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Rayleigh-Benard convection due to buoyancy that occurred in a horizontal 
binary fluid layer saturated anisotropic porous media is investigated 
numerically. The system is heated from below and cooled from above. The 
temperature-dependent viscosity effect was applied to the double-diffusive 
binary fluid and the critical Rayleigh number for free-free, rigid-free, and 
rigid-rigid representing the lower-upper boundary were obtained by using 
the single-term Galerkin expansion procedure. Both boundaries are 
conducted to temperature. The effect of temperature-dependent viscosity, 
mechanical anisotropy, thermal anisotropy, Soret, and Dufour parameters on 
the onset of stationary convection are discussed and shown graphically. 
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1. Introduction 

*The linear stability analysis of a binary fluid is 
subjected when there exist temperature and 
concentration gradients in a fluid. The existence of 
both gradients that diffuse at a different rate which 
is known as double-diffusive has attracted interest in 
convection problems. In a binary mixture, Dufour 
analyses the thermo-diffusion, and Soret analyses 
the diffusion-thermo effects on the flow. The 
research on this type of mixture was first reported 
by Nield and Kuznetsov (2011) where both 
stationary and oscillatory mode for a thermosolutal 
convective binary fluid layer induced by thermal and 
solutal gradients is investigated. Bergeon et al. 
(1998) highlighted the Soret effect and a year later 
Slavtchev et al. (1999) extended the research by 
considering the nonlinear Soret effect. Saravanan 
and Sivakumar (2009) examined the effects of Soret 
with through flow in a binary fluid layer system. 

Double diffusive convection in a porous medium 
has been studied due to the importance in 
geophysics where groundwater usually contains 
salts in solution and hence both thermal expansion 
and solute concentration variations can produce 
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variations in density. This phenomenon was 
explained by Prats (1966). Early research on the 
onset of convection in a horizontal layer of a 
saturated porous heated from below was done 
experimentally by Morrison et al. (1949) and 
theoretically by Horton and Rogers (1945) and 
Lapwood (1948). Hirata et al. (2012) studied the 
small scalar process occurring in the global climate 
system where a natural double-diffusive was 
considered under-ice melt. Nield (1968) has studied 
the onset of double-diffusive convection in a 
horizontal layer of a saturated porous medium. The 
linear perturbation analysis was performed in both 
steady and oscillatory instability. The previous 
studies concerned homogeneous isotropic porous 
(Horton and Rogers, 1945; Lapwood, 1948; Nield 
and Bejan, 2006) and later in an anisotropy porous 
(Tyvand and Storesletten, 1991; Storesletten, 1993; 
Shivakumara et al., 2011). The properties of an 
isotropy material are uniform in all directions but in 
anisotropy, the properties of the material have a 
dependent direction. Hence, anisotropic porous is 
more complex compared to the isotropic porous. 

In earlier research, fluid may be assumed to have 
a constant viscosity whereby we knew that viscosity 
might vary to other factors. Fluid may possess a 
temperature-dependent viscosity where the 
viscosity decreases exponentially with temperature 
(Griffiths, 1986). Temperature-dependent viscosity 
influences the heat transport and the spatial 
structure of a fluid. Few researchers studied the 
temperature-dependent viscosity in various types of 
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problems. Torrance and Turcotte (1971) and Stengel 
et al. (1982) studied the temperature-dependent 
viscosity effect in Benard instability and 
Kozhoukharova and Rozé (1999) and Lam and 
Bayazitoglu (1987) in Marangoni instability. Arifin 
and Abidin (2009) and Abidin et al. (2017) have 
studied the effect of temperature-dependent 
viscosity together with others effects such as the 
Coriolis effect, feedback control, and Soret effect in a 
fluid layer. Ramirez and Saez (1990) stated that 
temperature-dependent viscosity should be taken 
into account for every case studied including in a 
porous medium since the effect gave a significant 
impact on the instability of convection. Viscosity 
variation in a double-diffusive nanofluid layer was 
studied by Yadav et al. (2013; 2017) where the 
results showed that the viscosity variation delayed 
the onset of convection. 

In this research, we study the effect of 
temperature-dependent viscosity in a double-
diffusive binary fluid layer saturated in a porous 
layer. To the author’s best knowledge, this problem 
has not been reported in the literature. Three types 
of bounding surfaces (lower boundary-upper 
boundary) are considered in this investigation: free-
free, rigid-free and rigid-rigid. We assume that the 
upper surface to be non-deformable and employ the 
stability analysis theory. The resulting eigenvalue 
problem is solved numerically using the Galerkin 
method. 

2. Mathematical formulation 

A Boussinesq binary fluid which is saturated in a 
horizontal porous layer with a depth d is considered 
in this system. The plane is infinitely extended 
horizontally in the x and y-direction with the 
vertically downward gravity force g acting in it. 
Velocity, 𝒗 = (𝑢, 𝑣, 𝑤) and the density, ρ of the 
binary fluid are assumed to be linearly dependent 
upon the temperature gradient, T and the solute 
concentration, S. 

For a Boussinesq approximation, we assumed the 
physical properties of the fluid are constant except 
the kinematic viscosity, 𝜇, and density, ρ. These two 
parameters are assumed to vary upon the 
temperature, T, and the solute concentration, S 
where the equations are given by: 
 
μ = μ0𝑒𝑥𝑝|−μt(𝑇 − 𝑇0) + μ𝑆(𝑆 − 𝑆0)|,                                  (1) 
ρ = ρ0[1 − 𝛼𝑡(𝑇 − 𝑇0) + 𝛼𝑆(𝑆 − 𝑆0)].                                    (2) 
 

Here, μ0 and ρ0 are the reference values at the 
reference temperature, T0, and the reference 
concentration, S0. μ𝑡 and 𝛼𝑡 are the rate of change of 
kinematic viscosity and density with temperature. μ𝑠 
and 𝛼𝑠 are the rate of change of kinematic viscosity 
and rate of change of density with concentration. The 
derivation will start from four governing Eqs. 3-6 
used for the Rayleigh-Benard convection following 
the analysis by Nield and Kuznetsov (2011), 
Nanjundappa et al. (2013), and Malashetty and 
Swamy (2010). 

∇ ⋅ 𝒗 = 0,                                                                                           (3) 
𝜌

ξ
[

𝜕𝒗

𝜕𝑡
+ (𝒗 ⋅ ∇)𝒗] = −∇𝑝 + 𝜇𝑲 ⋅ 𝒗 + 𝜌𝐠,                                  (4) 

𝜌𝑐 [η
𝜕𝑇

𝜕𝑡
+ (𝒗 ⋅ ∇)𝑇] = 𝜌𝑐𝐷𝑇𝐶∇2𝐶 + ∇ ⋅ (𝐷 ⋅ ∇𝑇),                 (5) 

ξ
𝜕𝐶

𝜕𝑡
+ (𝒗 ⋅ ∇)𝐶 = 𝐷𝑆∇2𝐶 + 𝐷𝐶𝑇∇2𝑇,                                         (6) 

 

where ξ is the porosity, t is the dimensionless time, p 
is the pressure,  is the kinematic viscosity, 𝐾 =
𝐾𝑥

−1(ii + jj) + 𝐾𝑧
−1(kk) is the inverse of the 

anisotropic permeability tensor, g is the gravity, c is 
the specific heat, η is the specific heat ratio, DTC is the 
Dufour diffusivity, 𝐷 = 𝐷𝑥(ii + jj) + 𝐷𝑧(kk) is the 
anisotropic heat diffusion tensor, DS is the solutal 
diffusivity and DCT is the Soret diffusivity. 

Each boundary wall is assumed to be thermally 
conducted to the temperature where the 
temperature is 𝑇0 + ∆𝑇 and ∆𝑇 at the lower and 
upper boundary respectively. Meanwhile, the solute 
concentration is taken to be 𝑆0 + ∆𝑆 and ∆𝑆. Since 
the temperature and concentration change in the 
fluid is small, and for simplicity, the variable is 
marked with asterisks. 
 
∇∗ ⋅ 𝒗∗ = 0,                                                                                      (7) 
𝜌

ξ
[

𝜕𝒗∗

𝜕𝒕∗
+ (𝒗∗ ⋅ ∇∗)𝒗∗] = −∇∗𝑝∗ + 𝜇𝑲∗ ⋅ 𝒗∗ + 𝜌𝐠,                    (8) 

𝜌𝑐 [η
𝜕𝑇∗

𝜕𝑡∗
+ (𝒗∗ ⋅ ∇∗)𝑇∗] = 𝜌𝑐𝐷𝑇𝐶∇∗2𝐶∗ + ∇∗ ⋅ (𝐷 ⋅ ∇∗𝑇∗), (9) 

ξ
𝜕𝐶∗

𝜕𝑡∗
+ (𝒗∗ ⋅ ∇∗)𝐶∗ = 𝐷𝑆∇∗2𝐶∗ + 𝐷𝐶𝑇∇∗2𝑇∗.                        (10) 

 

Infinitesimal disturbances are introduced by 
setting, 
 

(𝑥, 𝑦, 𝑧) =
(𝑥∗, 𝑦∗,𝑧∗)

𝑑
, 𝑡 =

𝑡∗

𝑑2
, (𝑢, 𝑣, 𝑤) =

𝑑(𝑢∗,𝑣∗,𝑤∗)

𝛼𝑓
, 𝑝 =

𝑝∗𝑑2

μ𝛼𝑓
, 𝑇 =

𝑇∗−𝑇0
∗

∆𝑇∗
, 𝐶 =

𝐶∗−𝐶0
∗

∆𝐶∗
, 

 

where 𝛼𝑓 is the thermal diffusivity of the fluid. 

Hence, the governing Eqs. 7-10 take the form: 
 
∇ ⋅ 𝒗 = 0,                                                                                        (11) 

1

ξPr
[

𝜕𝒗

𝜕𝑡
+ 𝒗 ⋅ ∇𝒗] = −∇𝑝 + ∇𝒗2 + 𝑅𝑎𝑇𝑒̂𝑧 + 𝑅𝑠𝐶𝑒̂𝑧,            (12) 

η
𝜕𝑇

𝜕𝑡
+ 𝒗 ⋅ ∇𝑇 = ∇2𝑇 + 𝐷𝑓∇2𝐶,                                                (13) 

ξ𝑛
𝜕𝐶

𝜕𝑡
+ 𝒗 ⋅ ∇𝐶 =

1

𝐿𝑒
∇2𝐶 + 𝑆𝑟∇2𝑇,                                           (14) 

 

where η =
𝐷𝑥

𝐷𝑧
 is the thermal anisotropy parameter, 

Pr =
ξ𝑣𝑑2

𝜌𝛼𝑓
 is the Prandtl number, ξ =

𝐾𝑥

𝐾𝑧
  is the 

mechanical anisotropy parameter, 𝑅𝑎 =
𝛼𝐠Δ𝑇𝐾𝑧

μα𝑓
 is the 

Rayleigh number, 𝑅𝑠 =
𝛼𝑐𝐠𝒅Δ𝐶𝐾𝑧

μ𝐷𝑆
 is the Solutal 

Rayleigh number, 𝐷𝑓 =
𝐷𝑇𝐶Δ𝐶

α𝑓Δ𝑇
 is the Dufour 

parameter, 𝐿𝑒 =
α𝑓

𝐷𝑆
 is the Lewis number and 𝑆𝑟 =

𝐷𝐶𝑇Δ𝑇

α𝑓Δ𝐶
 is the Soret parameter. Here, ξ𝑛 =

ξ

η
 is the 

normalized porosity where in this problem we set 
ξ = η = 1 to restrict the parameter space to the 
minimum (Malashetty and Swamy, 2010). 

The quiescent basic state is in the form given by: 
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(𝑢, 𝑣, 𝑤) = (0,0,0), 𝑇 = 𝑇𝑏(𝑧), 𝑝 = 𝑝𝑏(𝑧), 𝜌 = 𝜌𝑏(𝑧), 𝐶 =
𝐶𝑏(𝑧).                                                                                              (15)  
 

Eqs. 11-14 are reduced by using Eq. 15: 
 
𝜕𝑝𝑏

𝜕𝑧
= 𝑅𝑎𝑇𝑏 + 𝑅𝑠𝐶𝑏                                                              (16) 

𝜕2𝑇𝑏

𝜕𝑧2
= −𝐷𝑓

𝜕2𝐶𝑏

𝜕𝑧2
                                                                           (17) 

1

𝐿𝑒

𝜕2𝐶𝑏

𝜕𝑧2
= −𝑠𝑟

𝜕2𝑇𝑏

𝜕𝑧2
                                                                        (18) 

 

In this state, we superpose perturbations on the 
basic solution where 
 

(𝑢, 𝑣, 𝑤, 𝑇, 𝑝, 𝜌, 𝐶) = [

0 + 𝑢′, 0 + 𝑣′, 0 + 𝑤′
𝑇𝑏(𝑧) + 𝑇′, 𝑝𝑏(𝑧) + 𝑝′

ρ𝑏(𝑧) + ρ′, 𝐶𝑏(𝑧) + 𝐶′
],                    (19) 

 

is substituted in Eqs. 11-14 and linearized by 
neglecting products of primed quantities. The 
following equations were obtained: 
 
∇ ⋅ 𝒗′ = 0,                                                                                      (20) 

[
1

𝜕𝑡ηPr
+ (𝐞̂𝑧 +

1

ξ
∇2)] 𝒗′ = −∇𝑝 + ∇𝒗′ + 𝑅𝑎𝑇′𝐞̂𝑧 + 𝑅𝑠𝐶′𝐞̂𝑧,         (21) 

η
𝜕𝑇′

𝜕𝑡
− 𝑤′ = ∇2𝑇′ + 𝐷𝑓∇2𝐶′,                                                    (22) 

ξ𝑛
𝜕𝐶′

𝜕𝑡
− 𝑤′ =

1

𝐿𝑒
∇2𝐶′ + 𝑆𝑟∇2𝑇′.                                               (23) 

 

Operating Eq. 21 by eliminating the pressure 
term by using curl identity together with Eq. 20, Eq. 
21 can be written as: 
 
1

Pr

𝜕

𝜕𝑡
∇2𝑤′ − ∇4𝑤′ = 𝑅𝑎𝑇′∇𝑑

2 +
𝑅𝑠

𝐿𝑒
𝐶′∇𝑑

2 .                                (24) 

 

A normal mode representation is introduced in 
the form:  
 

(𝑤′, 𝑇′, 𝐶′) = [𝑊(𝑧), Θ(𝑧), Φ(𝑧)]e𝑠𝑡+𝑖(𝛼𝑥𝑥+𝛼𝑦𝑦)                  (25) 
 

and substitute into the differential Eqs. 22-24 to 
obtain: 
 

𝑓̅ [(
𝐷2

ξ
− 𝛼2) +

𝑠

𝑃𝑟
(𝐷2 − 𝛼2)] 𝑊 + 𝛼𝑅𝑎Θ − 𝛼𝑅𝑠Φ = 0    (26) 

(𝐷2 − η𝛼2 − 𝑠)Θ + 𝑊 + 𝐷𝑓(𝐷2 − 𝛼2)Φ = 0,                   (27) 
1

𝐿𝑒
(𝐷2 − 𝛼2 − 𝑠)Φ + 𝑊 + 𝑆𝑟(𝐷2 − 𝛼2)Θ = 0,                  (28) 

 

where 𝛼 = (𝛼𝑥
2 + 𝛼𝑦

2)
1

2, 𝐷 =
𝑑

𝑑𝑧
 and 𝑓̅(𝑧) = 𝑒𝐵(𝑧−

1

2
).  

represented here is the dimensionless horizontal 
wavenumber and since in this research paper, we 
only considered the stationary mode, we now set the 
growth parameter, s=0. B is the dimensionless 
viscosity parameter. The average viscosity and 
average temperature between the upper and lower 
boundary are taken as the reference parameters. 

To obtain the neutral stability of the convection, 
both boundaries are conducted to the temperature 
where the boundaries are as follow: 
 

 Lower and upper boundaries are free-slip, 
 

𝑊 = 𝐷2𝑊 = Θ = 0.                                                                   (29) 
 

 Lower and upper boundaries are rigid-slip, 
 

𝑊 = 𝐷𝑊 = Θ = 0.                                                                      (30) 

 Lower boundary is rigid-slip and the upper-
boundary is free-slip, 

 
𝑊 = 𝐷𝑊 = Θ = 0    at    𝑧 = 0 ,                                              (31) 
𝑊 = 𝐷2𝑊 = Θ = 0    at    𝑧 = 1.                                            (32) 
 

The method used to find an approximate solution 
to the system is by Galerkin-type weighted residuals 
method where the three variables are written in a 
series of basis functions: 
 
𝑊 = ∑ 𝐴𝑛𝑊𝑛, Θ = ∑ 𝑀𝑛Θ𝑛, Φ = ∑ 𝐸𝑛Φ𝑛

𝑁
𝑛=1

𝑁
𝑛=1

𝑁
𝑛=1          (33) 

 

where 𝐴𝑛, 𝑀𝑛 and 𝐸𝑛 are unknown coefficients. To 
approximate the solutions, 𝑊𝑛, Θ𝑛, and Φ𝑛 are 
chosen generally based on the lower-upper 
boundaries conditions, namely free-free, rigid-free 
and rigid-rigid. 
 
𝑊 = Θ = Φ = sin(𝑧𝜋),                                                             (34) 
𝑊 = 𝑧2 − 2𝑧3 + 𝑧4, Θ = 𝑧(1 − 𝑧), Φ = 𝑧2(1 − 𝑧),           (35) 
𝑊 = 𝑧2(1 − 𝑧)(3 − 2𝑧), Θ = 𝑧(1 − 𝑧), Φ = 𝑧(1 − 𝑧).     (36) 
 

Using expression in Eqs. 34-36 for W,  and  in 
the linearized Eqs. 26-28 as well as multiplying all 
equations with the base functions respectively and 
integrating the functions, a system of 3×3 linear 
algebraic equations in 3 unknowns 𝐴𝑛, 𝑀𝑛 and 𝐸𝑛, 
𝑛 = 1,2,3, . . . , 𝑁 where N is the natural number is 
obtained. Rayleigh number, Ra act as the eigenvalue 
when the determinant of the coefficient matrix is 
vanished to obtain a system with a non-trivial 
solution. 

Now, we perform integration by Prats (1966) 
with respect z between 𝑧ϵ[0,1]. By using the 
boundary conditions 29-32, we obtain the system of 
linear homogeneous algebraic equations: 
 
𝐴𝑗𝑖𝑊𝑖 + 𝑀𝑗𝑖Θ𝑖 + 𝐸𝑗𝑖Φ𝑖 = 0,                                                      (37) 

𝐹𝑗𝑖𝑊𝑖 + 𝐺𝑗𝑖Θ𝑖 + 𝐻𝑗𝑖Φ𝑖 = 0,                                                       (38) 

𝐼𝑗𝑖𝑊𝑖 + 𝐽𝑗𝑖Θ𝑖 + 𝐾𝑗𝑖Φ𝑖 = 0.                                                         (39) 

 

The above set of homogeneous algebraic 
equations can have a non-trivial solution if and only 
if the determinant of the matrix is zero. 

The obtained eigenvalue which is the Rayleigh 
number, Ra for the lower-upper free-free boundary 
conditions is: 
 

𝑅𝑎 =
1

𝛼2𝜆1
[4 (−

λ2λ3

2ξ𝐿𝑒
−

λ2λ4λ5

ξ
− 𝛼2𝑅𝑠λ6) 𝐿𝑒],                     (40) 

λ1 = 𝐷𝑓𝐿𝑒𝜋2 + 𝐷𝑓𝐿𝑒𝛼2 − 𝜋2 − 𝛼2, 
λ2 = 𝐵2𝜋2ξ + 𝐵2𝛼2ξ − 𝛼2ξ − 𝜋2, 

𝜆3 = (−
1

2
η2𝛼2 −

1

2
𝜋2) (𝜋2 + 𝛼2), 

𝜆4 = −
1

2
𝜋2𝐷𝑓 −

1

2
𝐷𝑓𝛼2,                                                          (41) 

𝜆5 = −
1

2
𝜋2𝑆𝑟 −

1

2
𝑆𝑟𝛼2, 

𝜆6 = −
1

4
𝜋2𝑆𝑟 −

1

4
𝑆𝑟𝛼2 +

1

4
η𝛼2 +

1

4
𝜋2. 

3. Results and discussion 

The onset of Rayleigh convection was solved in 
three different boundaries condition which is the 
rigid-rigid, rigid-free, and free-free surface 
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representing the lower-upper boundaries. Both 
boundaries were set to be conducted to temperature. 
When we set  ξ = η = 1 and Rs=0 which represent 
the isotropic fluid, we obtain the same result as 
Horton and Rogers (1945) and Lapwood (1948) 
where the critical Rayleigh number obtained is 
Rac=39.48. Similar results were also obtained for an 
isotropic binary fluid (Nield and Bejan, 2006) and in 
an anisotropic binary fluid (Malashetty and Swamy, 
2010). In a binary fluid-saturated anisotropic porous 
layer, the expression for stationary Rayleigh number 
is given by: 
 

𝑅𝑎 =
𝜋2+η𝛼2

𝛼2
(

𝜋2

ξ
+ 𝛼2 +

𝛼2𝑅𝑠𝐿𝑒

𝜋2+𝛼2
),                                             (42) 

 

which is obtained by Malashetty and Swamy (2010). 
In this paper, we extended their research by 
integrating the temperature-dependent viscosity 
effect, B into a double-diffusive binary fluid-
saturated in a porous layer. Table 1 list the 
comparison values of the critical Rayleigh number 
for various boundary conditions where Le=5, Rs=10, 
ξ=0.5, η=0.3, Sr=0 and Df=0. The present study 
shows a good agreement with Malashetty and 
Swamy (2010) for free-free boundary conditions. 
When the solutal Rayleigh number, Rs increases, it is 
found that the critical Rayleigh number increased, 
therefore the effect of solutal Rayleigh number 
stabilized the system. It is also shown that rigid-rigid 
boundary has the highest critical Rayleigh number 
followed by rigid-free and free-free boundaries for 
any values of solutal Rayleigh number. 

 
Table 1: The comparison of critical values of Rayleigh 
number Rac with Malashetty and Swamy (2010) for a 
binary fluid-saturated anisotropic porous layer in the 
absence of temperature-dependent viscosity (B=0) for 

various boundary conditions 

Solutal 
Rayleigh 

number, Rs 

Malashetty and 
Swamy (2010) 

Present study 

Free-free 
Free-
Free 

Rigid-
Free 

Rigid-
Rigid 

Rs = 10 54.53 54.54 58.18 342.14 
Rs = 25 86.6 86.6 90.24 394.73 
Rs = 50 136.2 136.2 140 477.92 

Rs = 100 229.18 229.18 233.33 629.81 

 

In the addition of temperature-dependent 
viscosity within the mathematical formulation, it is 
shown that the marginal stability curves shift 
downwards as the values of temperature-dependent 
viscosity, B increases, thus destabilized for all 
wavenumbers, . The exact figure is shown in Table 
2 and graphically in Fig. 1 with Le=5, Rs=10, ξ=0.5, 
η=0.3, 𝑆𝑟 = 0.005 and Df=0.005. We included and 
studied both the effect of Soret and Dufour 
parameters as these parameters exist in a double-
diffusive system. Similar to Table 1, it shows that 
rigid-rigid boundary is the most stable system. 
However, the critical Rayleigh number for the rigid-
free boundary is only higher than the free-free 
boundary for a temperature-dependent viscosity 
value less than 0.1 (B<0.1). 

Fig. 2 shows the neutral stability curves for 
different values of mechanical anisotropy 
parameters, where the effect is to hasten the onset of 
convection. This is due to the mobility of the fluid in 
the vertical direction being accelerated when the 
horizontal permeability, Kx increased and the vertical 
permeability, Ky is fixed.  

 

 

Fig. 1: Marginal stability curves for Le=5, Rs=10, ξ=0.5, 
η=0.3, Sr=Df=0.005 and various values of temperature 

dependent viscosity parameter, B 
 

Table 2: The critical values of Rayleigh number Rac for a 
binary fluid-saturated anisotropic porous layer with 
temperature-dependent viscosity effect for various 

boundary conditions 

Temperature-dependent 
viscosity, B 

Present study 
Free-
Free 

Rigid-
Free 

Rigid-
Rigid 

B = 0.1 55.39 57.09 350.21 
B = 0.3 53.20 50.59 347.37 
B = 0.5 48.71 41.68 341.64 

 

Meanwhile, the decreasing wavenumber 
indicates that the cell width increases when the 
mechanical anisotropy, ξ increases. Fig. 3 indicates 
the effect of the thermal anisotropy parameter, η on 
the onset of convection. It is found from the rigorous 
investigation, the effect of thermal anisotropy is to 
stabilize the system since the increase in the values 
of the thermal anisotropy parameter increased the 
Rayleigh number, Ra. 

The trends of stability for Soret and Dufour 
parameters that exist in a double-diffusive are 
investigated. The stability curves for these effects are 
shown in Figs. 4 and 5. It is clearly seen that, in Fig. 4, 
the Rayleigh number decreases when the Soret 
number, Sr increases, thus the onset of convection is 
advanced by the Soret parameter. Temperature flux 
increases when the system is heated from below and 
contributes to the initiation of natural convection in 
binary fluid mixtures. As for the Dufour parameter, 
Df, it is examined that from Fig. 5, the effect of the 
Dufour parameter contrast with the effect of the 
Soret parameter. 
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The increase in the values of the Dufour 
parameter increased the Rayleigh number, Ra 
monotonically. These findings agree well with those 
reports by Hurle and Jakeman (1971). The energy 
flux from lower to higher solute concentration is 
driven by the mass gradient in the binary system. 
The results also coincide with the results obtained in 
Abidin et al. (2017) where the coupled effect of 
Dufour and Soret were considered. 

 

 
Fig. 2: Marginal stability curves for Le=5, Rs=10, B=0.3, 

η=0.3, Sr=Df=0.005 and various values of mechanical 
anisotropy parameter, ξ 

 

 
Fig. 3: Marginal stability curves for Le=5, Rs=10, B=0.3, 

ξ=0.5, Sr=Df=0.005 and various values of thermal 
anisotropy parameter, η 

4. Conclusion 

The effect of temperature-dependent viscosity in 
double-diffusive convection in a fluid-saturated 
anisotropic porous layer is examined. Boussinesq 
fluid is heated and cooled from below using linear 
stability theories. The onset double-diffusive 

convection is advanced in the presence of 
temperature-dependent viscosity B, mechanical 
anisotropy parameter ξ, Soret parameter Sr and 
Lewis number Le. Meanwhile, in the existence effect 
of solutal Rayleigh number Rs, thermal anisotropy 
parameter η and Dufour parameter Df stabilized the 
onset of double-diffusive convection. Finally, the 
lower-upper boundary conditions of rigid-rigid are 
the most stable system compared to rigid-free and 
free-free respectively. 

 

 
Fig. 4: Marginal stability curves for Le=5, Rs=10, η=B=0.3, 

ξ=0.5, Df=0.005 and various values of Soret number, Sr 
 

 
Fig. 5: Marginal stability curves for Le=5, Rs=10, η=B=0.3, 

ξ=0.5, Sr=0.005 and various values of Dufour parameter, Df 
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