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This article investigates the robust fuzzy tracking control design for a class of 
uncertain nonlinear systems using the Takagi–Sugeno (TS) fuzzy models. The 
main purpose of this study is to design state feedback and observer-based 
controllers such that the closed-loop system is asymptotically stable. Based 
on the Lyapunov theory, sufficient conditions are derived such that the 
closed-loop system is robustly stable. The linear matrix inequality LMI 
approach is used to obtain the state-feedback and observer gains. The 
effectiveness of the proposed design approach is provided via numerical 
simulations for a pendulum system. 
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1. Introduction 

*All recently, the analysis and synthesis of 
nonlinear systems have known increasing interests 
in academic theory as well as in industrial 
applications. However, the research on real physical 
systems and processes becomes quite difficult. Due 
to its excellent ability to express the nonlinear 
systems using the fuzzy logic and linear control 
theories, the Takagi-Sugeno (TS) fuzzy model has 
received a great deal of attention in the last few 
decades (Takagi and Sugeno, 1985). Based on the 
sector non-linearity methodology (Wang et al., 1996; 
Tanaka et al., 1996) a nonlinear model can be exactly 
represented by its equivalent (TS) one. The control 
design is carried out using the so-called parallel 
distributed compensation (PDC) scheme which 
consists to design a linear feedback controller for 
each local linear model. Note that the (PDC) method 
combined with quadratic Lyapunov functions, 
provides a basis for the analysis and control design 
of (TS) fuzzy systems in view of powerful 
conventional control theory (Tuan et al., 2004; 
Yoneyama, 2006). 

On the other hand, robustness is considered the 
most important requirement that should be achieved 
by the control system. Thus the problem of robust 
control of uncertain systems has received a great 
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deal of attention. The (TS) fuzzy models used to 
describe non-linear systems may be affected by 
uncertainties that can be provided from the 
modeling procedure or also from the inherent 
uncertainties in the real system (Cao and Frank, 
2000). 

Accordingly, the standard approach to cope with 
stability and stabilization problems for (TS) fuzzy 
systems consists in finding common quadratic 
Lyapunov functions that satisfy sufficient conditions, 
guaranteeing stability. These conditions are 
frequently expressed as Linear Matrix Inequality 
(LMI) constraints solvable through convex 
optimization techniques. Within this framework, 
very effective strategies have been suggested to 
overcome mathematical and numerical difficulties, 
promoting less conservative conditions (Ding et al., 
2006; Fang et al., 2006; Kim and Lee, 2000). 

On a different research front, in practice, the full 
system states are generally unavailable for 
measurement and the observers have been 
introduced as an interesting approach to estimate 
the state variables for controller design purposes. In 
this regard, the observer-based control output 
feedback control is probably well suited for feedback 
control, while the problem for designing observers 
for nonlinear systems described by (TS) fuzzy 
models has drawn considerable research attention 
with some remarkable results can be found in Lin et 
al. (2005), Lo and Lin (2004), and Xiaodong and 
Qingling (2003). 

Besides, the tracking control problem is an 
important issue to be considered for many practical 
applications such as missile tracking control, robotic 
tracking control, and attitude tracking control of 
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aircraft. However, the tracking control design is 
more difficult than the stabilization control design. 
Thus, some results about this control problem can be 
found in Tseng et al. (2001) and Wang and Tong 
(2006). 

Based on the (TS) fuzzy model, the tracking 
control design is studied in this paper. The non-
linear system is firstly described by the equivalent 
(TS) fuzzy model. Then, the H∞ tracking error 
performance is formulated, and a fuzzy observer-
based controller is developed in order to reduce the 
tracking error. The considered fuzzy tracking control 
problem is cast in terms of a set of linear matrix 
inequality which can be solved effectively by a 
convex optimization technique. 

2. System descriptions and preliminaries 

The (TS) fuzzy dynamic model is described by 
fuzzy IF-THEN rules, which locally represent linear 
input-output relations of nonlinear systems. A 
continuous fuzzy model with parameter 
uncertainties can be described by, 
 
R𝑖: If 𝜃1 is 𝐹𝑖

1 and If 𝜃2 is 𝐹𝑖
2⋯ If 𝜃𝑠 is 𝐹𝑖

𝑠, Then 

{
�̇�(𝑡) = 𝐴𝑖(𝑡)𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑖𝑥(𝑡)

                                                        (1) 

 

where 𝑥(𝑡) ∈ ℝ𝑛, 𝑢(𝑡) ∈ ℝ𝑚 , and 𝑦(𝑡) ∈ ℝ𝑞  are the 
state vector, the input vector, the output vector, 
respectively. 𝐴𝑖, 𝐵𝑖 , and 𝐶𝑖  are constant real matrices 
with appropriate dimensions; 𝑟 is the number of 

model rules; 𝜃(𝑡) = [𝜃1,𝑡 , 𝜃2,𝑡 , … , 𝜃𝑝,𝑡] is the premise 

variable vector and ℎ𝑖(𝜃(𝑡)) denotes the normalized 
membership function which satisfies ℎ𝑖(𝜃(𝑡)) ⩾
0, 𝑖 ∈ 𝕊 ≜ {1,2, … , 𝑟} and ∑𝑖

𝑟  ℎ(𝜃(𝑡)) = 1 for all 𝑡. 
Assume that 𝐴𝑖(𝑡) = 𝐴𝑖 + Δ𝐴𝑖 , is a time-varying 

system matrix. 𝐴𝑖, 𝐵𝑖 , and 𝐶𝑖  are constant matrices 
with appropriate dimensions. Parameter uncertainty 
Δ𝐴𝑖 is assumed to be of the form, 
 
Δ𝐴𝑖 = 𝑀𝑖Δ𝑁𝑖                                                                                   (2) 
 

where 𝑀𝑖 , 𝑁𝑖  and 𝑁𝑢𝑖  are known real constant 
matrices and Δ is unknown time-varying matrix 
function satisfying, 
 
Δ𝑇Δ ⩽ 𝐼                                                                                             (3) 
 

The overall fuzzy model is inferred as follows: 
 

{
�̇�(𝑡) = ∑  𝑟

𝑖=1  ℎ𝑖(𝜃(𝑡)){𝐴𝑖(𝑡)𝑥(𝑡) + 𝐵2𝑖𝑢(𝑡)}

𝑦(𝑡) = ∑  𝑟
𝑖=1  ℎ𝑖(𝜃(𝑡))𝐶2𝑖𝑥(𝑡)

                       (4) 

 

where ℎ𝑖(𝜃) are the normalized weight functions 
defined by, 
 

ℎ𝑖(𝜃) =
∏  𝑠
𝑗=1  𝐹𝑗

𝑖(𝜃𝑗)

∑  𝑟
𝑖=1  ∏  𝑠

𝑗=1  𝐹𝑗
𝑖(𝜃𝑗)

,  𝑖 = 1,2,⋯ , 𝑟 

 

and 𝐹𝑗
𝑖(𝜃𝑗) represents the membership degrees of 𝜃𝑗  

in the fuzzy set 𝐹𝑗
𝑖  . Note that the normalized weights 

ℎ𝑖(𝜃) satisfy, 

ℎ𝑖(𝜃) ⩾ 0, 𝑖 =  1,2,… , 𝑟  ∑  𝑟
𝑖=1  ℎ𝑖ℎ𝑖(𝜃)  =  1.                      (5) 

 

Consider the following reference model: 
 
�̇�𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑟(𝑡)                                                           (6) 
 

where 𝑥𝑟(𝑡) represents the reference state, 𝐴𝑟 is an 
asymptotically stable matrix, 𝑟(𝑡) is a bounded 
reference input. 

The main objective of this paper is to design a 
PDC fuzzy controller able to stabilize the system 
under consideration and guarantee the following 𝐻∞ 
tracking performance according to the tracking 
error: 
 

∫  
∞

0
𝑒𝑟
𝑇(𝑡)𝑄𝑒𝑟(𝑡)𝑑𝑡 ≤ 𝛾

2 ∫  
∞

0
𝑟𝑇(𝑡)𝑟(𝑡)𝑑𝑡                               (7) 

 

where, 
 
𝑒𝑟(𝑡) = 𝑥(𝑡) − 𝑥𝑟(𝑡)                                                                    (8) 
 

Lemma 2.1: (Petersen, 1987) Given matrices M, N, 
and P of appropriate dimensions and with P 
symmetrical, then, 
 
𝑃 +𝑀𝛥𝑁 + 𝑁𝑇𝐹𝑇(𝑡)𝑀𝑇 < 0                                                     (9) 
 

for any 𝛥 satisfying ∆𝑇∆ ≤  𝐼, if and only if there 
exists a scalar 𝜖 >  0 such that, 
 
𝑃 + 𝜖𝑀𝑀𝑇  + 𝜖−1 𝑁𝑇𝑁 < 0                                                     (10) 
 

Lemma 2.2: For given matrices P >  0, S, and R of 
appropriate dimensions the following two 
inequalities are equivalent, 
 

−𝑃 + 𝑅𝑇𝑆−1𝑅 < 0 ⟺ [−𝑃 𝑆𝑇

∗ −𝑅
] < 0                                 (11) 

 

Lemma 2.3: The following inequality holds (Lo and 
Lin, 2004): 
 
∑  𝑟
𝑖=1 ∑  𝑟

𝑗=1 ℎ𝑖ℎ𝑗Υ𝑖𝑗 < 0                                                              (12) 

if 
Υ𝑖𝑖 < 0, 𝑖 = 1,2,⋯ , 𝑟                                                                   (13) 
2

𝑟−1
Υ𝑖𝑖 + Υ𝑖𝑗 + Υ𝑗𝑖 < 0,  𝑗 > 𝑖                                                    (14) 

 

For the purpose of control design, we consider 
different feedback schemes including fuzzy state 
feedback and fuzzy observer-based state feedback.  

3. State-feedback tracking controller design 

In this section, we develop a procedure to design 
a state-feedback controller to achieve the objective 
control requirement when all state variables are 
available for measurement. 
 
𝑢(𝑡) = ∑  𝑟

𝑖=1 ℎ𝑖(𝑡)(𝐾1𝑖𝑥(𝑡) + 𝐾2𝑖𝑥𝑟(𝑡))                               (15) 
 

where 𝐾1𝑖  and 𝐾2𝑖  are controller gains to be 
designed. 

The closed-loop system of 4 and 15 is given by, 
 

𝑥‾̇(𝑡) = ∑  𝑟
𝑖=1 ∑  𝑟

𝑗=1 ℎ𝑖ℎ𝑗(𝒜𝑖𝑗(𝑡)𝑥‾(𝑡) + ℬ𝑟(𝑡))                    (16) 
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where 𝑥‾ = [𝑥(𝑡)𝑥𝑟(𝑡)]
𝑇 , 

 
𝒜𝑖𝑗(𝑡)  = 𝒜𝑖𝑗 + Δ𝒜𝑖𝑗(𝑡), Δ𝒜𝑖𝑗(𝑡) = 𝑀‾ 𝑖Δ𝑁‾𝑖

𝒜𝑖𝑗  = [
𝐴𝑖 + 𝐵2𝑖𝐾1𝑗 𝐵2𝑖𝐾2𝑗

0 𝐴𝑟
]𝑀‾ 𝑖 = [

𝑀𝑖

0
]

𝑁‾𝑖  = [𝑁𝑖0]ℬ = [
0
𝐵𝑟
]

                   (17) 

 

Moreover, the 𝐻∞ tracking performance can be 
written as, 
 

∫  
∞

0

𝑥‾𝑇(𝑡)𝑄‾𝑥‾(𝑡)𝑑𝑡 ≤ 𝛾2∫  
∞

0

𝑟𝑇(𝑡)𝑟(𝑡)𝑑𝑡, 𝑄‾ = [
𝑄 −𝑄
−𝑄 𝑄

]  

                                                                                                         (18) 
 

Theorem 1: Closed-loop fuzzy system (16) is 
robustly stable if there exists a matrix 𝑃 =

[
𝑃1 0
0 𝑃2

] > 0 such that, 

 
Υ𝑖𝑖 < 0, 𝑖 ∈ 𝕊                                                                                 (19) 
2

𝑟−1
Υ𝑖𝑖 + Υ𝑖𝑗 + Υ𝑗𝑖 < 0,  𝑗 > 𝑖                                                    (20) 

 

where, 
 

Υ𝑖𝑗 =

(

 

𝑃𝒜𝑖𝑗 +𝒜𝑖𝑗
𝑇 𝑃 ℬ 𝑃𝑀‾ 𝑖 𝑁‾𝑖

𝑇

∗ −𝛾2𝐼 0 0

∗ ∗ −𝜖−1𝐼 0
∗ ∗ ∗ −𝜖𝐼)

                    (21) 

 

Proof: Under the conditions of the theorem, we first 
establish the stability of the system in 16. In the 
sequel, we choose a Lyapunov function candidate for 
system 16 as follows: 
 
𝑉(𝑥‾(𝑡)) = 𝑥‾𝑇(𝑡)𝑃𝑥‾(𝑡)                                                               (22) 
 

Then, the derivative of Lyapunov function (22) 
gives: 
 
�̇�(𝑥‾(𝑡)) = 2𝑥‾𝑇(𝑡)𝑃𝑥‾̇(𝑡)                                                            (23) 
 

Considering (16), we get 
 

�̇�(𝑥‾(𝑡)) = 2𝑥‾𝑇(𝑡)𝑃 ∑  𝑟
𝑖=1 ∑  𝑟

𝑗=1 ℎ𝑖ℎ𝑗(𝒜𝑖𝑗(𝑡)𝑥‾(𝑡) + ℬ𝑟(𝑡))   

                                                                                                         (24) 
 

Moreover, we have, 
 
�̇�(𝑥‾(𝑡)) + 𝑥‾𝑇(𝑡)𝑄‾𝑥‾(𝑡) − 𝛾2𝑟𝑇(𝑡)𝑟(𝑡)                                   (25) 

= 2𝑥‾𝑇(𝑡)𝑃 ∑  𝑟
𝑖=1  ∑  𝑟

𝑗=1  ℎ𝑖ℎ𝑗(𝒜𝑖𝑗(𝑡)𝑥‾(𝑡) + ℬ𝑟(𝑡)) +

𝑥‾𝑇(𝑡)𝑄‾𝑥‾(𝑡) − 𝛾2𝑟𝑇(𝑡)𝑟(𝑡)                                                       (26) 
 

which can be written as, 
 
�̇�(𝑥‾(𝑡)) + 𝑥‾𝑇(𝑡)𝑄‾𝑥‾(𝑡) − 𝛾2𝑟𝑇(𝑡)𝑟(𝑡)             

∑  𝑟
𝑖=1  ∑  𝑟

𝑗=1  ℎ𝑖ℎ𝑗 [
𝑃𝒜𝑖𝑗(𝑡) + 𝒜𝑖𝑗(𝑡)

𝑇𝑃 + 𝑄‾ ℬ

∗ −𝛾2𝐼
]         (27) 

 

Then, according to Lemma 2.3, the conditions in 
Theorem 1 are equivalent to, 
 
∑  𝑟
𝑖=1  ∑  𝑟

𝑗=1  ℎ𝑖ℎ𝑗Υ𝑖𝑗                                                                      (28) 

=∑  

𝑟

𝑖=1

 ∑  

𝑟

𝑗=1

 ℎ𝑖ℎ𝑗

(

 

𝑃𝒜𝑖𝑗 +𝒜𝑖𝑗
𝑇 𝑃 ℬ 𝑃𝑀‾ 𝑖 𝑁‾𝑖

∗ −𝛾2𝐼 0 0

∗ ∗ −𝜖−1𝐼 0
∗ ∗ ∗ −𝜖𝐼)

 < 0 

                                                                                                         (29) 
 

Equivalently, the following inequality holds 
according to Lemma 2.1, 
 

∑  𝑟
𝑖=1 ∑  𝑟

𝑗=1 ℎ𝑖ℎ𝑗 (
𝑃𝒜𝑖𝑗(𝑡) +𝒜𝑖𝑗(𝑡)

𝑇𝑃 + 𝑄‾ ℬ

∗ −𝛾2𝐼
) < 0  

                                                                                                         (30) 
 

Thus, it is easy to verify that, 
 
�̇�(𝑥‾(𝑡)) + 𝑥‾𝑇(𝑡)𝑄‾𝑥‾(𝑡) − 𝛾2𝑟𝑇(𝑡)𝑟(𝑡) < 0                          (31) 
 

Integrating 33 from 𝑡 = 0 to 𝑡 = inf gives, 
 

∫  
∞

0
  �̇�(𝑥‾(𝑡)) + 𝑥‾𝑇(𝑡)𝑄‾𝑥‾(𝑡) − 𝛾2𝑟𝑇(𝑡)𝑟(𝑡) = 𝑉(∞) −

𝑉(0) + ∫  
∞

0
  𝑥‾𝑇(𝑡)𝑄‾𝑥‾(𝑡) − 𝛾2𝑟𝑇(𝑡)𝑟(𝑡) < 0                        (32) 

 

Hence, under zero initial condition, we get, 
 

∫  
∞

0
𝑥‾𝑇(𝑡)𝑄‾𝑥‾(𝑡)𝑑𝑡 < −𝛾2 ∫  

∞

0
𝑟𝑇(𝑡)𝑟(𝑡)𝑑𝑡                          (33) 

 

and the 𝐻∞ criterion is verified.  
 
Theorem 2: Consider the fuzzy system 4 and the 
PDC fuzzy controller 15. If there exist matrices P >
0, Y1i and Y2i such that the following LMI is verified, 
 
Υ‾𝑖𝑖 < 0, 𝑖 ∈ 𝕊(34) 
2

𝑟−1
Υ‾𝑖𝑖 + Υ‾𝑖𝑗 + Υ‾𝑗𝑖 < 0,  𝑗 > 𝑖                                                    (35) 

 

where, 
 

Υ‾𝑖𝑗 =

(

 

Υ‾11𝑖𝑗 + Υ‾11𝑖𝑗
𝑇 Υ‾12𝑖𝑗 𝜖𝑀‾ 𝑖 Υ‾14𝑖

𝑇

∗ −𝛾2𝐼 0 0
∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ −𝜖𝐼)

                          (36) 

 

where, 
 

Υ‾11𝑖𝑗 = [
𝐴𝑖𝑋1 + 𝐵2𝑖𝑌1𝑗 𝐵2𝑖𝑌2𝑗

0 𝐴𝑟𝑋2
]   

Υ‾12𝑖𝑗 = [
0

𝑋2𝐵𝑟
]                                                                              (37) 

Υ‾14𝑖 = [𝑋1𝑁𝑖0]   
 

then, the closed-loop system (4) is robustly stable, 
and the feedback gains are given by 𝐾1𝑖 = 𝑌1𝑖𝑋1

−1, 
and 𝐾2𝑖 = 𝑌2𝑖𝑋2

−1 
 
Proof: Let 𝑋 = 𝑃−1. By performing the congruence 
transformation to 19, and 20 by diag (𝑋, 𝐼, 𝐼, 𝐼), 
inequalities 37 and 38 hold by setting 𝑌1𝑖 = 𝐾1𝑖𝑋1, 
and 𝑌2𝑖 = 𝐾2𝑖𝑋1 

4. Observer-based controller 

The establishment of a PDC control law requires 
the measurement of the state vector. As this 
condition is rarely verified in practice, the use of a 
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fuzzy observer is necessary for this case. The 
observer shares the same fuzzy sets as the model 
taken into account. The fuzzy observer is given by 
the following model, 
 

{

�̇�𝑐(𝑡)  = ∑  𝑟
𝑖=1  ℎ𝑖(𝜃(𝑡)){𝐴𝑖(𝑡)𝑥𝑐(𝑡) + 𝐵2𝑖𝑢(𝑡)

+𝐿𝑖(𝑦(𝑡) − 𝑦𝑐(𝑡))}

𝑦𝑐(𝑡)  = ∑  𝑟
𝑖=1  ℎ𝑖(𝜃(𝑡))𝐶2𝑖𝑥𝑐(𝑡)

              (38) 

 

where 𝑥𝑐(𝑡) is the state estimation of 𝑥(𝑡), 𝑦𝑐  is the 
observer output, 𝐿𝑖 ∈ ℝ

𝑛×𝑞 and are the observer gain 
matrices. Suppose the following control law is used: 
 

Let us denote the estimation errors as 
 
𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑐(𝑡).                                                                   (39) 
 

By differentiating 43, we obtain, 
 
�̇�(𝑡) = ∑  𝑟

𝑖=1 ∑  𝑟
𝑗=1 ℎ𝑖ℎ𝑗{(𝐴𝑖 − 𝐿𝑖𝐶2𝑖)𝑒(𝑡) + Δ𝐴𝑖𝑥(𝑡)}.      (40) 

 

Suppose the following control law is used: 
 
𝑢(𝑡) = ∑  𝑟

𝑖=1 ℎ𝑖(𝐾1𝑖𝑥𝑐(𝑡) + 𝐾2𝑖𝑥𝑟(𝑡)).                                  (41) 
 

The closed-loop system of 4 and 46 is shown as 
fol. lows: 
 

{�̇̃�(𝑡) = ∑  𝑟
𝑖=1  ∑  𝑟

𝑗=1  ℎ𝑖ℎ𝑗{�̃�𝑖𝑗(𝑡)�̃�(𝑡)}.                                  (42) 

 

where, 
 
�̃�(𝑡)  = [𝑥(𝑡)𝑒(𝑡)𝑥𝑟(𝑡)]

𝑇

�̃�𝑖𝑗(𝑡) = �̃�𝑖𝑗 + ℳ̃𝑖𝑗Δ�̃�𝑖𝑗

�̃�𝑖𝑗 = [

𝐴𝑖 + 𝐵2𝑖𝐾1𝑖 −𝐵2𝑖𝐾𝑗 𝐵2𝑖𝐾2𝑖
0 𝐴𝑖 − 𝐿𝑖𝐶2𝑖 0
0 0 𝐴𝑟

]

ℳ̃𝑖 = [
𝑀𝑖

0
0
] , �̃�𝑖 = [𝑁𝑖 0 0]

  

 

Theorem 3: Closed-loop fuzzy system 47 is robustly 
stable, if there exist matrices 𝑃 > 0 such that: 
 
Υ̃𝑖𝑖 < 0, 𝑖 ∈ 𝕊                                                                                 (43) 
2

𝑟−1
Υ̃𝑖𝑖 + Υ̃𝑖𝑗 + Υ̃𝑗𝑖 < 0,  𝑗 > 𝑖                                                    (44) 

 

where, 
 

Υ̃𝑖𝑗 =

(

 

𝐀𝑖𝑗 +𝐀𝑖𝑗
𝑇 ℬ 𝐌𝑖 �̃�𝑖

𝑇

∗ −𝛾2𝐼 0 0
∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ −𝜖𝐼)

                                (45) 

 

where, 

𝐀𝑖𝑗 = (

𝑍𝑖𝑗
1 −𝑃2(𝐵2𝑖𝐾1𝑗) 𝑃3(𝐵2𝑖𝐾21𝑗)

∗ 𝑍𝑖𝑗
2 0

∗ ∗ 𝐴𝑟𝑃3

)

𝑍𝑖𝑗
1 = 𝑃1(𝐴𝑖 + 𝐵2𝑖𝐾𝑗)

𝑍𝑖𝑗
2 = 𝑃2𝐴𝑖 − 𝐹𝑖𝐶2𝑗

𝐌𝑖 = (
𝑃1𝑀𝑖

0
0
)

                (46) 

 

Proof: By following the same lines to prove Theorem 
1, it is easy to verify that, 
 

∑  𝑟
𝑖=1  ∑  𝑟

𝑗=1  ℎ𝑖ℎ𝑗(�̃��̃�𝑖𝑗 + �̃�𝑖𝑗
𝑇 𝑃 ¨ +𝜖(�̃�ℳ̃𝑖)(�̃�ℳ̃𝑖)

𝑇
+

𝜖−1�̃�𝑖
𝑇�̃�𝑖) < 0                                                                            (47) 

 

By setting �̃� = [
𝑃1 0 0
0 𝑃2 0
0 0 𝑃3

], inequalities 48-49 

hold using Lemma 2.3. 
Note that, there is no effective algorithm for 

solving the parameters 𝑃1, 𝑃2, 𝑃3, 𝐾𝑖 , and 𝐿𝑖  in 
Theorem 3. However, we can use the two-step 
procedure to solve them. 

4.1. Design procedure 

1. From Theorem 2, solve the state feedback 
controller 𝐾𝑖. 
2. Substitute 𝐾𝑖 into 48 and then solve the obtained 
LMIs to get 𝑃1, 𝑃2, 𝑃3, and 𝐿𝑖. 

5. A simulation example 

We consider the following problem of balancing 
an inverted pendulum on a cart. The dynamic 
equations of motion of the pendulum are given as, 
 

{
 
 

 
 
�̇�1 = 𝑥2

�̇�2 =
𝑔sin (𝑥1)−𝑎𝑚𝑙𝑥2

2sin (2𝑥1)−𝑎cos (𝑥1)𝑢

4𝑙/3−𝑎𝑚𝑙cos2 (𝑥1)
+𝑤

𝑧(𝑡) = 𝑥1 + 𝑥2 + 0.001𝑢(𝑡)
𝑦(𝑡) = 𝑥1 + 0.01𝑤(𝑡)

                        (48) 

 

where 𝑥1 denotes the angle of the pendulum from 
the vertical axis, and 𝑥2 is the angular velocity, 𝑔 =
9.8 m/s2 is the gravity constant, 𝑚 is the mass of the 
pendulum, 2𝑙 is the length of the pendulum, 𝑎 =
1/(𝑚 +𝑀),𝑀 is the mass of the cart, and 𝑢 is the 
force applied to the cart. In this simulation, the 
pendulum parameters are chosen as = 2𝑘𝑔,𝑀 =
8 kg, and 2𝑙 = 1 m. Let us consider the following 
fuzzy model to design a nonfragile observer-based 
fuzzy controller that achieves H∞ performance. 
 

{
�̇�(𝑡) = ∑  𝑟

𝑖=1  ℎ𝑖(𝜃(𝑡)){𝐴𝑖(𝑡)𝑥(𝑡) + 𝐵2𝑖𝑢(𝑡)}

𝑦(𝑡) = ∑  𝑟
𝑖=1  ℎ𝑖(𝜃(𝑡))𝐶2𝑖𝑥(𝑡)

                     (49) 

 

where, 
 

𝐴1 = [
0 1

17.2941 0
] ,  𝐴2 = [

0 1
12.6305 0

]  

𝐵21 = [
0

−0.1765
] , 𝐵22 = [

0
−0.0779

] ,  𝐶2𝑖 = [10],  𝑖 = 1,2  

 

We use the following membership functions, 
 

ℎ1(𝑥1) = 1 −
1

1 + exp (−7 (𝑥1 −
𝜋
4
))
 ℎ2(𝑥1) = 1 − ℎ1(𝑥1) 

 

Assume that there are additive perturbations in 
the system, coefficients. We give the known 
parameters as, 
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𝑀𝑖 = [
−0.1
0
] ,  𝑁𝑖 = [0.1 0] 

 

The first step is achieved by solving the LMIs in 
Theorem 2, a feasible solution is obtained with the 
corresponding control gain matrices defined as, 
 
𝐾11 = [4759.72080.7]               
𝐾12 = [−4267.3 − 1953.4]             
𝐾21 = [70388 31320]                                                               (50) 
𝐾22 = [−64519 − 29511]             
 

Then, by substituting the gains 𝐾𝑖  into 48-49 the 
obtained LMIs can be solved with the following 
observer gains: 
 

𝐿1 = [
1.9712
19.725

] ,  𝐿2 = [
1.4987
11.41

]                                                (51) 

 

The simulation result gives a potent verification 
of the effectiveness of the suggested control scheme 
and shows its robustness in spite of the 
uncertainties. Fig. 1 shows trajectories of 𝑥1(𝑡), 
�̂�𝑐1(𝑡) and �̂�𝑟1(𝑡) and Fig. 2 shows trajectories of 
𝑥2(𝑡), �̂�𝑐2(𝑡) and �̂�𝑟2(𝑡). 

 

 
Fig. 1: Trajectories of 𝑥1(𝑡), �̂�𝑐1(𝑡) and �̂�𝑟1(𝑡) 

 

 
Fig. 2: Trajectories of 𝑥2(𝑡), �̂�𝑐2(𝑡) and �̂�𝑟2(𝑡) 
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The simulation result gives a potent verification 
of the effectiveness of the suggested control scheme 
and shows its robustness in spite of the 
uncertainties.  

6. Conclusion 

This paper is concerned with the robust tracking 
control for non-linear systems described by (TS) 
fuzzy models. On the basis of Lyapunov theory, the 
principal aspects of the proposed control scheme lie 
in the design of an observer to estimate the 
unmeasured states and the synthesis of a fuzzy 
controller for the nonlinear system. Moreover, 
sufficient conditions have been developed in terms 
of strict LMI, to guarantee the robust stability of the 
closed-loop system. Finally, the proposed control 
scheme has been validated through numerical 
simulations based on the pendulum system. 
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