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This study aims to utilize the machine learning technique to build a model to 
recommend the suitable wind turbine type based on some variables, such as 
air speed and air density, as well as visualize the location of the 
recommended wind turbine selection on a 3D map. Particularly, we applied 
the K-nearest neighbor model (KNN) to determine the amount of energy 
produced by a single wind turbine. We applied it on 10 separate wind farms 
in Saudi Arabia. The results indicate that the model performs very well in 
predicting the best wind turbine type with the mean accuracy of 88%, where 
ten wind stations resulted from the optimized model with the suggested 
turbine type in each station. Adding more wind attributes and other factors 
may assist in increasing the model mean accuracy. The project’s findings will 
assist decision-makers in Saudi Arabia to make informed decisions as to 
what kind of wind turbine is suitable for a specific location. In the long run, 
this will help to make wind energy-a sustainable source of energy-one of the 
main goals of the 2030 vision, specifically under National Industrial 
Development and Logistics Program. 
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1. Introduction 

*The kingdom of Saudi Arabia has a distinct 
geographical and climatic location that makes 
utilizing renewable energy sources plausible and 
economically attractive. For this reason, the 2030 
vision has set investing in renewable energy as one 
of the main goals’ emissions. In line with this goal, 
the National Renewable Energy Program (NREP) has 
been formed as a strategic initiative to increase the 
Kingdom's share of renewable resources. Since its 
launch back in 2015, Renewable and Sustainable 
Energy (RnSE) resources have recently been marked 
as a major contributing factor for a stable economy 
in the Kingdom of Saudi Arabia (KSA) (Amran et al., 
2020). Indeed, wind energy is one of the main 
renewable energy sources due to its natural, cheap, 
and clean nature. It is possible to produce energy 
from wind turbines at any hour of the day and it is 
suitable for systems that continuously require 
energy (Demolli et al., 2019). 
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However, the efficient selection of a wind turbine 
at a given site is presently limited by the developer's 
knowledge of what turbines are available on the 
market, as well as their inability to test and compare 
available turbine designs before investing. Poor 
turbine selection results in a financially sub-optimal 
investment. There are many types of wind turbines. 
For a specific location, determining the most suitable 
type depends on many contextual variables. This 
makes the process to identify the proper type for a 
specific place lengthy and complicated. New 
advanced methods are needed to facilitate this 
process. Traditional methods, such as blade element 
momentum theory (BEM), allow all possible turbine 
designs to be analyzed (Perkin et al., 2015). This is a 
lengthy complicated process that takes an extended 
amount of time (up to several months) to determine 
the best suitable wind turbine.  

The proposed research aims to accelerate and 
facilitate the process of establishing the best wind 
turbine type-specifically during the installation of 
new infrastructure in a specific wind turbine farm-by 
utilizing machines leaning on historical data. Our 
research aims to produce several results. This 
includes a (1) predictive model, or the building of a 
model that would recommend the best suitable wind 
turbine type that produces more energy based on 
relevant contextual variables for a certain wind 
turbine farm, such as wind speed and air density 
(W/m2). As there are many types of wind turbines, 
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our project will suggest the most suitable type based 
on how much energy this specific wind turbine 
produces. This research also aims to produce a (2) 
web-based map to visualize the location of the 
recommended wind turbine stations in a 3D map. 

To achieve these two aims, we followed the cross-
industry standard process for data mining (CRISP-
DM) method, which consists of a six-phase process 
that naturally explains the data science life cycle. 
CRISP-DM is highly recommended to follow when 
the project is goal-directed and process-driven 
(Martínez-Plumed et al., 2019). We used two data 
sets after obtaining all relevant legal approvals. One 
of the research’s aims is to utilize machine learning 
techniques to optimize the wind turbine selection 
process. After data preparation, we implemented the 
multiple regression techniques due to our utilization 
of continuous variables.  

2. Literature review 

Machine learning has been widely utilized in the 
domain of wind energy forecasting, specifically for 
forecasting long-term wind power values with 
respect to historical wind speed data. Furthermore, 
the results showed that machine learning-based 
models could be applied to a location different from 
model-trained locations. Researchers have 
discovered that machine learning algorithms could 
be successfully used before the establishment of 
wind plants in an unknown geographical location-
and whether or not it is logical-by using the model of 
a base location (Demolli et al., 2019). 

In this domain of wind energy forecasting, 
machine learning has shown the ability to support 
the optimization and estimation of renewable 
energy. Energy engineers and data scientists have 
previously used machine learning algorithms. They 
are suitable choices in comparison to other methods, 
including rule-based methods, due to the fact that 
this is a poly-parametric problem containing a large 
amount of data. Also, attributes take different values. 
For instance, this method would predict the turbine 
response for any combination of wind speed, 
turbulence intensity, and wind shear that might be 
expected at a turbine site (Vladislavleva et al., 2013). 
The accuracy of these kinds of algorithms for power 
predictions is three times higher than that of the 
traditional power curve methodology (Clifton et al., 
2013). 

A 2015 study estimated the value of energy 
produced using machine learning algorithms based 
on the temperature, wind speed, and direction 
values collected from the wind turbine. The 
estimation of these values prior to the installation of 
wind turbines helped determine the energy value to 
be generated by meteorological measurements and 
assisted in more efficient operation during the 
operation period. As a result, resources were 
correctly directed, and the wind turbine was 
installed in the most appropriate location. Moreover, 
a mathematical equation that correctly estimated the 
energy production value by 90% was used. In 

addition, a computer program was developed for 
other users to view the results of this mathematical 
equation (Aksoy and Selbaş, 2021). 

Another study was conducted in rural areas over 
Switzerland to estimate wind speed. This study 
proposes a methodology combining machine 
learning, GIS, and wind models to estimate 
theoretical wind speed. This estimate was based on 
measurements of wind speed and several 
meteorological, topographic, and wind-specific 
features available across the country. The wind 
speed values were calculated at a typical height for 
rural commercial wind turbine installation, which is 
z=100m. However, due to the availability of data of 
interest, the methodology developed is applicable to 
any large region (Assouline et al., 2019).  

In Saudi Arabia, wind energy production is still in 
its infancy. The Kingdom of Saudi Arabia recently set 
ambitious targets in its national transformation 
program and vision for 2030 to move away from oil 
dependence and redirect oil and gas exploration 
efforts to other higher-value uses, chiefly meeting 
10% of its energy demand through renewable 
energy sources (Amran et al., 2020). 

Brahimi (2019) utilized the artificial neural 
networks (ANNs) method as a means of predicting 
daily wind speed for wind energy conversion 
systems (WECS) in a number of locations in Saudi 
Arabia with the ultimate goal of monitoring, 
controlling, planning, and dispatching generated 
power while meeting customer needs. His algorithm 
is built based upon multiple local meteorological 
measurement data provided by King Abdullah City 
for Atomic and Renewable Energy (K.A.CARE). The 
suggested model is a feed-forward neural network 
model with the administered learning technique 
using a back-propagation algorithm. After comparing 
his model with four other machine learning models, 
he concluded that it is feasibly possible to predict 
wind speeds for executing sustainable integration of 
wind power into Saudi Arabia’s electrical grid and 
assisting operators in efficiently managing generated 
power. 

Another study by Brahimi and a group of 
researchers utilized KNN not only to predict wind 
speed but also to select the best site for wind turbine 
installation within a wind farm. This included 
ensuring a secure and reliable electrical power 
output and helping the operators in a wind farm to 
manage the generated power efficiently. 

Based on our knowledge, most of the research 
that has been conducted in Saudi Arabia is in the 
domain of wind energy geared toward predicting 
wind speed (Aksoy and Selbaş, 2021). This study 
focuses on understanding other contributing wind 
energy variables and specifically wind turbine data 
combined with wind farm speed data.  

3. Materials and methods 

In this research, we have followed the cross-
industry standard process for data mining (CRISP-
DM) methodology. CRISP-DM is a six-phase process 
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model that naturally explains the data science life 
cycle. It is highly recommended to follow when the 
data science project is goal-directed and process-
driven (Martínez-Plumed et al., 2019). Our research 
aims to optimize the wind turbine selection process 

by recommending the best wind turbine that would 
produce the maximum wind energy in a specific 
wind farm. This section demonstrates the six stages 
that we performed following the CRISP_DM, as seen 
in Fig. 1. 

 

 
Fig. 1: Cross-industry standard process for data mining CRISP-DM (Martínez-Plumed et al., 2019) 

 

3.1. Business understanding 

All datasets obtained in this study are official and 
legal to use. The first data set is the turbine data. We 
utilized this data set from a scientific article and 
reproduced it (Rehman and Khan, 2016). This 
scientific article was chosen as it contains various 
types of turbines, in addition to the presence of key 
variables such as turbine diameter. Also, the wind 
turbine data in the article were collected from the 
site of Qassim, Saudi Arabia, which is a relevant 
region to our target geographic region.  

The second data set concerns wind data for 10 
locations in Saudi Arabia. We requested the wind 
data through the online renewable resource, Atlas 
portal. We signed up on the website, filled out the 
required information, and indicated our 
organizational affiliation. The option of downloading 
data was selected by choosing the free basic package 
of parameters. Within two days, the order of data 
was sent via email.  

The Renewable Resource Atlas of Saudi Arabia is 
made available by K. A. CARE. The Atlas provided 
collected and historical solar and wind resource 
monitoring data to support power project 
developers, researchers, industries, academics, and 
the general public. The data had been collected from 
October 2013 to November 2016.  

The main goal is to contribute to the wind turbine 
selection domain by mining specific location wind 
data in Saudi Arabia. The resultant machine learning 
model would be used to recommend the best 
location-matching turbine. As mentioned before, our 

data is collected from two different data sources 
(Rehman and Khan, 2016). The model would mine 
wind turbine specification data such as air 
temperature (C°(, barometric pressure (hPa), wind 
speed (m/s), and air density (kg/m3); these variables 
affect the final energy product where wind energy 
equation is calculated based on these variables 
(Rehman and Al-Abbadi, 2008).  

3.2. Data Understanding 

We have two dataset sources. The first dataset 
source is wind turbines data that includes various 
types of wind turbines provided by multiple 
manufacturers. Some of these turbines and their 
characteristics are outlined in Table 1. Diameter is 
given and it will be divided into two to get the 
turbine’s radius as it is essential in the energy 
equation. Also, the cut-in wind speed is determined 
by the manufacturer to protect the turbine from 
damages. It is the point at which the turbine starts to 
generate electricity from turning. Wind turbine 
efficiency is a useful parameter for comparing wind 
turbine performance among each other. 

 
Table 1: Sample of turbine data set 

Turbine Diameter (m) Cut-in Wind Speed (m/s) 
Unison U93 93 3 

REpower MM92 92 3 
AAER A-2000-84 84 3.25 
Vensys 62-1200 62 2.5 

Vestas V90 90 4 
Unison U57 57 3 
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The site-specific data on wind speed is obtained 
from the Atlas Renewable Resources website and 
outlined in Table 2. The request can be submitted via 
the Atlas Renewable Energy website to obtain data. 
It is an electronic portal containing a database of 
geographical data and modern climate information 
on weather phenomena in the various regions of the 
Kingdom. This portal can be used as an observatory 
to identify renewable energy resources and to 
support feasibility studies to find appropriate 
investment solutions by developers, researchers, and 
government institutions such as the Educational 
University. 

The second source of our data is obtained from 
Atlas. The Atlas site data are the average monthly 
values for all wind resource data from 10 monitoring 
stations in 10 separate locations in the Kingdom of 
Saudi Arabia. These are 10 stations represented in 
10 separate Excel files. The number of rows in each 
city represents the number of days observed. The 
measurements of wind energy resources are 
collected from a special wind energy monitoring and 
measurement device, installed at a height of between 
100 and 200 meters. There are certain variables 
affecting the amount of energy produced which are 
average wind speed and air density.  

 
Table 2: Site-specific wind speed 

Name Data type Description 

Data Date 
The recorded date reflects a full month during which the other variables were 

calculated. 
Air Temperature Integer Represent the average air temperature in one month. 
Avg Wind Speed Integer Wind speed at different altitudes from the surface. 

 

Air density is an important factor in the equation 
used to calculate the amount of wind power, which 
will be calculated using the following where p dry air 
is: Density of dry air (kg/m3), p=air pressure (Pa), 
R=Specific gas constant for dry air, 287.05/(kg.k), 
and T=temperature (°k). 
 
 

𝑃𝑑𝑟𝑦 𝑎𝑖𝑟 =
𝑃

𝑅 × 𝑇
 

 

To calculate the power of the wind (P), we use the 
following equation, where p=Density (kg/m3), 
A=Swept Area (m2), and v=wind speed (m/s). 
 
𝑃/𝐴 = 1/2 𝑝𝑣^3 

3.3. Data preparation  

Data selection covers the attributes selection 
(columns) and the record selection (rows). We took 

all records from each region and selected several 
columns from the wind dataset as shown in Table 3. 

Our wind dataset contained a lot of attributes. We 
only needed certain inputs to include in the 
modeling stage based on the aforementioned 
equation. These attributes include wind speed (m/s) 
and air density (kg/m3). Finding the air density 
depends on several variables: Specific gas constant 
for dry air, air temperature, and barometric 
pressure. We loaded the 10 cities datasets in Jupyter 
Notebook. Then, we merged all of them into one 
dataset and selected the relevant attributes. These 
attributes included the site, air temperature, average 
wind speed (at 100m/s height), and barometric 
pressure. 

On the other hand, our turbine dataset included 
the following: turbine type (20row/type), diameter, 
cut-in wind speed, and radius. There is not any 
specific selection for the turbine’s dataset, and all 
columns are taken. These attributes are outlined in 
Table 4.  

 
Table 3: Wind data for the 10 regions in Saudi Arabia 

Variable Unit Description 
Air temperature Celsius (C°( Temperature describes the kinetic energy of the gasses that make up the air. 

Average wind 
direction 

Meter (m) 
The direction from which the wind is blowing. The direction comes in different heights: 37 

m, 80 m, and 98 m 
Relative humidity Percent (%) Percentage of the maximum amount that the air could hold at the specified temperature. 

Barometric pressure Hectopascal (hPa) Pressure within the Earth's atmosphere. 

Average wind speed 
Meter per second 

(m/s) 
The essential atmospheric quantity is associated with air moving from high to low 

pressure. 
Average Battery Volt (V) Monitoring device’s battery used in talking the data. 

Logger Temperature Celsius (C°( The measuring device records the temperature separately over a defined period. 

 
Table 4: Wind turbines data 

Variable Unit Description 

Diameter Meter (m) 
The distance from one point in a 

circle to another point in the 
same circle. 

Cut-in Wind 
Speed 

Meters per 
second (m/s) 

This is when the blades begin to 
rotate and generate power. 

Radius Meter (m) 
Half of the Diameter, which 
represents the blade length. 

 

Constructing data includes activities such as 
derived attributes production, whole new records, or 
transformed values for existing attributes. We found 

three derived attributes. First, as shown in Fig. 2, we 
calculated the turbine area from Radius and 𝜋. 

Before calculating air density, we had to convert 
barometric pressure from hectopascal to pascal 
(given that 1 hectopascal=100 pascals). Also, the air 
temperature must be converted to kelvin (given that 
273+Celsius=Kelvin). These two units are standard 
in finding air density. Air density is a derived 
attribute produced from temperature and pressure.  

The data sets were combined. For every region, 
we computed the potential amount of energy that 
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will be produced for every wind turbine type. For 
instance, for the Unison U93 wind turbine, the 
following steps were performed to calculate the 
amount of energy produced for the Al-Wajh Wadi Al 
Seeh station (all the equation inputs shown in Table 
5): 
 
Calculate the area of turbine: 
r=93/2=46.5 
A=π r2=3.14×46.52=6792.9m2 
Convert temperature unit from Celsius to Kalvin: 
(273+Celsius=Kalvin) 
K=19.2605+273 
=292.26 K 
Convert pressure unit from hectopascal to pascal: 
(1 hectopascal=100 pascal) 
=(1007.7087× 100)=100770.87 Ph 
Calculate air density: 
=100770.87/287.058×292.26  
=1.20kg/m3 
 

Apply wind energy equation: 
P=½ ρv3 A  
P=½ ×1.20×5.41083 × 6792.9=645,640.7 W 
(1 Watt=1000 kW) 
P=645,640.7÷1000=645.6407kW 
 

 
Fig. 2: Calculating turbine area from radius and π 

Table 5: Energy equation inputs (Al Wajh Wadi Al Seeh Station) 
Turbine Diameter (m) Air temperature (C°) Barometric Pressure (hPa) Wind speed 100 (m/s) Wind energy (kWh) 

Unison U93 93 19.2605 1007.7087 5.4108 645.6407 
UNISON u57 57 19.2605 1007.7087 5.4108 242.5299 

 
3.4. Modeling 

Modeling tasks include selecting the modeling 
technique, generating the test design, building a 
model, and assessing its performance. The first step 
in modeling is choosing the modeling technique that 
will be used. This research aims to predict the best 
wind turbine type based on the amount of energy it 
would produce in a certain station. The multi-
regression technique is best for use in modeling this 
problem since we have continuous variables. In 
particular, the K-nearest neighbor model has been 
chosen (KNN) since it is nonparametric, which 
means it tends to make no assumptions regarding 
data distribution. We have implemented Min-Max 
Scaling for this purpose.  

In this step, we have implemented the plan for 
splitting the data into both the training set and the 
testing set. We have chosen the 80:20 ratios for the 
data split. The random state was equal to 1 to control 
the shuffling and identify the K position that would 
give the optimal result.  

Fig. 3 outlines the four required attributes—Avg 
Wind Speed, Barometric Pressure, Air Temperature, 
and Air Density—to calculate the amount of energy 
denoted by 0, 1, 2, and 3 respectively. These are the 
scaled input data that are used to feed the model. 
The dependent variable is the amount of energy 
produced by every wind turbine for every site. The 
data shown in Fig. 4 shows the amount of energy 
that can be produced by the Union U57 turbine for 
all 10 sites.  

3.4.1. Build the model 

This stage required the execution of the code on 
Python to implement the model which is the KNN 
Regressor. We also conducted k-folds cross 
validation and chose to the fold with less RMSE (root 

mean square error). The number of iterations in the 
loop to calculate RMSE for each k is shown in Fig. 5. 
Fig. 5 shows that the optima k-fold value is 14 
(RMSE=82.56).  

 

 
Fig. 3: Input data (wind data) 

 

 
Fig. 4: Output data (energy produced by wind turbines) 

 
Next, we ran the KNN model on the prepared data 

set as shown in Fig. 6. The applied K-nearest 
neighbor regression model has mined the wind data: 
Avg Wind Speed, Barometric Pressure, Air 
Temperature, and Air Density for ten locations with 
199 as the total row number. K-nearest neighbor 
aids in predicting the relationship between 
independent variables and the continuous outcome. 
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It is useful when the target variable is continued, as 
well as when it is a direct algorithm that stores all 
available cases and does the prediction based on 
feature similarity. These are almost 20 energy 
amount values for 10 different sites. 

 

 
Fig. 5: K values 

 

 
Fig. 6: KNN model 

 
We identified 80% of data for training, which 

amounted to 159 of 199, and 20% of data for testing, 
which amounted to 40 of 199. The y_test value is 
(40) since the model should predict the energy 
column for the selected turbine. Table 6 shows the 
difference between the predicted and the actual 
value for one turbine. 

 
Table 6: Model prediction 

Turbine_name 
K-

value 
RSME 

Predicted 
value 

Actual 
Value 

'Unison U57 
generated energy’ 

14 82.56 467.883 312.15 

3.5. Evaluation 

Intervention studies involving animals or 
humans, and other studies that require ethical 
approval, must list the authority that provided 
approval and the corresponding ethical approval 
code. 

During the evaluation stage, we ensured that the 
chosen model meets the business success criteria, 
which means it does in fact recommend the wind 
turbine type that produces the maximum amount of 
energy for a specific site. Fig. 7 shows OLS regression 
results. R-squared denotes the percentage of 
variance in dependent variables that can be 
explained by independent variables. Here, 97.6% 
variation in y is explained by Avg Wind Speed, 
Barometric Pressure, Air Temperature, and Air 
Density. As seen in Fig. 8 and Fig. 9, the mean 
absolute error=64.36 and the root mean square 
error=82.56, which is the same RMSE for k=14. 

 

 
Fig. 7: OLS regression results 

 

 
Fig. 8: Mean absolute error and root mean square error 

 

 
Fig. 9: Error rate visualization 

 

Cross-validation is a method used to test the 
usefulness of machine learning models; it also is a re-
sampling procedure used to evaluate a model if there 
is a limited amount of data. K-folds validation is one 
effective approach in the case of limited input data as 
in our project. We implemented it with 5 folds, as 
seen in Fig. 10 and Fig. 11. 

 

 
Fig. 10: K-folds cross-validation 
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Fig. 11: KNN model score 

3.6. Deployment  

One of the objectives of this project was to 
visualize the location of the recommended wind 
turbine stations on a map. We have built a satellite 
map that shows the 10 locations (Fig. 12). Each 
location’s properties can be shown in a drop-down 
menu when the user hovers over the location, as 
shown in Fig. 13. 

 

 
Fig. 12: Wind stations in satellite map 

 
During the evaluation stage, it should be ensured 

that the chosen model meets the business success 
criteria, which means that it does in fact recommend 
the wind turbine type that produces the maximum 
amount of energy for a specific site. Fig. 8 shows OLS 
regression results. R-squared denotes the 
percentage of variance in dependent variables that 
can be explained by independent variables. Here, 
97.6% variation in y is explained by Avg Wind Speed, 
Barometric Pressure, Air Temperature, and Air 
Density. As seen in Figs. 9 and 10, the mean absolute 
error=64.36 and the root mean square error=82.56, 
which is the same RMSE for k=14. 

4. Findings and discussion  

This research used a KNN model to optimize the 
wind turbine selection process by recommending the 
best location-marching wind turbine for a specific 
site (wind farm) based on produced energy in the 
Kingdom of Saudi Arabia. At k=14, our model shows 
a score of 0.88. This indicates that the model 
performs very well in predicting the best wind 
turbine type with a mean accuracy of 88%. Table 7 
shows the wind stations that resulted from the 

optimized model with the suggested turbine type in 
each station. It can be seen that Unison U93 is the 
wind turbine recommended to produce the 
maximum amount of energy in all locations except 
for “Yanbu North 1”. This is due to the fact that the 
wind speed in this location is higher than the 
maximum energy that Unison U93 can tolerate based 
on its cut-in and cut-out values. 

 

 
Fig. 13: Station specifications with suggested turbine 

 
Table 7: The suggested wind turbines for the ten wind 

farm locations 

Location 
Suggested 

turbine 
Energy generated amount 

in KW 
Yanbu North 1 REpower MM92 5312.486 
Yanbu South Unison U93 809.2213 

Turaif Unison U93 1723.848 
Sharurah Unison U93 1444.874 

Riyadh - City 
Site B 

Unison U93 1127.835 

Riyadh - City 
Site A 

Unison U93 1362.307 

Jeddah South Unison U93 1355.579 
Hafar Al Batin Unison U93 2441.867 

Al Wajh Unison U93 900.2878 
Al Jouf Unison U93 1253.345 

 

These findings prove that historical data is in fact 
valuable in the context of wind energy forecasting, 
and it has been studied previously in these studies 
(Demolli et al., 2019; Clifton et al., 2013; Brahimi, 
2019). The KNN has been also widely used in 
previous wind power research studies with different 
focuses. For example, a 2017 research study applied 
random forests and KNN to complete the wind 
turbine data sets. The quantitative analysis results 
show that KNN provided superior satisfactory 
results, where the absolute deviation was 0.001 
(Becker and Thrän, 2017). Another example is the 
usage of the KNN model to predict wind speed 
parameters using air temperature, relative humidity 
and atmospheric pressure, and wind direction 
parameters. The KNN model performed well and 
achieved the best prediction results when k=5 
(Yesilbudak et al., 2013). As reported by the authors, 
the obtained NAE, MAPE, and NRMSE were 
0.594m/s, 5.695%, and 8.696%, respectively. The 
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KNN model deployed in a geographic map can be 
used as an assistive tool for decision-makers to 
facilitate the process of selecting the best wind 
turbine based on the turbine specific characteristics 
and the geographic data about the location itself: air 
temperature (C°(, barometric pressure (hPa), wind 
speed (m/s), and air density (kg/ 3m); for a certain 
wind farm station. Combining these two sources of 
data together proves useful for the machine learning 
model to determine the best wind turbine for a 
specific wind farm station. 

5. Conclusion 

One of the contributing factors for a stable 
economy in Saudi Arabia is renewable energy, 
including sources such as wind energy. According to 
Demolli and colleagues, it is possible to generate 
energy from wind turbines at any hour of the day 
(Demolli et al., 2019). Therefore, the National 
Renewable Energy Program (NREP) has been 
formed as a strategic initiative to increase the 
Kingdom's usage of renewable energy resources. 
This includes the wind energy recourse, which is the 
focus of this research. One of the issues that 
researchers and decision-makers may face is the 
efficient selection of the wind turbine types, and this 
may result in several consequences due to the lack of 
testing ability of these types before investing takes 
place (Perkin et al., 2015). This is what motivates 
this research which aims to achieve two goals. The 
first is to build a model that would recommend the 
best suitable wind turbine type. This would include 
identifying which type would produce more energy 
based on several relevant variables. Second, it aims 
to visualize the location of the recommended wind 
turbine stations in an easy-to-understand map. Using 
the machine learning technique specific, the KNN 
model has the potential to assist in the prediction of 
the most suitable wind turbine types based on the 
generated energy in one specific location coupled 
with wind turbine characteristics. 

Although the results are promising, our KNN 
model exhibits some inevitable limitations. The 
historical data that was obtained from the 
Renewable Resource Atlas was recorded over the 
period of October 2013 to November 2016. This is 
the most up-to-date data available at the current 
time. During the subsequent period, many changes 
may have affected the weather. This may make it 
harder to draw conclusions to act upon in the 
current time.  

Another limitation is the number of contributing 
factors that can be used to feed the model beyond 
the air density, wind speed, and barometric 
pressure. One possible direction for this research is 
to build on the KNN model to incorporate as many 
wind attributes as possible and other factors too, as 
well as build more than one model with different 
selections of attributes for every model. This would 
give the chance to compare these different models 
and select the one with the highest accuracy. 
Another limitation is that there were some 

differences in the parameters in the selected 
turbines, such as Unison turbine U93 and Unison 
U57. Thus, this must be considered as another future 
direction, which would assist in having a more 
accurate result. 
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