.96 
3 500 50 0.1 0 0.25 0.5 7.13 7.66 391.73 
4 500 20 0.1 0 0.75 0.75 7.58 8.23 155.57 

 
Table A3: Genetic algorithm 

 Iteration 
Size of popula-

tion 
Number of 

parents 
Crossover 

probability 
Mutat-ion proba-

bility 
a b p 

Fema-
le 

Ma-
le 

Runtime 
(s) 

1 500 100 60 0.9 0.1 0 0.75 0.75 6.11 7.03 320.24 
2 500 60 40 0.9 0.1 0 1 0.75 6.32 7.18 155.34 
3 500 50 30 0.9 0.1 0 0.5 0.65 7.90 8.61 155.66 
4 500 60 40 0.9 0.1 0 0.25 0.5 8.24 8.65 156.20 

 
Table A4: Particle swarm optimization 

 Iteration Size of swarm 𝑤0 𝑤𝑇 Velocity boundary Female Male Runtime (s) 

1 500 30 1. 0.0001 [
−3

15
,

3

15
] 5.46 6.60 362.70 

2 500 30 0.95 0.0001 [
−3

16
,

3

16
] 5.51 6.60 355.58 

3 500 40 1. 0.0001 [
−3

14
,

3

14
] 5.47 6.53 374.39 

4 500 50 1. 0.0001 [
−3

15
,

3

15
] 5.49 6.58 389.27 
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Appendix B. Average of mean square error and 
standard deviation in anthropometric measurements 
for males and females 

Table B1: Simulated annealing 
SA Female Male 

Measurements 
Mean ± Std 

(mm) 
Mean ± Std 

(mm) 

Input 
measurements 

Overall Height 2.53 ± 1.83 2.71 ± 2.58 
Shoulder Breadth 3.88 ± 2.81 4.32 ± 3.53 

Chest 
Circumference 

3.03 ± 2.69 4.96 ± 3.29 

Waist 
Circumference 

3.95 ± 3.43 3.52 ± 2.79 

Pelvis 
Circumference 

5.82 ± 4.42 3.84 ± 3.36 

Arm Length 5.33 ± 3.76 3.83 ± 5.24 
Inside Leg Length 3.62 ± 2.58 2.67 ± 1.90 

Back Length 3.40 ± 2.65 4.82 ± 3.61 
Thigh 

Circumference 
6.52 ± 4.85 3.19 ± 2.73 

Other 
measurements 

Shoulder to Crotch 6.66 ± 5.43 10.14 ± 7.57 
Wrist 

Circumference 
8.46 ± 6.79 7.99 ± 6.32 

Forearm 
Circumference 

9.22 ± 7.84 10.48 ± 7.05 

Neck Width 4.07 ± 3.15 4.62 ± 3.77 
Bust Height 8.20 ± 5.82 9.37 ± 6.40 

Waist Height 5.54 ± 4.03 8.04 ± 4.86 
Hip Height 3.95 ± 3.14 14.97 ± 7.28 

Back-Neck Height 4.03 ± 3.12 9.51 ± 5.75 
Knee Height 2.68 ± 1.97 10.13 ± 5.41 

Inseam 10.55 ± 3.73 10.59 ± 3.83 
Waist Width 9.78 ± 7.92 7.04 ± 4.81 
Pelvis Width 9.19 ± 5.32 5.72 ± 4.43 

 Mean 5.73 6.78 

 
Table B2: Diversity control oriented genetic algorithm 

DCGA Female Male 

Measurements 
Mean ± Std 

(mm) 
Mean ± Std 

(mm) 

Input 
measurements 

Overall Height 2.41 ± 1.84 2.68 ± 2.83 
Shoulder Breadth 5.47 ± 3.82 9.22 ± 4.81 

Chest Circumference 3.57 ± 2.75 6.94 ± 3.54 
Waist Circumference 4.50 ± 3.95 4.24 ± 2.38 
Pelvis Circumference 6.46 ± 4.72 4.43 ± 3.23 

Arm Length 5.17 ± 4.15 3.94 ± 5.11 
Inside Leg Length 3.16 ± 2.26 2.58 ± 1.87 

Back Length 3.49 ± 2.73 6.20 ± 3.76 
Thigh Circumference 7.10 ± 5.01 3.23 ± 2.92 

Other 
measurements 

Shoulder to Crotch 6.64 ± 4.78 9.46 ± 6.73 
Wrist Circumference 8.59 ± 6.59 7.73 ± 6.09 

Forearm 
Circumference 

8.90 ± 7.47 9.73 ± 7.07 

Neck Width 4.33 ± 3.30 4.66 ± 3.73 
Bust Height 6.82 ± 5.24 10.13 ± 6.92 

Waist Height 4.93 ± 3.90 5.95 ± 4.68 
Hip Height 3.97 ± 3.01 9.82 ± 6.84 

Back-Neck Height 3.88 ± 2.94 8.26 ± 5.26 
Knee Height 2.62 ± 1.95 7.75 ± 5.45 

Inseam 10.21 ± 3.67 11.48 ± 3.53 
Waist Width 10.00 ± 7.93 7.04 ± 4.54 
Pelvis Width 7.17 ± 4.65 5.52 ± 4.44 

 Mean 5.69 6.71 

 
Table B3: Genetic algorithm 

GA Female Male 

Measurements 
Mean ± Std 

(mm) 
Mean ± Std 

(mm) 

Input 
measurements 

Overall Height 2.87 ± 2.36 2.98 ± 3.39 
Shoulder Breadth 6.85 ± 4.82 10.36 ± 5.87 

Chest Circumference 5.31 ± 4.43 8.86 ± 4.54 
Waist Circumference 6.05 ± 5.43 5.70 ± 3.22 
Pelvis Circumference 7.90 ± 5.62 7.64 ± 4.58 

Arm Length 6.06 ± 4.35 5.74 ± 5.24 
Inside Leg Length 3.10 ± 2.29 2.86 ± 2.49 

Back Length 4.13 ± 3.15 7.11 ± 4.43 
Thigh Circumference 8.46 ± 6.27 5.99 ± 4.45 

Other 
measurements 

Shoulder to Crotch 6.36 ± 4.92 8.50 ± 5.76 
Wrist Circumference 8.94 ± 6.91 7.60 ± 6.22 

Forearm 
Circumference 

8.91 ± 7.39 9.82 ± 7.33 

Neck Width 4.45 ± 3.25 4.46 ± 3.65 
Bust Height 7.36 ± 5.29 9.07 ± 6.57 

Waist Height 5.17 ± 3.97 6.11 ± 4.74 
Hip Height 4.30 ± 3.14 8.24 ± 5.75 

Back-Neck Height 4.18 ± 3.56 6.96 ± 5.34 
Knee Height 2.95 ± 2.14 6.16 ± 4.30 

Inseam 8.98 ± 4.05 10.69 ± 4.10 
Waist Width 10.09 ± 7.81 6.63 ± 4.31 
Pelvis Width 5.93 ± 4.02 6.21 ± 4.67 

 Mean 6.11 7.03 

Table B4: Particle swarm optimization 
PSO Female Male 

Measurements 
Mean ± Std 

(mm) 
Mean ± Std 

(mm) 

Input 
measurements 

Overall Height 1.91 ± 1.41 2.12 ± 2.42 
Shoulder Breadth 3.33 ± 2.56 3.22 ± 2.97 

Chest Circumference 2.11 ± 1.91 3.74 ± 2.68 
Waist Circumference 2.75 ± 2.59 1.90 ± 1.75 
Pelvis Circumference 5.06 ± 4.07 1.94 ± 2.12 

Arm Length 4.72 ± 3.43 2.55 ± 5.16 
Inside Leg Length 3.34 ± 2.06 2.00 ± 1.63 

Back Length 2.70 ± 2.31 4.55 ± 3.35 
Thigh Circumference 5.82 ± 4.47 1.58 ± 1.75 

Other 
measurements 

Shoulder to Crotch 7.12 ± 5.23 10.67 ± 8.06 
Wrist Circumference 8.80 ± 7.11 8.16 ± 6.30 

Forearm 
Circumference 

9.15 ± 7.89 9.97 ± 7.59 

Neck Width 4.01 ± 3.12 4.68 ± 3.74 
Bust Height 9.39 ± 5.83 10.89 ± 7.51 

Waist Height 5.21 ± 3.86 8.83 ± 5.22 
Hip Height 3.22 ± 2.43 16.50 ± 7.18 

Back-Neck Height 3.80 ± 3.14 10.43 ± 6.09 
Knee Height 2.48 ± 1.86 10.83 ± 5.39 

Inseam 10.48 ± 3.19 10.67 ± 3.32 
Waist Width 9.45 ± 7.91 7.20 ± 4.83 
Pelvis Width 9.71 ± 5.24 6.12 ± 4.70 

 Mean 5.46 6.60 
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