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3D human reconstruction is widely used for digital transformation in 
different industries such as e-retail, entertainment, health care, 
epidemiology. For practical applicability, the modeling process is required to 
be quick, affordable while still ensuring capabilities in reconstruction 
accuracy and reliability. To meet such business requirements, we propose a 
novel technique for producing an exact 3D human body using only basic 
anthropomorphic measurements. To begin, the paper refers to and 
summarizes core technologies of the three most common 3D human 
reconstruction approaches, including (1) Using Point Clouds, (2) Using 
Images, and (3) Using Anthropometric Measurements. Despite successfully 
recreating 3D human shapes, these methods face problems of long 
processing time and high investment cost, making the solution impractical 
for mass use. Moreover, in the human reconstruction sector particularly, the 
variety of human shapes, poses, and clothing poses a significant challenge to 
output accuracy. In this regard, our method combines (1) a local optimization 
model for determining hyperparameters for classifying different human 
shapes and (2) a global optimization for reconstructing 3D models, allowing 
reconstruction of both naked human bodies and clothed ones. The proposed 
method was evaluated quantitatively and qualitatively using a real dataset to 
demonstrate its feasibility and efficiency when used in real-world 
applications. 
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1. Introduction 

*In recent years, 3D human reconstruction has 
been extensively used in different industries. For 
example, in the medical field, the 3D reconstruction 
technique allows doctors and technologies to 
capture the image of patients in a 3D format and 
obtain information about their outer body parts in a 
few seconds. This information has implications for a 
variety of states of health, for example, based on the 
body size and shape, doctors can diagnose and 
manage obesity treatment. As for the fashion 
industry, due to the Covid-19 pandemic, numerous 
fashion and apparel companies are leveraging online 
channels to boost their sales. In this application, 3D 
human reconstructing technology creates shopper’s 
3D avatars and enables them to try garments on 
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their “twin” without going to physical stores, helping 
sellers to enhance customer experience and 
competitiveness on the market. Other fields such as 
Entertainment, Ergonomics, Anthropometry also 
leverage this technology to better serve their 
purpose. Due to this wide application and huge 
demand, 3D human reconstruction has attracted 
great research interest. Generally, there are two 
main approaches to digitalize the 3D human model: 
(1) Using a parametric model, (2) Using traditional 
scanners. The first method produces an acceptable 
accuracy in both generated shape and pose and its 
processing time is also appropriate. However, it 
requires a large dataset to generate the parametric 
model, which is considered a weakness of this 
method. For the second approach, the precise and 
high-resolution results are the main strong point. 
Nevertheless, this method requires high equipment 
costs while processing time is rather slow, 
preventing scanners from being widely adopted 
around the world.  

This research proposes a new technique to 
estimate the 3D body human from 2D images and 
basic information such as height, weight, age, and 
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gender of the digitized person. A parametric model 
(SMPL) by Loper et al. (2015) is used with several 
customizations to adjust and create the 3D model by 
pose and shape parameters. This method has had 
several approaches, some of them focus on the 
accuracy of the human pose when creating 3D 
models, others put the main force in the shape while 
there are a few researchers developing different 
points of view with estimating body under clothing. 
In general, most methods face three main challenges: 
(1) The total time to reconstruct body shape, (2) the 
accuracy for reconstructing the human body with 
clothes, (3) the ease to be compatible and integrated 
on multiple platforms. 

The main contributions of this research are 
summarized below: (1) A double loop optimization 
is used for classifying human types and estimating 
the 3D shape under clothing, (2) Thanks to applying 
weight and age of the digitized person in the whole 
process, segmentation module is eliminated. This 
results in reduced processing time and dependence 
on the segmentation stage. (3) A parametric model 
with normalized shape is applied to replace the 
calibration process, allowing wide application in 
popular devices. The research is organized as 
follows: Section II summarizes previous works on 
estimating 3D body human. The proposed method is 
detailed in Section III, followed by research results 
and discussion in Section IV. Section V concludes the 
paper.  

2. Related works 

Recent researches have a significant 
improvement in reconstructing 3D human model 
based on multiple approaches. In this part, three 
main methods including: (1) Using 2D Images, (2) 
Using Anthropometric measurements, (3) Using 
Point Cloud are introduced and analyzed in terms of 
their upsides and downsides. 

2.1. 3D reconstruction from images 

Bogo et al. (2016) used an RGB image to estimate 
the 3D pose and shape of the human body. A 
Convolutional Neural Network (Deep-cut) is used to 
predict 2D joint locations, then an objective function 
that penalizes the error between detected 2D joint 
locations and projected 3D model joints is applied to 
fit the statistical body shape model. Kanazawa et al. 
(2018) proposed a real-time framework for 
recovering the 3D joint locations and shape of the 
body from a single RGB image. The key point is to 
pass an image through a convolutional encoder to 
collect the main features and send them to the 
iterative 3D regression module. This module aims to 
infer the 3D human body and the camera so that 
valuable information in context and two training 
stages would not be missed. The advantages of this 
framework are the run time and 3D joint errors. 
However, regarding estimating human body shape, 
this approach could not produce an acceptable 
result. Different from the above approaches, Shigeki 

et al., (2018) combined the optimization-based 
method with a regression-based method to form a 
new one called SPIN (SMPL optimization IN the 
loop). The objective is to initialize an iterative 
optimization from a regressed estimate of the 
network that speeds up the fitting process and leads 
the optimization to more accurate model fits 
compared to SMPLify (Bogo et al., 2016) or HMR 
(Kanazawa et al., 2018). SPIN is divided into two 
main parts: (1) applying the Convolution Neural 
Network to predict the regressed shape parameters, 
(2) using the same routine as SMPLify (Bogo et al., 
2016) to optimize the 3D Shape. Results on the 
Human 3.6M dataset and MPI-INF-3DHP proved the 
efficiency of this method as state-of-the-art in pose 
estimation. However, once again, it is not suitable for 
shape estimation. Zeng et al. (2017) defined a CNN 
that reconstructed the 3D human body from two 
orthogonal silhouettes images. The authors 
investigated a neural network to estimate shape 
parameters of a parametric model called: SMPL. The 
dataset for the training network is a combination of 
real- and augmented-dataset which is generated 
from SMPL by using K-nearest neighbor. Testing 
results indicated the effectiveness of this method in 
modeling 3D human bodies from two silhouette 
images. However, this approach requires users to 
wear skin-tight clothes or be naked to derive his/her 
body shape model. Additionally, incorrect 
orthogonal views could adversely affect the final 
result. Song et al. (2018) proposed an approach to 
estimate 3D pose and shape under clothing from a 
single RGB image. The key point is to use a clothing 
region segmentation in addition to cloth-skin 
displacement modeling. The optimization has the 
same concept as SMPLify, however, two terms: (1) 
skin contours and (2) clothed contours are added 
into the objective function to find the optimal 
solution for shape and pose parameters in the 
parametric model. The experiment indicated a more 
accurate result in body shape modeling compared to 
others. However, the displacement between clothed 
and naked contour is dependent on auto-encoder-
based image generation. 

2.2. 3D reconstruction from anthropometric 
measurements 

Wuhrer and Shu (2013) presented a feature-
selection-based local mapping method using 
anthropometric measurements. It consists of three 
modules: (1) Selector, (2) Imputer, (3) Mapper. The 
Selector is created by using a dataset of 3D body 
meshes and anthropometric measurements as input. 
Its outputs are relevance masks and mapping 
matrices that would be used in the Mapper module. 
Imputer indicates missing data from user's input and 
passes them to the Mapper, combining with masks 
and matrices above to generate 3D body meshes. 
Pujades et al. (2019) used a mesh-based deformation 
to optimize the sought measurements. It is divided 
into two main steps: (1) finding an initial solution 
based on the learned correlation that closes to the 
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real solution, (2) using two steps of non-linear 
optimization to reshape the body in both local shape 
and other shape variations that are not presented in 

the training database. Fig. 1 shows an overview of 
the proposed method. 

 

Users

Pose 
Estimator

Optimizer

Input
2D Images

Input
Height

Input
Weight

3D Model

Input
Age

BMI
Parameter 

Classification

 
Fig. 1: An overview of the proposed method 

 

Nguyen and Hoang (2021) proposed a rapid 
method to reconstruct an avatar from 3D 
measurements. The key factor is to use the linear 
relation between the measurements and the body 
shape space via linear regressors. It leads to a real-
time tool with acceptable results from using fewer 
measurements. Zhang and Chen (2001) used the 
heuristic optimization method to find the shape 
parameters from measurements. This approach 
yields a good result of body shape in an acceptable 
processing time. However, the weakness of all 
methods above is the requirement of input 
parameters. In particular, incorrect input 
parameters could cause inaccurate results when 
creating a 3D model of users. 

2.3. 3D reconstruction from point cloud 

Liu et al. (2019) proposed a method that uses two 
depth images of front-facing and back-facing bodies 
to create the 3D human model. It consists of three 
phases: (1) Pose Estimation: A template mesh is 
selected and pose parameters of the parametric 
model are estimated based on two input point 
clouds; (2) Shape Reconstruction: the input point 
clouds register the template and create in PCA shape 
spaces; (3) Front- registered and back registered are 
stitched and refined in a 3D body shape. Results on 
the PDT13 dataset and Hasler's dataset proved the 
efficiency of this method with a mean error of vertex 
to vertex approximately 8.0 mm. However, similar to 
the two approaches above, it could not estimate the 
body shape under clothing and requires specific 
hardware devices to be implemented. 

3. Methodology 

Fig. 1 indicates an overview of our proposed 
method. A parametric model called: A Skinned Multi-
Person Linear (SMPL) is used to reshape the body 
model. It is defined as a function of three 

parameters: Shape 𝛽, Pose 𝜃, Translation 𝛹 and the 
output is a triangle surface with 6890 vertices. 
However, to not calibrate input images, a variant of 
SMPL is presented and described in detail below.  

The system’s input parameters include height, 
weight, age, and 2D front-view images of the 
digitized person. We focus on finding the optimal 
solution for shape and pose parameters applying 
Adam optimization to minimize the objective 
function. There are three error terms: Joint-based 
data term 𝐸𝐽

𝑚, shape prior term 𝐸𝛽
𝑚 and a weight 

correction term 𝐸𝑤𝑒𝑖𝑔ℎ𝑡
𝑚  as following:  

 
𝐸𝑚 =  𝜔𝐽. 𝐸𝐽

𝑚(𝜃𝑚, 𝛽𝑚, 𝐾𝑚, 𝐽𝑒
𝑚) + 𝜔𝑤𝑒𝑖𝑔ℎ𝑡 . 𝐸𝑤𝑒𝑖𝑔ℎ𝑡

𝑚 +

  𝜔𝛽. 𝐸𝛽
𝑚                                                                                            (1) 

 

where 𝜔𝐽, 𝜔𝑤𝑒𝑖𝑔ℎ𝑡, 𝜔𝛽 are scalar weights; 𝜃𝑚, 𝛽𝑚 are 

pose and shape parameters; 𝐾𝑚 is camera 
parameter; 𝐽𝑒

𝑚 are 2D joints estimated from 
MediaPipe for a specific sample 𝑚, which is a 
machine learning solution for high fidelity body pose 
tracking of Google. The predicted output of 33 pose 
landmarks is used to estimate pose parameters 𝜃. 
𝐸𝐽

𝑚, 𝐸𝛽
𝑚 are built similarly in the SMPLify (Bogo et al., 

2016). 

3.1. Weight correction term  

The term regarding weight is added to the 
objective function. The formula 2 below shows the 
detail of this term where: 𝑝𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 is the estimated 
weight, 𝑔𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 is the expected value of users,  𝜀𝑛 
is the correction weight that is generated based on 
the dataset information with Body Mass Index (BMI) 
and age using optimization in the loop.  
 
𝐸𝑤𝑒𝑖𝑔ℎ𝑡 = ‖𝑝𝑑_𝑤𝑒𝑖𝑔ℎ𝑡𝑚 − 𝑔𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑚 + 𝜀𝑛‖                   (2) 

 

Fig. 2 shows the linear relationship between weight 
and volume. 
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Fig. 2: The linear relationship between weight and volume 

 

There are two key points: (1) Estimating the 
weight of the approximate model after each 
iteration, (2) Identifying the correction weight based 
on the BMI and age. Due to the complexity of directly 
calculating weight, we define a method to estimate 
the weight via two steps: (1) Converting the triangle 
mesh to volume as ref (WHO, 2000), (2) Using a 
linear regressor to estimate weight by respective 
volume. The concept of calculating the volume of 
mesh is to estimate the volume of each mesh and 
make an accumulation. For each triangle of the 
model, its vertices are connected with the origin and 
form a tetrahedron and the volume of the 

tetrahedron is as follows: 𝑉 =
1

6
(𝑣1 ×  𝑣2). 𝑣3. 

To deal with weight scalar, a classification of 
weight by BMI in Asian adults is followed as ref 
(Pishchulin et al., 2017). Based on the characteristic 
of ages in the dataset, two main groups are divided: 
Lower than 44 years old and is equivalent and higher 
than 44 years old. The detail is presented in Table 1. 

 
Table 1: Classification of correction weight parameters 

based on BMIs and ages 
Age 
BMI 

< 44 ≥ 44 

Underweight 𝜀1 𝜀6 
Average 𝜀2 𝜀7 

Overweight at risk 𝜀3 𝜀8 
Overweight Obese 1 𝜀4 𝜀9 
Overweight Obese 2 𝜀5 𝜀10 

𝜀𝑛 ∈ {𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6, 𝜀7, 𝜀8, 𝜀9, 𝜀10} 

 

The next step is to find the weight scalar as 
defined above. This would be generated at the offline 
stage by minimizing the formula: 
 
𝐸𝑚𝑒𝑎 =  ∑ ∑ ‖𝑝𝑑_ℳ𝑛

𝑚 −  𝑔𝑡_ℳ𝑛
𝑚‖𝑛𝑚                                      (3) 

 

where 𝑝𝑑_ℳ𝑛
𝑚, 𝑔𝑡_ℳ𝑛

𝑚 are respectively predicted 
measurement and ground truth measurement of 
sample 𝑚 and anthropometric measurement 𝑛. To 
account for the relationship between volume and 
weight, a linear regressor is created by using a real 
dataset on Vietnamese collected by Viettel Military 
Industry and Telecoms Group (Viettel dataset). Fig. 2 
indicates the linear relationship between weight and 

volume, and the formula is: 𝑦 = 𝑋𝛽 + 𝜀, where 𝑋 is 
the volume, 𝑦 is the weight, 𝛽 and 𝜀 are scalars.  

3.2. Normalized height parametric model 

As mentioned above, a new technique is defined 
to solve the issue with unknown intrinsic and 
extrinsic parameters. A normalized height model is 
created by using Principal Component Analysis 
(PCA) for the dataset (Zhang and Chen, 2001) with 
3000 samples both in males and females. All samples 
under point cloud format are aligned and fitted to a 
topology mesh to ensure the similarity in height and 
pose using a non-rigid registration strategy in Fan et 
al. (2004). The number of dimensionalities in the 
shaping model is defined to ensure the maximum 
variance of approximately 95.45%.  

3.3. Optimization 

First, to estimate correction weight 𝜀𝑛, we 
conduct an optimization process: applying an outer 
loop for the whole dataset of human body shape 
collected according to Table 1 and an inner loop for 
each individual in the dataset.  

For the outer loop optimization, the normalized 
height model is utilized to register all samples in this 
dataset and extract the ground truth measurement 
of the registered model. The correction weight 𝜀𝑛 is 
initialized at one matrix and the inner optimization 
loop is applied to predict measurements of each 
individual in the dataset. The value of 𝜀𝑛 is changed 
constantly to minimize the objective function 𝐸𝑚𝑒𝑎. 
In that case, only three measurements are used to 
estimate weight scalar: Chest circumference, waist 
circumference, and hip circumference. For this 
selection, two factors are ensured: Convergence of 
optimization algorithms and sufficient information 
with three main anthropometric measurements. 

For the inner loop optimization, the main routine 
is divided into two main steps. In the first step, 
camera translation and body orientation are 

optimized by minimizing the objective function 𝐸𝑚
𝐽  

over the shoulder and hip joints. After the camera 
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translation and body orientation are defined, the 
second step performs estimating the 𝜃𝑚, 𝛽𝑚, 𝐾𝑚 
parameters at the same time by minimizing the 
objective function 𝐸𝑚 over the whole joint as 
predicted above. To improve the performance of the 
optimization process, first 𝜔𝑤𝑒𝑖𝑔ℎ𝑡 was initialized at 

a small value and then increased in each iteration. 
Fig. 3 shows a brief description of measurements. 

 

 
Fig. 3: A brief description of measurements 

3.4. Measurements 

The anthropometric measurements are divided 
into two main groups: Euclidean that is calculated 
from the distance between two vertices and 
Circumference computed from the intersection of 
the model to the plane using an algorithm called 
convex hull to estimate the polygonal chains. Due to 
the constant in the topology of a model after 
reconstructing, an intersecting plane is defined by a 
vertex at the expected measurement position and its 
normal direction. The way to measure is specified for 
main circumferences like chest, waist, and hip.  

4. Result and discussion 

This section indicates the quantitative and 
qualitative results which were verified on the Viettel 
dataset. This dataset includes more than 900 
samples with different gender, occupation, region, 
pose and body mass index to ensure the diversity of 
the population in Vietnam. The process is deployed 
and run on Quadro P4000 (NVIDIA 
GeForce/8GB/DDR5/256 Bit). This dataset is 
divided into two parts with the ratio of 70%-30%: 
The formal is used for estimating correction weight 
parameters which are described above and the latter 
is applied for validating and verifying the proposed 
algorithm. The results would be run on other 
methods: SPIN and Silhouettes-based-HSE (SBHSE). 

4.1. Quantitative results 

We test quantitative results with two datasets: 
(1) First dataset without clothes, people are required 
to wear only bra and swimwear and (2) Second 
dataset with clothes, there is no requirement for 
models’ outfit, meaning that they can wear any 

garments (shirt, Tshirt, dress, pants, shorts, coat, 
etc.) in any styles (slim-fit, regular-fit, oversized) and 
mixing with different accessories such as watch, 
necklace, ring, bag, and shoes. Due to a large number 
of results, the detail would be put in Appendix A. 
Only major figures are used and analyzed in this part 
to evaluate the effectiveness of the proposed 
method. Fig. 4 illustrates the comparison results 
between three methods in females and males 
without clothes. The information shows the average 
errors of 13 anthropometric measurements in 
millimeters. Overall, SPIN has the worst accuracy in 
shape reconstruction. Ours and SBHSE have 
similarities with a mean error approximately lower 
than 20mm. Besides, the results in SPIN are not 
stable. It gives better accuracy in chest, waist 
circumferences with females but worse in other 
measurements, greater than 60mm. However, with 
the measurements which are defined by Euclidean 
distance such as back length, chest width, pelvis 
width, the errors are improved, approximately lower 
than 40mm. Back to ours and SBHSE, the errors are 
maintained in the range of [1mm–20mm]. 
Furthermore, there is no big difference between 
circumference and linear measurements.  

Fig. 5 indicates the mean errors of humans with 
clothing. Overall, SPIN and SBHSE do not give 
feasible results in shape reconstruction. The average 
errors are 57.45mm, 48.96mm with females, and 
47.60mm, 48.96mm with males, respectively. 
Meanwhile, it is approximately 10.72mm and 
9.58mm in our method. It is easy to be seen that the 
main errors come from circumferences where the 
information of users is missing out due to wearing 
clothes. These errors with SBHSE are about 100mm 
for chest, waist, and pelvis, both in females and 
males. However, the linear measurements are better 
and still remain the accuracy as running without 
clothing. On the other hand, ours brings a huge 
difference in almost all of the measurements, both in 
circumference and linear measurements. Besides, 
the average processing time of SPIN, SBHSE, and 
ours are 0.2s, 5.5s, and 10.2s respectively. Compared 
to Scanning systems such as TC2, Vitronics, Wicks 
and Wilson TriForm (Fan et al., 2004) whose total 
capturing and processing time for reconstructing the 
human body are 53s, 40s, and 252s respectively, our 
proposed technique could yield better accurate 
results than other parametric approaches and be 
quicker than traditional scanners simultaneously. 

4.2. Qualitative results  

Fig. 6 proves the efficiency of our method in 
estimating and applying real data. The model and 
algorithm are contained as API and deployed on 
Amazon TC2 with g4dn.xlarge and then 
implemented on a mobile application to test the 
result. People with different BMI wearing casual 
clothes are recruited to this experiment. It can be 
seen on the results in SPIN and SBHSE, the shapes of 
body human in both front view and side view are not 
accurate compared to ground truth, especially in 
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shape generated by SPIN. Looking into three 
measurements shown in Fig. 6, an imprecision in 
outputs of SPIN and SBHSE could be seen clearly. 
The mean errors are respectively 1.59, 15.2, 8.4cm in 
our approach, SPIN, and SBHSE. The accuracy of our 

method is better with chest and pelvis 
circumference, the errors are smaller than 1cm, 
slightly increase in the waist but remain smaller than 
2.5cm. 

 

  
Fig. 4: Quantitative results of females and males without clothes 

 

 
Fig. 5: Quantitative results of females and males with clothes 
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Fig. 6: Qualitative result with different BMI (Underweight, Average, Overweight Obese 1), from left to right: (1) Our method, 

(2) SBHSE, (3) Spin 
 

5. Conclusion and future work 

This research presented a novel approach to 
reconstruct 3D body human from 2D images and 
basic measurements such as height and weight. 
Experiments on the Viettel dataset showed that the 
proposed method could estimate human body shape 
and extract anthropometric measurements under 
clothing with high speed while maintaining accuracy. 
Together with uncomplicated requirements for 
device deployment, our method could be applied in 

various industries, especially in virtual-try on and 
uniform markets. In the future, more data should be 
collected to optimize the weight coefficients for 
different human types to improve the accuracy of the 
circumference measurements and verify the method 
on big data. 

Appendix A. Mean square errors 

Summary of Mean square Error in two genders and 
two dressing types are summarized in this appendix.  
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Table A1: Average of mean square error in anthropometric measurements for females without clothes (mm) 
No Detail Viettel new SPIN Silhouettes-based-HSE 
1. 1 Head circumference 2.77 ± 2.19 10.09 ± 7.03 9.05 ± 8.18 
2. 2 Neck circumference 3.69 ± 2.81 11.31 ± 8.74 4.16 ± 3.00 
3. 3 Shoulder to crotch 7.90 ± 4.63 23.26 ± 15.01 3.40 ± 1.79 
4. 4 Back length 6.44 ± 3.81 15.31 ± 10.40 2.58 ± 1.73 
5. 5 Chest circumference 19.69 ± 15.21 52.74 ± 40.35 11.49 ± 10.60 
6. 6 Waist circumference 12.92 ± 10.09 56.56 ± 43.57 15.64 ± 13.03 
7. 7 Upper waist circumference 16.98 ± 13.03 55.20 ± 42.12 13.57 ± 12.95 
8. 8 Pelvis circumference 16.62 ± 12.81 88.65 ± 52.16 9.78 ± 7.07 
9. 9 Wrist circumference 1.48 ± 1.20 7.06 ± 5.11 2.40 ± 1.82 

10. 10 Bicep circumference 4.33 ± 3.57 23.24 ± 16.99 10.09 ± 6.93 
11. 11 Forearm circumference 1.84 ± 1.61 14.06 ± 9.81 4.66 ± 3.92 
12. 12 Arm length 6.93 ± 5.13 42.50 ± 22.27 11.22 ± 9.18 
13. 13 Inside leg length 15.11 ± 9.71 81.87 ± 37.96 4.66 ± 2.37 
14. 14 Outside leg length 12.96 ± 9.39 89.40 ± 40.81 4.57 ± 3.66 
15. 15 Thigh circumference 13.18 ± 9.94 49.25 ± 29.42 7.72 ± 6.71 
16. 16 Calf circumference 6.56 ± 5.04 23.56 ± 13.63 5.19 ± 3.87 
17. 17 Ankle circumference 3.26 ± 2.39 12.44 ± 7.44 3.77 ± 2.99 
18. 18 Height 11.94 ± 10.17 114.71 ± 56.83 0.00 ± 0.00 
19. 19 Shoulder breadth 5.00 ± 3.52 9.52 ± 6.53 2.86 ± 2.96 
20. 20 Curve shoulder breadth 5.39 ± 3.86 11.12 ± 7.75 27.87 ± 16.88 
21. 21 Neck width 1.12 ± 0.86 3.89 ± 2.77 1.65 ± 0.76 
22. 22 Bust height 13.26 ± 9.64 98.25 ± 47.25 2.77 ± 1.09 
23. 23 Waist height 16.14 ± 10.24 93.70 ± 43.04 4.31 ± 2.02 
24. 24 Hip height 14.98 ± 9.90 84.28 ± 39.85 4.60 ± 2.62 
25. 25 Back neck height 10.90 ± 9.32 106.40 ± 52.48 2.47 ± 1.66 
26. 26 Knee height 9.24 ± 5.98 49.54 ± 23.37 3.45 ± 3.18 
27. 27 Inseam 14.09 ± 9.07 76.52 ± 35.45 4.38 ± 3.87 
28. 28 Back neck to wrist 6.26 ± 5.26 43.86 ± 24.95 2.27 ± 1.39 
29. 29 Back neck to waist 22.62 ± 14.58 60.72 ± 40.72 11.94 ± 9.49 
30. 30 Chest width 5.69 ± 4.32 14.89 ± 11.14 4.39 ± 3.57 
31. 31 Waist width 3.72 ± 2.81 19.32 ± 14.71 5.40 ± 3.14 
32. 32 Pelvis width 6.35 ± 5.15 32.44 ± 18.04 3.51 ± 3.20 
33. 33 Finger to finger 10.77 ± 8.56 64.71 ± 37.82 3.85 ± 3.58 
34. 34 Wrist to shoulder 3.98 ± 3.19 24.70 ± 13.82 2.15 ± 2.08 
35. 35 Wrist to wrist 9.21 ± 7.41 51.59 ± 30.36 3.46 ± 2.76 
36. 36 Inseam width 4.20 ± 3.30 19.26 ± 9.60 1.91 ± 2.08 

 
Table A2: Average of mean square error in anthropometric measurements for males without clothes (mm) 

No Detail Viettel new SPIN Silhouettes-based-HSE 
1. 1 Head circumference 2.55 ± 1.96 22.84 ± 14.26 8.56 ± 5.21 
2. 2 Neck circumference 5.14 ± 3.38 16.15 ± 11.21 6.47 ± 4.38 
3. 3 Shoulder to crotch 10.00 ± 5.94 40.87 ± 25.88 3.61 ± 2.27 
4. 4 Back length 9.76 ± 4.66 34.74 ± 18.72 2.15 ± 1.45 
5. 5 Chest circumference 12.75 ± 9.31 61.11 ± 41.52 12.21 ± 10.75 
6. 6 Waist circumference 20.64 ± 14.55 73.91 ± 54.58 16.42 ± 14.01 
7. 7 Upper waist circumference 19.92 ± 14.36 65.73 ± 48.19 13.94 ± 11.72 
8. 8 Pelvis circumference 16.67 ± 10.67 73.09 ± 47.88 9.00 ± 8.04 
9. 9 Wrist circumference 1.76 ± 1.32 12.03 ± 7.82 2.84 ± 1.65 

10. 10 Bicep circumference 5.08 ± 3.56 24.97 ± 16.47 6.16 ± 2.07 
11. 11 Forearm circumference 2.77 ± 1.73 17.88 ± 11.94 4.00 ± 2.76 
12. 12 Arm length 6.13 ± 4.50 34.66 ± 22.40 16.28 ± 12.81 
13. 13 Inside leg length 8.77 ± 5.62 49.82 ± 32.83 4.43 ± 2.80 
14. 14 Outside leg length 7.57 ± 5.36 55.28 ± 37.39 4.72 ± 2.54 
15. 15 Thigh circumference 11.95 ± 8.36 44.15 ± 28.70 10.01 ± 9.12 
16. 16 Calf circumference 5.84 ± 4.47 25.49 ± 16.46 5.95 ± 3.97 
17. 17 Ankle circumference 4.31 ± 2.60 15.14 ± 9.43 3.28 ± 2.07 
18. 18 Height 4.51 ± 3.44 105.35 ± 64.18 0.00 ± 0.00 
19. 19 Shoulder breadth 14.55 ± 6.09 17.12 ± 11.25 3.80 ± 2.96 
20. 20 Curve shoulder breadth 14.82 ± 6.27 20.02 ± 14.05 32.80 ± 16.01 
21. 21 Neck width 3.67 ± 1.52 5.67 ± 3.86 2.07 ± 1.10 
22. 22 Bust height 4.77 ± 3.38 72.35 ± 46.88 2.49 ± 1.06 
23. 23 Waist height 8.28 ± 5.35 58.25 ± 38.87 3.72 ± 2.61 
24. 24 Hip height 8.70 ± 5.68 50.93 ± 34.33 4.61 ± 3.35 
25. 25 Back neck height 4.98 ± 3.81 89.68 ± 56.47 2.48 ± 2.42 
26. 26 Knee height 5.77 ± 3.68 30.69 ± 20.73 3.92 ± 2.47 
27. 27 inseam 8.28 ± 5.36 46.48 ± 30.47 3.85 ± 2.09 
28. 28 Back neck to wrist 6.22 ± 5.34 44.79 ± 28.33 1.98 ± 1.68 
29. 29 Back neck to waist 34.88 ± 18.70 151.12 ± 82.59 8.86 ± 6.22 
30. 30 Chest width 10.04 ± 5.95 20.74 ± 14.05 5.98 ± 5.48 
31. 31 Waist width 4.33 ± 2.95 24.76 ± 17.38 5.49 ± 4.86 
32. 32 Pelvis width 5.32 ± 3.35 22.55 ± 14.98 4.00 ± 3.15 
33. 33 Finger to finger 10.44 ± 9.09 70.85 ± 44.82 5.13 ± 4.79 
34. 34 Wrist to shoulder 3.30 ± 2.54 21.58 ± 13.08 2.13 ± 1.90 
35. 35 Wrist to wrist 11.56 ± 9.02 53.94 ± 34.90 4.61 ± 3.74 
36. 36 Inseam width 2.92 ± 1.90 12.00 ± 7.86 1.62 ± 0.99 
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Table A3: Average of mean square error in anthropometric measurements for females with clothes (mm) 
No Detail Viettel new SPIN Silhouettes-based-HSE 
1. 1 Head circumference 2.83 ± 2.22 11.09 ± 7.52 22.29 ± 15.96 
2. 2 Neck circumference 3.73 ± 2.87 13.82 ± 9.25 34.39 ± 22.82 
3. 3 Shoulder to crotch 8.14 ± 4.77 20.99 ± 14.38 18.65 ± 12.63 
4. 4 Back length 6.71 ± 3.97 13.07 ± 9.29 10.38 ± 7.77 
5. 5 Chest circumference 20.28 ± 14.00 71.33 ± 45.37 118.71 ± 76.29 
6. 6 Waist circumference 12.94 ± 10.03 79.41 ± 49.41 121.75 ± 86.73 
7. 7 Upper waist circumference 17.37 ± 12.46 76.25 ± 48.49 119.85 ± 79.93 
8. 8 Pelvis circumference 16.47 ± 12.85 112.77 ± 57.90 105.10 ± 69.58 
9. 9 Wrist circumference 1.57 ± 1.19 8.47 ± 5.62 16.55 ± 11.74 

10. 10 Bicep circumference 4.40 ± 3.48 32.37 ± 20.03 58.46 ± 31.61 
11. 11 Forearm circumference 1.86 ± 1.44 17.66 ± 10.98 37.42 ± 21.43 
12. 12 Arm length 6.61 ± 5.19 40.38 ± 22.16 15.12 ± 13.48 
13. 13 Inside leg length 14.42 ± 9.79 79.04 ± 38.14 17.80 ± 11.85 
14. 14 Outside leg length 12.82 ± 9.37 86.87 ± 41.04 11.90 ± 9.22 
15. 15 Thigh circumference 12.84 ± 9.63 63.12 ± 33.47 89.39 ± 59.63 
16. 16 Calf circumference 6.56 ± 4.99 27.65 ± 14.81 44.62 ± 30.11 
17. 17 Ankle circumference 3.31 ± 2.46 14.46 ± 8.07 23.82 ± 17.84 
18. 18 Height 10.80 ± 9.71 107.96 ± 57.17 0.00 ± 0.00 
19. 19 Shoulder breadth 5.29 ± 3.96 10.15 ± 6.76 12.54 ± 8.63 
20. 20 Curve shoulder breadth 5.50 ± 4.18 12.15 ± 7.85 74.28 ± 50.16 
21. 21 Neck width 1.20 ± 0.98 4.50 ± 3.02 8.18 ± 6.06 
22. 22 Bust height 12.30 ± 9.70 93.25 ± 47.51 8.41 ± 6.27 
23. 23 Waist height 15.25 ± 10.13 91.40 ± 43.08 9.29 ± 7.30 
24. 24 Hip height 14.34 ± 9.99 81.73 ± 40.13 15.53 ± 10.87 
25. 25 Back neck height 10.02 ± 8.86 100.42 ± 52.75 6.56 ± 4.83 
26. 26 Knee height 8.81 ± 6.01 47.72 ± 23.54 12.81 ± 8.65 
27. 27 inseam 13.47 ± 9.17 73.92 ± 35.63 18.51 ± 12.12 
28. 28 Back neck to wrist 6.59 ± 5.36 41.73 ± 25.28 7.25 ± 5.10 
29. 29 Back neck to waist 24.14 ± 15.18 55.58 ± 38.57 59.46 ± 41.22 
30. 30 Chest width 5.97 ± 4.88 18.60 ± 12.23 30.05 ± 19.34 
31. 31 Waist width 3.79 ± 3.01 26.51 ± 16.44 33.40 ± 25.34 
32. 32 Pelvis width 6.43 ± 5.40 40.79 ± 19.55 30.06 ± 20.95 
33. 33 Finger to finger 10.87 ± 8.89 62.40 ± 38.49 12.27 ± 11.12 
34. 34 Wrist to shoulder 3.94 ± 3.27 21.64 ± 13.32 16.05 ± 10.83 
35. 35 Wrist to wrist 9.92 ± 7.73 49.87 ± 31.28 12.62 ± 9.37 
36. 36 Inseam width 4.25 ± 3.40 22.88 ± 9.98 15.06 ± 10.61 

 
Table A4: Average of mean square error in anthropometric measurements for males with clothes (mm) 

No Detail Viettel new SPIN Silhouettes-based-HSE 
1. 1 Head circumference 2.82 ± 2.16 26.87 ± 16.09 19.34 ± 15.32 
2. 2 Neck circumference 5.58 ± 3.49 18.07 ± 13.70 33.87 ± 22.53 
3. 3 Shoulder to crotch 9.26 ± 5.65 46.65 ± 26.17 26.19 ± 15.28 
4. 4 Back length 8.19 ± 4.75 39.37 ± 18.23 14.68 ± 9.78 
5. 5 Chest circumference 13.67 ± 10.01 68.02 ± 49.83 92.31 ± 58.55 
6. 6 Waist circumference 20.12 ± 15.37 79.48 ± 58.83 120.04 ± 76.46 
7. 7 Upper waist circumference 20.10 ± 14.73 71.15 ± 53.07 105.29 ± 66.43 
8. 8 Pelvis circumference 17.24 ± 9.54 79.90 ± 53.24 68.30 ± 49.07 
9. 9 Wrist circumference 1.58 ± 1.33 13.87 ± 9.27 21.83 ± 12.37 

10. 10 Bicep circumference 5.48 ± 3.79 28.79 ± 20.17 37.49 ± 27.23 
11. 11 Forearm circumference 3.11 ± 1.87 20.55 ± 13.85 31.86 ± 18.84 
12. 12 Arm length 4.27 ± 3.52 30.14 ± 18.81 24.58 ± 19.45 
13. 13 Inside leg length 7.39 ± 5.15 41.01 ± 26.97 20.06 ± 12.68 
14. 14 Outside leg length 6.17 ± 3.93 47.00 ± 31.12 15.85 ± 10.83 
15. 15 Thigh circumference 12.96 ± 8.98 50.01 ± 32.60 56.65 ± 38.39 
16. 16 Calf circumference 6.38 ± 4.40 29.70 ± 19.38 35.33 ± 25.87 
17. 17 Ankle circumference 4.50 ± 2.45 17.08 ± 10.77 29.95 ± 17.01 
18. 18 Height 4.55 ± 3.61 97.91 ± 57.22 0.00 ± 0.00 
19. 19 Shoulder breadth 14.57 ± 6.69 19.18 ± 12.47 13.69 ± 10.08 
20. 20 Curve shoulder breadth 14.78 ± 6.94 22.65 ± 15.90 96.78 ± 76.59 
21. 21 Neck width 3.62 ± 1.67 6.55 ± 4.70 10.69 ± 7.99 
22. 22 Bust height 4.34 ± 3.15 63.76 ± 39.81 6.48 ± 5.04 
23. 23 Waist height 6.94 ± 4.96 48.95 ± 32.36 14.58 ± 9.60 
24. 24 Hip height 7.07 ± 4.43 42.01 ± 28.18 17.71 ± 11.94 
25. 25 Back neck height 5.10 ± 4.09 81.92 ± 49.35 5.70 ± 4.51 
26. 26 Knee height 4.35 ± 2.81 25.56 ± 16.91 10.04 ± 7.46 
27. 27 inseam 7.11 ± 4.95 38.02 ± 25.09 23.66 ± 13.56 
28. 28 Back neck to wrist 7.55 ± 5.81 40.88 ± 24.73 5.00 ± 3.91 
29. 29 Back neck to waist 29.92 ± 18.91 170.27 ± 80.58 59.78 ± 38.83 
30. 30 Chest width 10.72 ± 6.70 23.70 ± 17.62 31.68 ± 22.16 
31. 31 Waist width 4.10 ± 3.15 26.79 ± 19.47 33.06 ± 22.54 
32. 32 Pelvis width 5.08 ± 3.02 24.02 ± 16.34 19.47 ± 14.40 
33. 33 Finger to finger 12.33 ± 10.04 66.63 ± 40.28 9.63 ± 6.58 
34. 34 Wrist to shoulder 2.97 ± 2.48 17.81 ± 11.17 18.90 ± 12.03 
35. 35 Wrist to wrist 14.46 ± 9.46 50.78 ± 31.86 9.58 ± 7.00 
36. 36 Inseam width 2.98 ± 1.79 12.92 ± 8.29 10.23 ± 7.06 
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