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In this study, a comparison between three methods for estimating unknown 
parameters of the Kumaraswamy Weibull distribution for different sample 
sizes of type II censoring data is presented. Specifically, we compare the 
behaviors of maximum likelihood estimates, Lindley and Markov chain 
Monte Carlo (MCMC) estimates as Bayesian estimates. We have not found 
any work on this topic after reviews of the literature except one with little 
information about the inference of this important distribution. The simplest 
form for Lindley approximation of the posterior mean is proposed and 
approximate closed forms of acceptable Bayes estimates for the models of 
multi-parameters such as Kumaraswamy Weibull distribution is derived. A 
Monte Carlo simulation is conducted to investigate the performances of the 
proposed estimators. Finally, three real data examples are analyzed to 
illustrate the application possibility of the different proposed estimation 
methods. The results reveal that, although, good performance of the 
approximate forms of Lindley estimators, the estimators resulting in the 
MCMC technique are better in the sense of the mean squared errors. 
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1. Introduction 

*Kumaraswamy Weibull (KW) distribution is an 
important extension of the well-known Weibull 
distribution (Cordeiro et al., 2010; Mitnik, 2013). 
The cumulative distribution function of KW 
distribution is, 
 

𝐹(𝑥) = 1 − [1 − (1 − 𝑒−𝑥𝛾
)

𝛼
]

𝛽
, 𝑥 > 0;   𝛾, 𝛼, 𝛽 > 0          (1) 

 

As a family of distributions, The KW family 
includes some important well-known distributions 
such as exponentiated Weibull, exponentiated 
exponential, exponentiated Rayleigh, Kumaraswamy 
exponential, Kumaraswamy Rayleigh, Weibull, 
Rayleigh, and exponential distributions. The 
distribution function of the Kumaraswamy Weibull 
distribution given in Eq. 1 has three shape 
parameters 𝛾, 𝛼, and 𝛽. For the case of a random 
variable 𝑋 following this distribution with the 
distribution function in Eq. 1, we denote 
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𝑋~𝐾𝑊(𝛼, 𝛽, 𝛾). The probability density function 
(pdf) of the KW distribution is, 
 

𝑓(𝑥) = 𝛼𝛽𝛾𝑥𝛾−1𝑒−𝑥𝛾
(1 − 𝑒−𝑥𝛾

)𝛼−1  [1 − (1 − 𝑒−𝑥𝛾
)

𝛼
]

𝛽−1
  

                                                                                                            (2) 
 

for 𝑥 >0; 𝛾, 𝛼 and 𝛽 >0. The reliability and failure 
rate functions are, respectively, given by,  
 

𝑅(𝑥) = [1 − (1 − 𝑒−𝑥𝛾
)

𝛼
]

𝛽
                                                       (3) 

 

and 
 

ℎ(𝑥) = 𝛼𝛽𝛾𝑥𝛾−1𝑒−𝑥𝛾
(1 − 𝑒−𝑥𝛾

)
𝛼−1

 [1 − (1 − 𝑒−𝑥𝛾
)

𝛼
]

−1
 

                                                                                                            (4) 
for 𝑥 >0.  
 

It may be useful to mention that the pdf of the KW 
distribution has a unimodal curve with mode 𝑥𝑑 =

[
2(𝛾𝛼−1)

𝛾𝛽(𝛼+1)
]

1

𝛾 , 𝛾𝛼 > 1. The failure rate function ℎ(𝑥) 

given in Eq. 4 has the following parametric 
characterizations: (i) it is constant (=𝛽) when 𝛾 =
𝛼 =1, (ii) it is increasing (decreasing) when 𝛾 ≥ 1 
(𝛾 ≤ 1 ) and 𝛾𝛼 ≥ 1 (𝛾𝛼 ≤ 1), (iii) it has bathtub-
shape curve when 𝛾 > 1 and 𝛾𝛼 < 1 and (iv) its 
curve is unimodal when 𝛾 < 1 and 𝛾𝛼 > 1; For 
details see Eissa (2017). 
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Therefore, the distribution adopts all shapes of 
failure rates classified into monotone and 
nonmonotone failure rates, and thence, the KW 
attracts a wide range of applications in reliability 
experiments and life testing studies. Practically, it 
can be useful for modeling and analyzing the life data 
of many fields such as engineering, medicine, 
biological sciences, and others. There are few studies 
about the capability and flexibility for estimating the 
KW distribution. Cordeiro et al. (2010) showed the 
availability and flexibility of the estimation using the 
KW model by the maximum likelihood (ML) method. 
The Bayes estimates for the parameters of the 
distribution using the Gibbs sampling procedure are 
obtained by Mandouh (2016). Mandouh (2016) 
adopted a non-informative prior that gives little 
information about the parameters, a priori, and 
inexact hyperparameters. The main aims of the work 
are: (1) To propose the simplest form for Lindley 
approximation of the posterior mean, (2) To 
examine the performances of the approximate 
Lindley estimators in the case of the multi-
parameter model such as Kumaraswamy Weibull; 
and (3) To show the capability and flexibility of using 
the KW distribution for estimation using the well-
known Bayesian methods (Huber and Train, 2001) 
under two loss functions. This may be attracting the 
attention of the researchers toward the importance 
of the distribution in analyzing real data. 

The contribution of this paper is to provide the 
simplest form for Lindley approximation of the 
posterior mean and obtain approximate forms for 
Bayes estimates using the Lindley procedure in the 
case of a multi-parameter model such as 
Kumaraswamy Weibull and compared their 
performances with the estimates resulting in Markov 
chain Monte Carlo (MCMC) technique as well as the 
maximum likelihood estimates. We adopt the 
quadratic loss function as the asymmetric loss 
function and the linear exponential (LINEX) loss 
function as an asymmetric loss function. The Bayes 
estimate under quadratic loss function for a 

parameter λ, say, denoted by �̂�𝐵𝑆  is the posterior 
mean. The LINEX loss function introduced by Varian 
(1975) for estimating 𝜆, can be expressed as: 
 

𝐿(∆) ∝ 𝑒𝑠Δ − 𝑠Δ − 1, 𝑠 ≠ 0, ∆= �̂� − 𝜆                                     (5) 
 

The Bayes estimator for 𝜆, denoted by �̂�𝐵𝐿 , under 
LINEX loss function is, 
 

�̂�𝐵𝐿 = −
1

𝑠
 ln Ε𝜆(𝑒−𝑠𝜆 )                                                                 (6) 

 

assuming that the expected value of 𝑒−𝑠𝜆 exists and 
is finite.  

The remainder of this paper is organized as 
follows. In section 2, the maximum likelihood 
estimates are obtained. The Bayes estimates under 
squared error and LINEX loss functions are derived 
in Section 3. Bayesian estimators for the reliability 
and hazard rate functions are discussed in Section 4. 
Section 5, provides the conditional distributions 
required for implementing the Markov chain Monte 

Carlo to derive the Bayes estimates with respect to 
squared error and LINEX loss functions. In Section 6, 
a simulation study is conducted to compare the 
proposed procedures. In Section 7, three real-life 
data sets are used to illustrate the application of the 
proposed inference procedures. At last, the study is 
concluded in Section 8. 

2. Maximum likelihood estimation  

Suppose n items are placed on a typical life test. 
The test is terminated at a preassigned number r of 
failed items, i.e., the test is terminated at the failure 
𝑥𝑟  to get a type-II censored sample, 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑟), of ordered lifetimes, and the 
remaining (n-r) items are regarded as censored data. 
Assume the sample 𝑥 from 𝐾𝑊(𝛼, 𝛽, 𝛾) distribution 

with distribution and density functions given, 
respectively, by Eqs. 1 and 2 and let 𝜃 = (𝛼, 𝛽, 𝛾), 
then the likelihood function, 𝐿(𝜃|𝑥), in this situation, 

can be given by, 
 

𝐿(𝜃|𝑥) ∝  𝛼𝑟  𝛽𝑟  𝛾𝑟  𝑒−𝜑(𝜃)                                                          (7) 

 

where, 
 
𝜑(𝜃) = ∑ 𝑥𝑖

𝛾𝑟
𝑖=1 − (𝛾 − 1) ∑ 𝑙𝑛 𝑥𝑖

𝑟
1 − (𝛼 − 1) ∑ 𝑙𝑛 𝑢𝑖

𝑟
1 −

(𝛽 − 1) ∑ 𝑙𝑛(1 − 𝑢𝑖
𝛼)𝑟

1 − (𝑛 − 𝑟)𝛽 𝑙𝑛(1 − 𝑣𝛼), 

𝑢𝑖 = 𝑢𝑖(𝑥𝑖 , 𝛾) = 1 − 𝑒−𝑥𝑖
𝛾

 and 𝑣 = 𝑣(𝑥𝑟 , 𝛾) = 1 − 𝑒−𝑥𝑟
𝛾

. 
 

The log-likelihood function, 𝑙(𝜃|𝑥), is, 
 

𝑙(𝜃|𝑥) ∝  𝑟 𝑙𝑛 𝛼 +  𝑟 𝑙𝑛 𝛽 + 𝑟 𝑙𝑛 𝛾 −  𝜑(𝜃).                            (8) 

 

By setting the derivatives of the log-likelihood 
function with respect to α, β, and γ to zero, the 
maximum likelihood estimates (MLEs) of the model 

parameters �̂�𝑀, �̂�𝑀 and 𝛾𝑀 can be obtained by 
solving the following non-linear likelihood 
equations, 
 
𝑟

𝛼
− (𝛽 − 1) 𝑋1 + 𝑋2 − (𝑛 − 𝑟) 𝛽 𝑞𝑟 𝑙𝑛 𝑣 = 0, 

𝑟

𝛽
+ 𝑋3 + (𝑛 − 𝑟) 𝑙𝑛(1 − 𝑣𝛼) = 0, 

𝑟

𝛾
+ 𝑋4 + (𝛼 − 1) 𝑋5 − 𝛼(𝛽 − 1)𝑋6 − (𝑛 − 𝑟) 𝛼 𝛽 𝑝𝑟𝑞𝑟 = 0  

                                                                                                            (9) 
 

where, 
 
𝑋1 = ∑ 𝑞𝑖 𝑙𝑛 𝑢𝑖

𝑟
1 , 𝑋2 = ∑ 𝑙𝑛 𝑢𝑖

𝑟
1 , 𝑋3 = ∑ 𝑙𝑛(1 − 𝑢𝑖

𝛼)𝑟
1 ,  

𝑋4 = ∑ 𝑧𝑖
𝑟
1 , 𝑋5 = ∑ 𝑝𝑖

𝑟
1 , 𝑋6 = ∑ 𝑝𝑖

𝑟
1 𝑞𝑖 ,  

𝑝𝑖 = 𝑝𝑖(𝑥𝑖 , 𝛾) = 𝑥𝑖
𝛾

𝑒−𝑥𝑖
𝛾

𝑢𝑖
−1 𝑙𝑛 𝑥𝑖 , 𝑞𝑖 = 𝑞𝑖(𝑥𝑖 , 𝛼, 𝛾) =

𝑢𝑖
𝛼(1 − 𝑢𝑖

𝛼)−1, 

𝑝𝑟 = 𝑝𝑟(𝑥𝑟 , 𝛾) = 𝑥𝑟
𝛾

𝑒−𝑥𝑟
𝛾

𝑣−1 𝑙𝑛 𝑥𝑟, 𝑞𝑟 = 𝑞𝑟(𝑥𝑟 , 𝛼, 𝛾) =
𝑣𝛼(1 − 𝑣𝛼)−1, 
 
and 
 

𝑧𝑖 = 𝑧𝑖(𝑥𝑖 , 𝛾) = (1 − 𝑥𝑖
𝛾

) 𝑙𝑛 𝑥𝑖 .  

 

Since there is no closed form of the solution to the 
above equations, the Newton-Raphson method is 
widely used to obtain the desired MLEs in such 
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situations. The algorithm of this method can be 
described as follows: 
 
1. Use the method of moments or any other methods 

to estimate the parameters 𝛼, 𝛽, and 𝛾 as starting 
point of iteration, denoted the estimated as 
(𝛼0, 𝛽0, 𝛾0) and set k=0. 

2. Calculate (
𝜕𝑙(𝜃)

𝜕𝛼
,

𝜕𝑙(𝜃)

𝜕𝛽
,

𝜕𝑙(𝜃)

𝜕𝛾
)

𝛼𝑘,𝛽𝑘,𝛾𝑘

 and the 

asymptotic variance-covariance matrix 𝐼−1(𝛼, 
𝛽, 𝛾). From the well-known observed Fisher 
Information matrix, the asymptotic variance-
covariance matrix for the MLEs is obtained as, 

 
𝐼−1(𝛼, 𝛽, 𝛾)

= (

𝑣𝑎𝑟(𝛼)̂ 𝑐𝑜𝑣(𝛼, 𝛽)̂ 𝑐𝑜𝑣(𝛼, 𝛾)̂

𝑐𝑜𝑣(𝛼, 𝛽)̂ 𝑣𝑎𝑟(𝛽)̂ 𝑐𝑜𝑣(𝛽, 𝛾)̂

𝑐𝑜𝑣(𝛼, 𝛾)̂ 𝑐𝑜𝑣(𝛽, 𝛾)̂ 𝑣𝑎𝑟(𝛾)̂

)

↓(𝛼=�̂�,𝛽=�̂�,𝛾=�̂�)

 

 

3. Update (𝛼, 𝛽, 𝛾) as, 
 
(𝛼𝑘+1, 𝛽𝑘+1, 𝛾𝑘+1) = (𝛼𝑘 , 𝛽𝑘 , 𝛾𝑘) +

(
𝜕𝑙(𝜃)

𝜕𝛼
,

𝜕𝑙(𝜃)

𝜕𝛽
,

𝜕𝑙(𝜃)

𝜕𝛾
)

𝛼𝑘,𝛽𝑘,𝛾𝑘

× 𝐼−1(𝛼, 𝛽, 𝛾). 

 

4. Set 𝑘 = 𝑘 + 1 and then return to the first step. 
5. Continue the iterative steps until 

|(𝛼𝑘+1, 𝛽𝑘+1, 𝛾𝑘+1) − (𝛼𝑘, 𝛽𝑘 , 𝛾𝑘)| is smaller than a 
threshold value. The final estimates of (𝛼, 𝛽, 𝛾) are 

the MLE of the parameters, denoted as �̂�𝑀, �̂�𝑀 and 
𝛾𝑀. 

 
Once MLEs of 𝛼, 𝛽 and 𝛾 are obtained, the MLEs of 

𝑅(𝑡) and ℎ(𝑡) for given mission time t denoted as 

�̂�𝑀and ℎ̂𝑀 can be obtained by the invariance 

property of MLEs, i.e. replacing 𝛼, 𝛽 and 𝛾 by �̂�𝑀, �̂�𝑀 
and 𝛾𝑀 in Eqs. 3 and 4, respectively. 

3. Bayesian estimation  

Bayesian estimates (Huber and Train, 2001) are 
quite different from MLE because it takes into 
consideration both the information from observed 
sample data and the prior information. Conditional 
prior distributions were suggested for both 𝛼 and 𝛽 
given 𝛾, which may appropriately be the gamma 
distributions with density functions given by, 
 

𝑔1(𝛼|𝛾) =
𝛼𝑎−1

Γ(𝑎)𝛾𝑎 𝑒−𝛼 𝛾⁄ , 𝛼 > 0,                                                (10) 

𝑔2(𝛽|𝛾) =
𝛽𝑏−1

Γ(𝑏)𝛾𝑏 𝑒−𝛽 𝛾⁄ , 𝛽 > 0,                                               (11) 

 

and the knowledge about 𝛾 may be expressed by an 
exponential distribution with density function, 
 

𝑔3(𝛾) =
1

c
𝑒−𝛾 𝑐⁄ , > 0,                                                                 (12) 

 
where, 𝑎, 𝑏, and 𝑐 are hyperparameters of positive 
values. Adopting the above informative prior 
distribution for 𝛾 with density given by Eq. 12 
assumes that it is more convenient to construct prior 
beliefs about the shape parameter 𝛾, firstly, and 
conjugate priors for 𝛼 and 𝛽 are proposed. If the 

dependence implicit in Eqs. 10 and 11 is acceptable, 
the analyst should try to match the experimenter's 
priors with a selected distribution of the forms in 
Eqs. 10 and 11. Chosen values of 𝑎, 𝑏, and 𝑐 control 
the precision of the analyst decision. A joint prior 
density function is then given by 
 

𝑔(𝛼, 𝛽, 𝛾) ∝ 𝛼𝑎−1𝛽𝑏−1𝛾−(𝑎+𝑏)𝑒−(𝑐𝛼+𝑐𝛽+𝛾2) 𝑐𝛾⁄ , 𝛼, 𝛽, 𝛾 > 0. 
                                                                                                         (13) 
 

Applying Bayes' theorem, the joint posterior 
density function is given by, 
 

𝑝(𝛼, 𝛽, 𝛾|𝑥) ∝ 𝛼𝑟+𝑎−1𝛽𝑟+𝑏−1𝛾𝑟−𝑎−𝑏𝑒−𝜑−(𝑐𝛼+𝑐𝛽+𝛾2) 𝑐𝛾⁄ ,  

𝛼, 𝛽, 𝛾 > 0, 
 

where, 𝜑 = 𝜑(𝜃) is given in Eq. 7. 

3.1. Lindley procedure under squared error loss 
function 

The Bayes estimate, �̂�𝐵, of a function 𝑤 =
𝑤(𝛼, 𝛽, 𝛾) under squared error loss function is, 
 
�̂�𝐵 = ∭ 𝑤(𝛼, 𝛽, 𝛾)  𝑝(𝛼, 𝛽, 𝛾|𝑥) 𝑑𝛼 𝑑𝛽 𝑑𝛾 /

∭ 𝑝(𝛼, 𝛽, 𝛾|𝑥) 𝑑𝛼 𝑑𝛽 𝑑𝛾. 
 

Due to the difficulty of obtaining the integrals 
contained in �̂�𝐵 in closed form, analytically, this 
study has resorted to use the Lindley procedure (as 
an approximation method) to approximate the ratio 
of integrals so that the required estimates can be 
obtained in usable closed form. Lindley (1980) 
introduced this procedure to evaluate the forms such 
as that of the posterior mean of a function 𝑤(𝜃|𝑥) 

and takes the form, 
 

𝐸(𝑤(𝜃)|𝑥)) = ∫ 𝑤(𝜃) 𝑒𝑞(𝜃)𝑑𝜃 / ∫ 𝑒𝑞(𝜃)𝑑𝜃,                         (14) 

 

𝑞(𝜃) = 𝑙(𝜃) + 𝜌(𝜃), 𝑙(𝜃) is the logarithm of the 
likelihood function and 𝜌(𝜃) is the logarithm of the 
prior density of 𝜃 where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛). 
Applying Lindley approximation form expanding 
about the ML estimate for 𝜃, the posterior mean, 
𝐸(𝑤(𝜃)|𝑥)), is evaluated by using the form, 
 

𝐸(𝑤(𝜃)|𝑥)) = [𝑤 + (1 2⁄ ) ∑ (𝑤𝑖𝑗 + 2𝑤𝑖𝜌𝑖)𝜎𝑖𝑗𝑖,𝑗 +

 (1 2⁄ ) ∑ (𝑙𝑖𝑗𝑘𝜎𝑖𝑗𝜎𝑘𝑙𝑤𝑙)𝑖,𝑗,𝑘,𝑙 ]
𝜃=�̂�

  

+𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑛−2𝑜𝑟 𝑠𝑚𝑎𝑙𝑙𝑒𝑟                                         (15) 
 

where, 𝑤 = 𝑤(𝜃), 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3, … . , 𝑛, 𝑤𝑖 =
𝜕𝑤 𝜕𝜃𝑖⁄ , 𝑤𝑖𝑗 = 𝜕2𝑤 𝜕𝜃𝑖⁄ 𝜕𝜃𝑗, 𝑙𝑖𝑗𝑘 =

𝜕3𝑙(𝜃) 𝜕𝜃𝑖⁄ 𝜕𝜃𝑗𝜕𝜃𝑘, 𝜌𝑗 = 𝜕𝜌 𝜕𝜃𝑗⁄ , and 𝜎𝑖𝑗  is the 

(𝑖, 𝑗)th element in the inverse of the matrix [−𝑙𝑖𝑗]. All 

these are evaluated at the ML estimate of 𝜃, �̂� =

(�̂�1, �̂�2, … , �̂�𝑛). The summation symbols in the form 
of Equation (15) are abbreviated to one of two or 
four indexes. The posterior mean 𝐸(𝑤(𝜃)|𝑥)) = �̂�𝐵𝑆 , 

can be rewritten as follows to get the Bayes estimate 
for 𝑤(𝜃), under the squared error loss function: 
 
�̂�𝐵𝑆 = 𝑤(𝜃) + Φ + Ψ 
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where,  
 
Φ = ∑ 𝑤𝑖𝑗

𝑛
𝑖=1,𝑗=1

𝑖≠𝑗

 𝜎𝑖𝑗 + (1 2⁄ ) ∑ 𝑤𝑖𝑗
𝑛
𝑖=1,𝑗=1

𝑖=𝑗

 𝜎𝑖𝑗 , 

Ψ = ∑ 𝑤𝑖  Ψi
𝑛
𝑖=1  , Ψi = ∑ 𝜎𝑖𝑗 𝑛

𝑗=1 μj , 𝑖 = 1, 2, 3, . . . , 𝑛, 

𝜇𝑖 = 𝜌𝑖 + 0.5 𝐴𝑖  , 𝑖 = 1, 2, 3, . . . , 𝑛, 
𝐴𝑘 = ∑ 𝜎𝑖𝑗

𝑛
𝑖=1,𝑗=1

𝑖=𝑗

 𝑙𝑖𝑗𝑘 + 2 ∑ 𝜎𝑖𝑗
𝑛
𝑖=1,𝑗=1

𝑖≠𝑗

 𝑙𝑖𝑗𝑘, 𝑘 = 1, 2, 3, . . . , 𝑛, 

 

for the symmetric variance-covariance matrix 
[−𝑙𝑖𝑗]−1. 

For the case of three parameters, the posterior 
mean �̂�𝐵𝑆, the Bayes estimate for 𝑤(𝜃), under the 
squared error loss function can be given by, 
 
�̂�𝐵𝑆 = 𝑤(𝜃) + Φ + 𝑤1 Ψ1 + 𝑤2 Ψ2 + 𝑤3 Ψ3                      (16) 
 

where,  
 
Φ = 𝑤12𝜎12 + 𝑤13𝜎13 + 𝑤23𝜎23 + (1 2⁄ )(𝑤11𝜎11 +
𝑤22𝜎22 + 𝑤33𝜎33), 
Ψ1 = σ11μ1 + σ12μ2 + σ13μ3, 
Ψ2 = σ21μ1 + σ22μ2 + σ23μ3, 
Ψ3 = σ31μ1 + σ32μ2 + σ33μ3, 
μ1 = ρ1 + (0.5)𝐴1, μ2 = ρ2 + (0.5)𝐴2, μ3 = ρ3 + (0.5)𝐴3, 
 

and, 
 
𝐴𝑘 = ∑ 𝜎𝑖𝑗 𝑙𝑖𝑗𝑘

3
𝑖,𝑗=1,𝑖=𝑗 + 2 ∑ 𝜎𝑖𝑗 𝑙𝑖𝑗𝑘  3

𝑖,𝑗=1,𝑖≠𝑗 , 𝑘 = 1,2,3. 

 

Now the terms of the form of �̂�𝐵𝑆 are obtained to 
get the estimates of the parameters 𝛼, 𝛽, and 𝛾 under 
the squared error loss function as follows. 

From the joint prior density function given in Eq. 
13, we get, 
 
𝜌1 = (𝑎 − 1)𝛼−1 − 𝛾−1,  𝜌2 = (𝑏 − 1)𝛽−1 − 𝛾−1 
 
and, 
 
𝜌3 = (𝛼 + 𝛽)𝛾−2 − (𝑎 + 𝑏)𝛾−1 − 𝑐−1. 
 

The elements 𝜎𝑖𝑗 , 𝑖, 𝑗 = 1,2,3, are evaluated in 

terms of the quantities 𝑙𝑖𝑗  given as follows: 
 

𝑙11 =
− 𝑟

𝛼2 + (𝛽 − 1)𝑐1 + (𝑛 − 𝑟)𝛽𝑐2, 𝑙22 =
− 𝑟

𝛽2 , 

𝑙33 =
− 𝑟

𝛾2 − ∑ 𝑦𝑖
𝑟
1 + (𝛼 − 1)𝑔1 + 𝛼(𝛽 − 1)𝑚1 + (𝑛 −

𝑟)𝛼𝛽𝑚2, 
𝑙12 = 𝑙21 = − ∑ 𝑞𝑖

𝑟
1 𝑙𝑛𝑢𝑖 − (𝑛 − 𝑟) 𝑞𝑟 ln 𝑣,  

𝑙13 = 𝑙31 = ∑ 𝑝𝑖
𝑟
1 + (𝛽 − 1)𝑓1 + (𝑛 − 𝑟) 𝛽 𝑓2,  

𝑙23 = 𝑙32 = −𝛼 ∑ 𝑝𝑖

𝑟

1
𝑞𝑖 − (𝑛 − 𝑟) 𝛼 𝑝𝑟𝑞𝑟 

and the values of 𝑙𝑖𝑗𝑘  for 𝑖, 𝑗, 𝑘 = 1,2,3 can be derived 

as follows: 
 

𝑙111 =
2𝑟

𝛼3 − (𝛽 − 1)𝜉1 − (𝑛 − 𝑟)𝛽𝜉2, 𝑙222 =
2𝑟

𝛽3, 

𝑙333 =
2𝑟

𝛾3 − ∑ 𝑦𝑖
𝑟
1 𝑙𝑛𝑥𝑖 + (𝛼 − 1)𝜁 − 𝛼(𝛽 − 1)𝜂1 −

𝛼2(𝛽 − 1)𝜂2 − (𝑛 − 𝑟)𝛼𝛽𝜂3 − (𝑛 − 𝑟)𝛼2𝛽𝜂4, 
𝑙121 = 𝑙112 = 𝑐1 + (𝑛 − 𝑟)𝑐2,  
𝑙131 = 𝑙113 = (𝛽 − 1)𝑑1 + 𝛼(𝛽 − 1) 𝑑2 + (𝑛 − 𝑟) 𝛽 𝑑3 +
(𝑛 − 𝑟)𝛼 𝛽 𝑑4, 
𝑙231 = 𝑙132 = 𝑙123 = 𝑓1 + (𝑛 − 𝑟)𝑓2, 𝑙331 = 𝑙133 = 𝑔1 +
(𝛽 − 1)𝑔2 + (𝑛 − 𝑟)𝛽𝑔3, 
𝑙332 = 𝑙233 = 𝛼 𝑚1 + (𝑛 − 𝑟) 𝛼 𝑚2,  𝑙221 = 𝑙122 = 𝑙232 =
𝑙223 = 0, 

where, 
 
𝜉1 = 𝜉1(𝑥𝑖) = ∑ 𝑞𝑖

𝑟
1 (2𝑞𝑖

2 + 3𝑞𝑖 + 1)(𝑙𝑛𝑢𝑖)3, 𝜉2 = 𝜉1(𝑥𝑟), 

𝜁 = ∑ 𝑝𝑖
𝑟
1 (2𝑝𝑖

2 − 3 𝑝𝑖  𝑧𝑖 + 𝜏𝑖) (𝑙𝑛𝑥𝑖)3, 

𝜂1 = 𝜂1(𝑥𝑖) = ∑ 𝑝𝑖
𝑟
1 𝑞𝑖[(𝛼 − 1)(𝛼 − 2) 𝑝𝑖

2 + 3(𝛼 −
1) 𝑧𝑖  𝑝𝑖 + 𝜏𝑖 + 1](𝑙𝑛𝑥𝑖)3, 
𝜂2 = 𝜂2(𝑥𝑖) = ∑ 𝑝𝑖

2𝑟
1 𝑞𝑖

2[2𝛼 𝑝𝑖  𝑞𝑖 + 3(𝛼 − 1) 𝑝𝑖 +
3𝑧𝑖](𝑙𝑛𝑥𝑖)3,  
𝜂3 = 𝜂1(𝑥𝑟), 𝜂4 = 𝜂2(𝑥𝑟),  
𝑐1 = 𝑐1(𝑥𝑖) = − ∑ 𝑞𝑖

𝑟
1 (𝑞𝑖 + 1)(𝑙𝑛𝑢𝑖)2, 𝑐2 = 𝑐1(𝑥𝑟), 

𝑑1 = 𝑑1(𝑥𝑖) = −2 ∑ 𝑝𝑖  𝑞𝑖
𝑟
1 (𝑞𝑖 + 1) 𝑙𝑛𝑢𝑖  𝑙𝑛𝑥𝑖 , 

𝑑2 = 𝑑2(𝑥𝑖) = − ∑ 𝑝𝑖  𝑞𝑖
𝑟
1 (2𝑞𝑖

2 + 3𝑞𝑖 + 1)(𝑙𝑛𝑢𝑖)2 𝑙𝑛𝑥𝑖 , 
𝑑3 = 𝑑1(𝑥𝑟), 𝑑4 = 𝑑2(𝑥𝑟), 
𝑓1 = 𝑓1(𝑥𝑖) = − ∑ 𝑝𝑖  𝑞𝑖

𝑟
1 [𝛼 (𝑞𝑖 + 1) 𝑙𝑛𝑢𝑖 + 1] 𝑙𝑛𝑥𝑖 , 𝑓2 =

𝑓1(𝑥𝑟) 
𝑔1 = ∑ 𝑝𝑖  

𝑟
1 (𝑧𝑖 − 𝑝𝑖)(𝑙𝑛𝑥𝑖)2, 

𝑔2 = 𝑔2(𝑥𝑖) = − ∑ 𝑝𝑖  𝑞𝑖
𝑟
1 [2𝛼 𝑝𝑖  𝑞𝑖 + (2𝛼 − 1) 𝑝𝑖 +

𝑧𝑖](𝑙𝑛𝑥𝑖)2  
𝑔3 = 𝑔3(𝑥𝑖) = − ∑ 𝑝𝑖  𝑞𝑖

𝑟
1 [(2𝛼 𝑝𝑖 𝑞𝑖 + (𝛼 − 1)𝑝𝑖 + 𝑧𝑖)(𝑞𝑖 +

1)]𝑙𝑛𝑢𝑖(𝑙𝑛𝑥𝑖)2  
𝑔4 = 𝑔2(𝑥𝑟), 𝑔5 = 𝑔3(𝑥𝑟) 
𝑚1 = 𝑚1(𝑥𝑖) = − ∑ 𝑝𝑖  𝑞𝑖

𝑟
1 [𝛼 𝑝𝑖  𝑞𝑖 + (𝛼 − 1)𝑝𝑖 +

𝑧𝑖](𝑙𝑛𝑥𝑖)2,  
𝑚2 = 𝑚1(𝑥𝑟), 

𝑦𝑖 = 𝑥𝑖
𝛾

(𝑙𝑛𝑥𝑖)2, 𝑧𝑖 = (1 − 𝑥𝑖
𝛾

), 𝜏𝑖 = (𝑥𝑖
2𝛾

− 3𝑥𝑖
𝛾

+ 1), 

𝑝𝑖 = 𝑝𝑖(𝑥𝑖) = 𝑥𝑖
𝛾

𝑒−𝑥𝑖
𝛾

𝑢𝑖
−1, and 𝑞𝑖 = 𝑞𝑖(𝑥𝑖) = 𝑢𝑖

𝛼(1 − 𝑢𝑖
𝛼)−1. 

 

Therefore, the Bayes estimates can be obtained 
for the parameters 𝛼, 𝛽, and 𝛾 by substituting the 
required values cited above in Eq. 16, in what 
follows: 
 
-If 𝑤(𝜃) = 𝛼, then �̂�𝐵𝑆 = 𝛼 + Ψ1.                                          (17) 

-If 𝑤(𝜃) = 𝛽, then �̂�𝐵𝑆 = 𝛽 + Ψ2.                                          (18) 
-If 𝑤(𝜃) = 𝛾, then 𝛾𝐵𝑆 = 𝛾 + Ψ3.                                           (19) 
 

Keeping in mind, these estimates are evaluated at 
the ML estimates of the parameters. 

3.2. Lindley procedure under LINEX loss function 

Under the LINEX loss function, the Bayes 
estimate, ŵBL is given by, 
 

�̂�𝐵𝐿 = (− 1 𝑠⁄ ) 𝑙𝑛 𝐸(𝑒−𝑠𝑤(𝜃)|𝑥) , 𝑠 ≠ 0                                 (20) 

 

where,  
 

𝐸(𝑒−𝑠𝑤(𝜃)|𝑥) = ∭ 𝑒−𝑠𝑤(𝜃) 𝑝(𝛼, 𝛽, 𝛾|𝑥)𝑑𝛼𝑑𝛽𝑑𝛾/

∭ 𝑝(𝛼, 𝛽, 𝛾|𝑥)𝑑𝛼𝑑𝛽𝑑𝛾. 

 

Applying Lindley approximation on this ratio of 
integration, we can get approximated form of the 
posterior mean as, 
 

𝐸(𝑒−𝑠𝑤(𝜃)|𝑥) = 𝑒−𝑠𝑤(𝜃) + Φ + 𝑤1 Ψ1 + 𝑤2 Ψ2 + 𝑤3 Ψ3 

 

where, Φ, Ψ1, Ψ2 and Ψ3 are defined in Eq. 16. 
Therefore, the Bayes estimates for the 

parameters 𝛼, 𝛽 and 𝛾 under the LINEX loss function 
are in what follows: 
 
 When 𝑤(𝜃) = 𝑒−𝑠𝛼 , we get: 
 
�̂�𝐵𝐿 = 𝛼 − 𝑠−1 𝑙𝑛[(0.5)𝑠2𝜎11 − 𝑠 Ψ1 + 1] , 𝑠 ≠ 0.             (21) 
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 When 𝑤(𝜃) = 𝑒−𝑠𝛽 , we get: 
 

�̂�𝐵𝐿 = 𝛽 − 𝑠−1 𝑙𝑛[(0.5)𝑠2𝜎22 − 𝑠 Ψ2 + 1] , 𝑠 ≠ 0.             (22) 
 

 When 𝑤(𝜃) = 𝑒−𝑠𝛾, we get: 
 
𝛾𝐵𝐿 = 𝛾 − 𝑠−1 𝑙𝑛[(0.5)𝑠2𝜎33 − 𝑠 Ψ3 + 1] , 𝑠 ≠ 0.              (23) 
 

Remembering that these estimates are evaluated 

at �̂�𝑀, �̂�𝑀, 𝛾𝑀. 

4. Bayesian estimates for R and h 

As parameters, the Bayes estimates for 𝑅 = 𝑅(𝑥) 
and ℎ = ℎ(𝑥) are derived under the two loss 
functions in what follows. 

4.1. Under squared error loss function 

From Eq. 16, we derive the required estimates as 
follows: 

 
 When 𝑤(𝜃) = 𝑅, we get: 
 
�̂�𝐵𝑆 = 𝑅(1 + 0.5 𝑄1 + 𝑄2 + 𝑄3)                                             (24) 
 

where, 
 
𝑄1 = 𝜎11𝛽𝑞(𝑙𝑛 𝑢)2[(𝛽 − 1)𝑞 − 1] + 𝜎22𝛽−2(𝑙𝑛 𝑅)2 +
𝜎33𝛼𝛽𝑝𝑞[𝛼(𝛽 − 1)𝑝𝑞 − (𝛼 − 1)𝑝 − 𝑧], 
𝑄2 = 𝜎13𝛽𝑝𝑞[𝛼(𝛽 − 1)𝑞 𝑙𝑛 𝑢 − 𝛼 𝑙𝑛 𝑢 − 1] − 𝜎23𝛼𝑝𝑞(1 +
𝑙𝑛 𝑅) − 𝜎12𝑞 (1 + 𝑙𝑛 𝑅) 𝑙𝑛 𝑢, 
𝑄3 = −𝛽𝑞 (𝑙𝑛 𝑢) Ψ1 + 𝛽−1 (𝑙𝑛 𝑅) Ψ2 − 𝛼𝛽𝑝𝑞Ψ3, 

 
Ψ1, Ψ2 and Ψ3 are defined in Eq. 16. 

 
 When 𝑤(𝜃) = ℎ, we get: 
 

ℎ̂𝐵𝑆 = ℎ(1 + 0.5 𝐾1 + 𝐾2 + 𝐾3)                                              (25) 
 

where,  
 
𝐾1 = 𝜎11[(2𝑞2 + 3𝑞 + 1)(𝑙𝑛 𝑢)2 + 2𝛼−1(𝑞 + 1) 𝑙𝑛 𝑢] +
𝜎33[2𝛼2𝑝2𝑞2 + (𝛼 − 1) 𝑝2(3𝛼 𝑞 + 𝛼 − 2) + 2𝛾−1(𝑡2 −
𝛾−1) + 3(𝛼 𝑞 + 𝛼 − 1)𝑧 𝑝 + 𝑡3], 
𝐾2 = 𝜎12𝛽−1𝑡1 + 𝜎13[𝛾−1𝑡1 + 𝛼−1(𝑧 − 𝑝) + (𝑞 + 1)(2𝑝 −
𝑝 𝑙𝑛 𝑢 + 𝑧 𝑙𝑛 𝑢) + 𝛼𝑝(2𝑞2 + 3𝑞 + 1) 𝑙𝑛 𝑢] + 𝜎23𝛽−1𝑡2, 
𝐾3 = 𝑡1Ψ1 + 𝛽−1Ψ2 + 𝑡2Ψ3, 
𝑡1 = 𝛼−1 + (𝑞 + 1) 𝑙𝑛 𝑢, 𝑡2 = 𝛼 𝑝 𝑞 + (𝛼 − 1)𝑝 + 𝑧 + 𝛾−1,  

and, 
 

𝑡3 = (𝑥𝑖
2𝛾

− 3𝑥𝑖
𝛾

+ 1)(𝑙𝑛𝑥𝑖)2. 

4.2. Under LINEX loss function 

From Eq. 20, we derive the required estimates as 
follows: 
 
 When 𝑤(𝜃) = 𝑒−𝑠𝑅, we get: 
 
�̂�𝐵𝐿 = 𝑅 − 𝑠−1 𝑙𝑛(1 + 𝑠 𝑅 𝑄)                                                  (26) 
 

where,  
 
𝑄 = 0.5 𝑠 𝑄4 + 𝑠 𝑄5 − 0.5 𝑄1 − 𝑄2 − 𝑄3, 

𝑄4 = 𝜎11𝛽2𝑞2 𝑅 (𝑙𝑛 𝑢)2 + 𝜎22𝛽−2 𝑅 (𝑙𝑛 𝑅)2 +
𝜎33𝛼2 𝛽2 𝑝2 𝑞2 𝑅,  
𝑄5 = 𝜎13 𝛼 𝛽2 𝑝 𝑞2𝑅 𝑙𝑛 𝑢 − 𝜎23𝛼 𝑝 𝑞𝑅 𝑙𝑛 𝑅 −
𝜎12𝑞 𝑙𝑛 𝑢 𝑙𝑛 𝑅, 
 
𝑄1, 𝑄2 and 𝑄3 are given in Eq. 24.  
 
 When 𝑤(𝜃) = 𝑒−𝑠ℎ, we get: 
 

ℎ̂𝐵𝐿 = ℎ − 𝑠−1 𝑙𝑛(1 + 𝑠 ℎ 𝐾)                                                   (27) 
 

where, 
 
𝐾 = 0.5 𝐾4 + 𝐾5 − 0.5 𝐾1 − 𝐾2 − 𝐾3,  
𝐾4 = 𝑠 ℎ(𝜎11 𝑡1

2 + 𝜎22 𝛽−2 − 𝜎33𝑡2
2),  

𝐾5 = 𝜎12 𝛽−1 𝑡1 + 𝜎13 𝑡1 𝑡2 + 𝜎23 𝛽−1 𝑡2. 
 
𝐾1, 𝐾2, 𝐾3, 𝑡1 and 𝑡2 are given by in Eq. 25. 
 

All quantities including Eqs. 24-27 were 
evaluated at the ML estimates of the parameters 𝛼, 𝛽, 
and 𝛾. The estimators of 𝑅 and ℎ are evaluated at a 
certain point in time 𝑥 = 𝑥0. That is, 𝑝 = 𝑝(𝑥0, 𝛾𝑀), 
𝑞 = 𝑞(𝑥0, �̂�𝑀, 𝛾𝑀), and 𝑧 = 𝑧(𝑥0, 𝛾𝑀) given as in Eq. 9. 

5. MCMC technique 

MCMC is a popular and useful method because it 
has been widely used in statistics for estimating 
complex Bayesian problems. In this section, the 
MCMC method namely Metropolis-Hastings within 
Gibbs sampling algorithm (Tierney, 1994) is applied 
to generate posterior samples and then compute the 
Bayes estimates of α, β, and γ. The conditional 
posterior distributions of α, β and γ can be obtained 
from 𝑝(𝛼, 𝛽, 𝛾|𝑥) as: 
 

𝑝1(𝛼|𝛽, 𝛾, 𝑥) ∝ 𝛼𝑟+𝑎−1 [𝑒
−

𝛼

𝛾] (1 −

𝑣𝛼)𝛽(𝑛−𝑟) ∏  (𝑢𝑖
𝛼)(1 − 𝑢𝑖

𝛼)𝛽−1𝑟
𝑖=1  ,                                      (28) 

𝑝2(𝛽|𝛼, 𝛾, 𝑥) ∝ 𝛽𝑟+𝑏−1𝑒
−𝛽[

1

𝛾
−(𝑛−𝑟) ln(1−𝑣𝛼)−(∑ (1−𝑢𝑖

𝑟
𝑖−1 )𝛼)]

 (29) 

 

and,  
 
𝑝3(𝛾|𝛼, 𝛽, 𝑥) ∝ 𝛾𝑟−𝑎−𝑏[(1 −

𝑣𝛼)𝛽(𝑛−𝑟)] [𝑒
−(

𝛼𝑐+𝛽𝑐+𝛾2

𝛾𝑐
)
] (∏ 𝑢𝑖

(𝛼−1)
(1 − 𝑢𝑖

𝛼)𝛽−1𝑟
=1 ),         (30) 

where, 𝑢𝑖  and 𝑣 are given in Eq. 7. From Eq. 32, the 

conditional posterior density of β is 𝐺𝑎𝑚𝑚𝑎 (𝑟 +

𝑏,
1

𝛾
− (𝑛 − 𝑟) ln(1 − 𝑣𝛼) − ∑ (1 − 𝑢𝑖)

𝛼𝑟
𝑖=1 ). Thus, the 

samples of 𝛽 can be generated by using any Gamma 
sub-routine. On the other side, From Eqs. 28 and 30, 
the conditional posterior density of 𝛼 and 𝛾 do not 
present standard form, but the plots of them show 
that they are similar to the normal distribution. Thus 

𝑝1(𝛼|𝛽, 𝛾, 𝑥) and 𝑝3(𝛾|𝛼, 𝛽, 𝑥) are log-concave. i.e., all 

the conditional posterior distributions contain a 
single maximum value, and this allows us to apply 
MCMC. 

To simulate random samples  from 𝑝1(𝛼|𝛽, 𝛾, 𝑥) 

and 𝑝3(𝛾|𝛼, 𝛽, 𝑥), we use the MH algorithm with the 
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normal proposal distribution 𝑁(�̂�𝑀, 𝑉𝑎𝑟�̂�𝑀) and 
𝑁(𝛾𝑀, 𝑉𝑎𝑟𝛾𝑀) through these conditional posterior 
densities. The algorithm is detailed in the following 
steps: 
 

(1) Set the initial guess (𝛼0, 𝛽0, 𝛾0) = (�̂�𝑀, �̂�𝑀 , 𝛾𝑀)  

(2) Set 𝑖 = 1. 

(3) Generate 𝛽(𝑖) from 𝐺𝑎𝑚𝑚𝑎 (𝑟 + 𝑏,
1

𝛾
−

(𝑛 − 𝑟) ln(1 − 𝑣𝛼) − ∑ (1 − 𝑢𝑖)
𝛼𝑟

𝑖=1 ). 

(4) Using MH: 
 
(a) Generate 𝛼∗ from 𝑁(𝛼(𝑖−1), 𝑉𝑎𝑟(𝛼)) and 𝛾∗ from 
𝑁(𝛾(𝑖−1), 𝑉𝑎𝑟(𝛾)). 
(b) Evaluate the acceptance probabilities, 
 

Ω𝛼 = 𝑚𝑖𝑛 [1,
𝑝1(𝛼∗|𝛽(𝑖), 𝛾(𝑖−1),   𝑥)

𝑝1(𝛼(𝑖−1)|𝛽(𝑖), 𝛾(𝑖−1),   𝑥)
],  

Ω𝛾 = 𝑚𝑖𝑛 [1,
𝑝3(𝛾∗|𝛼(𝑖), 𝛽(𝑖),   𝑥)

𝑝3(𝛾(𝑖−1)|𝛼(𝑖), 𝛽(𝑖),   𝑥)
].  

 

(c) Generate a 𝑢1 and 𝑢2 from a Uniform (0,1). 
(d) If 𝑢1 < Ω𝛼 , accept the proposal, and set 𝛼(𝑗) = 𝛼∗, 
else set 𝛼(𝑗) = 𝛼(𝑗−1). 
(e) If 𝑢2 < Ω𝛾 , accept the proposal, and set 𝛾(𝑗) = 𝛾∗, 

else set 𝛾(𝑗) = 𝛾(𝑗−1). 
 
(5) Compute the reliability characteristics 𝑅(𝑡) and 
ℎ(𝑡) as, 
 

𝑅(𝑖)(𝑥) = [1 − (1 − 𝑒−𝑥𝛾(𝑖)

)
𝛼(𝑖)

]

𝛽(𝑖)

,   

 

and,  
 

ℎ(𝑖)(𝑥) = 𝛼(𝑖)𝛽(𝑖)𝛾(𝑖)𝑥𝛾(𝑖)−1𝑒−𝑥𝛾(𝑖)

(1 − 𝑒−𝑥𝛾(𝑖)

)𝛼(𝑖)−1  [1 −

(1 − 𝑒−𝑥𝛾(𝑖)

)
𝛼(𝑖)

]

−1

.  

 

(6) Set 𝑖 = 𝑖 + 1. 
(7) Duplicate steps 2-6 𝑁1 times to obtain: 
 

(𝛼(1), 𝛽(1), 𝛾(1), 𝑅(1)(𝑥), ℎ(1)(𝑥)), . . .,  

(𝛼(𝑁1), 𝛽(𝑁1), 𝛾(𝑁1), 𝑅(𝑁1)(𝑥), ℎ(𝑁1)(𝑥)). 

 

Then, the Bes of Λ = 𝛼, 𝛽, 𝛾, 𝑅(𝑥) 𝑜𝑟 ℎ(𝑥) under 
SE, LINEX loss functions are, respectively, given by, 
 

Λ𝑆𝐸 =
1

𝑁1−𝑁0

∑ Λ(𝑖)𝑁1
𝑖=𝑁0+1   

 

and, 
 

Λ𝐿𝐼𝑁𝐸𝑋 = −
1

𝑠
ln (

1

𝑁1−𝑁0

∑ 𝑒−𝑠Λ(𝑖)𝑁1
𝑖=𝑁0+1 )  

 

where, 𝑁0 is burn-in period. 

6. Simulation study 

In the above sections, mathematical forms were 
derived for different estimates of the parameters of 

the KW distribution and its reliability and failure 
rate functions as parameters. It is very difficult to 
compare and assess the performances of these 
estimates theoretically. Therefore, extensive 
numerical experiments were conducted by Monte 
Carlo simulation study to carry out the comparisons 
and assessments mainly with respect to the mean 
squared errors of the different estimates based on 
different sample sizes. Different sample sizes ranging 
from small to large were generated.  

For a given value of c, a value of 𝛾 was generated 
from Eq. 12 and used with given values of 𝑎 and 𝑏 to 
generate values of 𝛼 and 𝛽. The suggested values of 
the prior parameters are: 𝑎 = 3, 𝑏 = 2 and 𝑐 = 3 
which yield 𝛾 = 2.1016, 𝛼 = 3.6311 and 𝛽 = 0.7283 
(as simulated true values) and the simulated true 
values of 𝑅(𝑥) and ℎ(𝑥) are 𝑅(1.5) = 0.4226 and 
ℎ(1.5) = 3.1268. Monte Carlo simulations are 
carried out utilizing 1000 type II censored samples 
for each simulation. We assume that the Bayes 
estimates are obtained under the squared error (SE) 
loss function and LINEX loss function (s=25, -25) 
together. Also, we compute the Bayes estimates 
based on 10000 MCMC samples and a 2000 burn-in 
period i.e. N1=10000 and N0=2000.  

Samples of sizes: 15, 25, 50, and 100 were 
generated from the  𝐾𝑊(𝛼, 𝛽, 𝛾) and employed the 
MATHEMATICA 10 to perform all computations. By 

solving the nonlinear Eq. 7, the MLEs �̂�𝑀, �̂�𝑀 and 𝛾𝑀 

were estimated. The estimates �̂�𝑀(𝑥0) and ℎ̂𝑀(𝑥0) 
are then evaluated at a time point 𝑥 = 1.5. The mean 
values of the different Bayes estimates were 
evaluated. The associated mean squared errors 
(MSEs) of the different estimates were calculated to 
compare the performances of the resulting 
estimators. The results are reported in Tables 1-5.  

From the simulation results, we can state the 
following remarks: 
 
1. The results in all tables reveal that the MSEs of the 

estimators tend to decrease by increasing the 
sample size and this indicates that the estimators 
for all considered parameters are consistent. 

2. Bayes estimates under the Lindley procedure and 
MCMC technique have the smallest MSEs for 𝛼, 𝛽, 
𝛾, R(t), and h(t). Hence, Bayes estimates perform 
better than the MLEs in all cases considered. 

3. Bayes estimates using the MCMC technique 
perform better than Bayes estimates using the 
Lindley procedure in the sense of having smaller 
MSEs. 

4. Bayes estimates under the LINEX loss function 
work the best in all cases of sample sizes under 
consideration and for all the parameters, followed 
by the estimates under the squared error loss 
function.  

5. Bayes estimates under LINEX loss function with 
s=25 are provides better estimates in the sense of 
having smaller MSEs. 

6. As usual, the MLEs work well at moderate and 
large sample sizes for all 𝛼, 𝛽, 𝛾, R(t), and h(t). 
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Table 1: Average of different estimates and MSEs (in brackets) for 𝛾 

𝑛 𝑟 MLE 
Lindley MCMC 

SE 
LINEX 

SE 
LINEX 

𝑠 = −25 𝑠 = 25 𝑠 = −25 𝑠 = 25 

15 10 
1.9241 

(0.1247) 
2.0451 

(0.1045) 
1.9782 

(0.0996) 
1.9920 

(0.0904) 
1.7998 

(0.0895) 
1.8969 

(0.0815) 
2.1337 

(0.0746) 

25 20 
2.0856 

(0.1149) 
1.945 

(0.0935) 
2.2012 

(0.0899) 
2.0147 

(0.0796) 
1.8973 

(0.0805) 
2.2198 

(0.0758) 
1.9999 

(0.0683) 

50 40 
2.0277 

(0.0958) 
2.0249 

(0.0834) 
2.1457 

(0.0746) 
1.9993 

(0.0697) 
2.2140 

(0.0779) 
1.9647 

(0.0688) 
2.0128 

(0.0534) 

100 80 
1.9784 

(0.0598) 
2.0728 

(0.0526) 
2.1255 

(0.0485) 
2.0967 

(0.0411) 
2.1999 

(0.0479) 
1.9483 

(0.0399) 
1.9988 

(0.0347) 

 
Table 2: Average of different estimates and MSEs (in brackets) for 𝛼 

𝑛 𝑟 MLE 
Lindley MCMC 

SE 
LINEX 

SE 
LINEX 

𝑠 = −25 𝑠 = 25 𝑠 = −25 𝑠 = 25 

15 10 
4.2451 

(0.9467) 
4.1558 

(0.9146) 
3.8942 

(0.9100) 
3.7214 

(0.8266) 
4.2789 

(0.8012) 
3.8217 

(0.7541) 
4.0012 

(0.6901) 

25 20 
4.2011 

(0.8997) 
3.8199 

(0.8277) 
3.8145 

(0.7966) 
3.5489 

(0.7351) 
3.9012 

(0. 6989) 
3.7461 

(0.6462) 
3.6890 

(0.5763) 

50 40 
3.9862 

(0.8532) 
4.0085 

(0.7933) 
3.7985 

(0.7463) 
3.6999 

(0.6654) 
3.7233 

(0.6187) 
3.8720 

(0.5871) 
3.5577 

(0.4987) 

100 80 
3.7666 

(0.6473) 
3.5341 

(0.6178) 
3.6444 

(0.5888) 
3.7001 

(0.5100) 
3.5664 

(0.4399) 
3.7014 

(0.4023) 
3.6982 

(0.3075) 

 
Table 3: Average of different estimates and MSEs (in brackets) for 𝛽 

𝑛 𝑟 MLE 
Lindley MCMC 

SE 
LINEX 

SE 
LINEX 

𝑠 = −25 𝑠 = 25 𝑠 = −25 𝑠 = 25 

15 10 
0.9871 

(0.1109) 
0.9211 

(0.0958) 
0.8874 

(0.0745) 
0.9147 

(0.0694) 
0.8479 

(0.0652) 
0.8277 

(0.0619) 
0.7568 

(0.0584) 

25 20 
0.9233 

(0.0987) 
0.8366 

(0.0742) 
0.9472 

(0.0621) 
0.8914 

(0.0591) 
0.7844 

(0.0513) 
0.8013 

(0.0492) 
0.7782 

(0.0442) 

50 40 
0.9322 

(0.0874) 
0.7495 

(0.0589) 
0.7914 

(0.0510) 
0.7483 

(0.0411) 
0.7256 

(0.0402) 
0.7548 

(0.0371) 
0.6914 

(0.0291) 

100 80 
0.8120 

(0.0614) 
0.7511 

(0.0564) 
0.7374 

(0.0451) 
0.6577 

(0.0354) 
0.6733 

(0.0309) 
0.6691 

(0.0296) 
0.6257 

(0.0228) 

 
Table 4: Average of different estimates and MSEs (in brackets) for 𝑅(1.5) 

𝑛 𝑟 MLE 
Lindley MCMC 

SE 
LINEX 

SE 
LINEX 

𝑠 = −25 𝑠 = 25 𝑠 = −25 𝑠 = 25 

15 10 
0.4527 

(0.0535) 
0.4158 

(0.0311) 
0.3856 

(0.0295) 
0.3988 

(0.0251) 
0.4293 

(0.0214) 
0.4157 

(0.0190) 
0.3999 

(0.0153) 

25 20 
0.3942 

(0.0472) 
0.3851 

(0.0289) 
0.4013 

(0.0228) 
0.4019 

(0.0199) 
0.3955 

(0.0179) 
0.4298 

(0.0122) 
0.3947 

(0.0101) 

50 40 
0.4155 

(0.0359) 
0.3912 

(0.0214) 
0.3794 

(0.0198) 
0.3879 

(0.0138) 
0.3985 

(0.0111) 
0.3977 

(0.0086) 
0.4028 

(0.0071) 

100 80 
0.3799 

(0.0264) 
0.4153 

(0.0159) 
0.4255 

(0.0136) 
0.3999 

(0.0100) 
0.4187 

(0.0087) 
0.4093 

(0.0055) 
0.4229 

(0.0430) 

 
Table 5: Average of different estimates and MSEs (in brackets) for ℎ(1.5) 

𝑛 𝑟 MLE 
Lindley MCMC 

SE 
LINEX 

SE 
LINEX 

𝑠 = −25 𝑠 = 25 𝑠 = −25 𝑠 = 25 

15 10 
3.1451 

(1.0124) 
3.1478 

(0.9254) 
3.2199 

(0.8954) 
3.2781 

(0.8147) 
3.3412 

(0.7985) 
3.1479 

(0.7533) 
3.2945 

(0.5471) 

25 20 
3.1514 

(0.9315) 
2.9854 

(0.7549) 
3.3154 

(0.7162) 
3.1486 

(0.6794) 
3.1222 

(0.6247) 
3.2954 

(0.5963) 
3.1456 

(0.5132) 

50 40 
3.2552 

(0.8924) 
2.8964 

(0.6955) 
2.9614 

(0.6634) 
3.1745 

(0.6147) 
3.3475 

(0.5896) 
3.2147 

(0.4965) 
3.1115 

(0.3966) 

100 80 
3.1555 

(0.0764) 

3.0417 
(0.5584) 

 

3.1254 
(0.4987) 

2.9999 
(0.4388) 

3.2990 
(0.4102) 

3.1845 
(0.3821) 

3.2247 
(0.3145) 

 

7. Applications 

This study has used three real data sets as 
examples to illustrate the availability and flexibility 
to apply the different estimates proposed in the 
above sections. Moreover, this study has aimed to 
illustrate the eligibility of the different estimates for 
the parameters of each data set. This study has 

adopted estimations for the parameters using the 
uncensored and censored schemes for these data 
sets. With respect to the Bayesian estimates for the 
parameters of these data sets (reported in Tables 7, 
9, and 11 below), non-informative priors were 
considered for the parameters 𝛼, 𝛽 and 𝛾 in order to 
avoid or reduced the impact of the prior’s 
parameters on the posterior. This study has used 
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non-informative priors with 𝑎 = 𝑏 = 𝑐 = 0.001. The 
sizes of the data sets are between small to large and 
very large. 

Application 1. The data set was considered to 
correspond to remission times (in months) of a 
random sample of 128 bladder cancer patients. The 
data were previously studied by Lee and Wang 
(2003), Zea et al. (2012), and Najarzadegan et al. 
(2017).  

The data set are as follows: 0.08, 0.20, 0.40, 0.50, 
0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 
1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 
2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 
3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 
3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 
4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 
5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 
6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 
7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 

9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 
11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 
13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 
16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 
22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 
43.01, 46.12, 79.05.  

Some statistical properties of this data set and the 
values of Kolmogorov-Smirnov (K-S) statistics with 
their respective p-value are shown in Table 6. The 
notations used in Table 6: 𝑥, 𝐸(𝑋), 𝑉𝑎𝑟, 𝑆𝑘 and 𝐾𝑢 
are the sample mean, the expected value, variance, 
skewness, and kurtosis, respectively. 

The values of K-S and p-value reveal that the KW 
distribution provides an excellent fit to this data. Fig. 
1 supports this claim. Table 7 reports the MLEs and 
the Bayesian estimates for the different parameters 
under censored schemes when n=128 and r=96. The 
estimates of the survival time R and the risk time h 
are evaluated at the time point x0 = 2. 

 
Table 6: Remission times of bladder cancer data: Statistical properties 

𝑥 𝐸(𝑋) 𝑉𝑎𝑟 𝑆𝑘 𝐾𝑢 K-S test value p-value 
9.365 8.672 110.425 3.286 18.483 0.061 0.707 

 
Table 7: Remission times of bladder cancer data: ML and Bayesian estimates 

Parameter MLE 
Lindley MCMC 

SE 
LINEX 

SE 
LINEX 

s= -500 s=500 s= -500 s=500 
𝛼 4.3679 4.6205 4.5327 4.3467 4.4524 4.3891 4.5983 
𝛽 0.4293 0.4162 0.4025 0.4183 0.4255 0.4352 0.4234 
𝛾 0.6138 0.5981 0.6177 0.6043 0.6214 0.6155 0.5894 

𝑅(2) 0.8341 0.8459 0.8269 0.8215 0.8322 0.8234 0.8201 
ℎ(2) 0.2558 0.2384 0.2258 0.2134 0.2202 0.2153 0.2057 

 

Application 2. The second data set corresponds 
to the life of fatigue fracture of Kevlar 373/epoxy 
subjected to constant pressure at 90% stress level 
until all had failed. The data were studied previously 
by many authors such as Barlow et al. (1984) and 
Andrews and Herzberg (2012).  

The data set are as follows: 0.0251, 0.0886, 
0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 
0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 
0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 
0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 
1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 
1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 
1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 
1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 

2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 
2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 
2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 
3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 
6.5541, 9.0960. 

Table 8 lists the values of some statistical 
properties of this data set and the values of the K-S 
statistic with their respective p-value. The values of 
K-S and p-value reveal that the KW distribution 
provides a significantly fit this data. Fig. 1 supports 
this claim. Table 9 reports the MLEs and the 
Bayesian estimates for the parameters under 
censored schemes n=76 and r =57. The estimates of 
R and h are evaluated at the time point 𝑥0 = 0.5. 

 
Table 8: Data of fatigue structure of Kevlar 373/epoxy: Statistical properties 

𝑥 𝐸(𝑋) 𝑉𝑎𝑟 𝑆𝐾 𝐾𝑢 K-S test value p-value 
1.959 1.959 2.477 1.979 8.161 0.098 0.428 

 
Table 9: Data of fatigue structure of Kevlar 373/epoxy: ML and Bayesian estimates 

Parameter MLE 
Lindley MCMC 

SE 
LINEX 

SE 
LINEX 

s= -500 s=500 s= -500 s=500 
𝛼 4.1217 4.1205 4.2145 4.1056 4.1568 4.2111 4.0173 
𝛽 2.4011 2.2780 2.3941 2.3618 2.2879 2.2541 2.1888 
𝛾 0.5825 0.4218 0.4912 0.5746 0.4588 0.5134 0.4697 

𝑅(0.5) 0.8805 0.8330 0.8549 0.8738 0.8344 0.8321 0.8287 
ℎ(0.5) 0.2205 0.2526 0.2566 0.2272 0.2489 0.2384 0.2278 

 

Application 3. As a third application, this study 
has considered the real data set that was studied 
previously by Gross and Clark (1975). The data 

represents the relief times of twenty patients 
receiving an analgesic. The data set is as follows: 1.1, 



Fathy H. Eissa/International Journal of Advanced and Applied Sciences, 9(12) 2022, Pages: 57-67 

65 
 

1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 
1.4, 3.0, 1.7, 2.3, 1.6, 2.0. 

Fig. 1 supports the claim that the KW distribution 
provides a significantly fit to this data through the 
values of the K-S test and its p-value cited in Table 

10. Table 11 summarizes the performances of the 
different estimation methods for this data set when 
n=20 and r =16. The estimates of the parameters R 
and h are estimated at 𝑥0 = 1.7. 

 
Table 10: Data of relief times of twenty patients: Statistical properties 

𝑥 𝐸(𝑋) 𝑉𝑎𝑟 𝑆𝐾 𝐾𝑢 K-S test value p-value 
1.900 1.923 0.496 1.720 5.924 0.181 0.474 

 
Table 11: Data of relief times of twenty patients: ML and Bayesian estimates 

Parameter MLE 
Lindley MCMC 

SE 
LINEX 

SE 
LINEX 

s= -500 s=500 s= -500 s=500 
𝛼 7.5221 5.8547 6.6459 6.4943 6.9543 6.8469 6.4865 
𝛽 0.3060 0.2279 0.3022 0.2927 0.2874 0.2147 0.2103 
𝛾 2.5780 2.2891 2.2145 2.5608 2.6412 2.4561 2.3412 

𝑅(1.7) 0.5465 0.5858 0.5681 0.5278 0.5735 0.5547 0.5263 
ℎ(1.7) 2.9028 2.3836 2.7362 2.9414 2.3188 2.5453 2.4128 

 

Based on the estimated values of the parameters 
for the above data sets, and in view of the results of 
Eissa’s (2017) Theorem 4, this study shows that data 

sets 1 and 2 have upside-down bathtub-shaped 
hazard rates while data set 3 has increasing hazard 
rate. This result is shown in Fig. 2. 

 

 

 

 
Fig. 1: Pdfs functions for the real data sets 
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Fig. 2: Hazard rate functions for the real data sets 

8. Conclusion

In conclusion, the core emphasis was on the
classical and Bayesian estimation (Huber and Train, 
2001) for the Kumaraswamy Weibull lifetimes 
(Cordeiro et al., 2010; Mitnik, 2013) to show the 
availability and flexibility of the Kumaraswamy 
Weibull distribution as a model for analyzing lifetime 
data sets in presence of right censoring. Although the 
existence of the three shape parameters, the Lindley 
procedure was adopted to obtain approximate forms 
for different estimators in simple mathematical 
formats. The MCMC technique was also adopted to 
get the estimates directly from the posterior 
distribution by generating posterior samples. 
Bayesian estimates for the shape parameters and the 
reliability and hazard rate functions (as parameters) 
were derived under the squared error loss and 
LINEX loss functions (Varian, 1975). The 
performances of these estimators had been 
compared with the MLEs for all parameters based on 
the MSEs. Based on the simulation experiments, the 

approximate Lindley estimators for different 
parameters perform better than MLEs for all sample 
sizes, especially under the LINEX loss function. 
Although, good performance of the approximate 
forms of Lindley estimators, the MCMC technique 
performs better than it in all cases considered. 

Analyzing the three real data sets shows the 
applicability of the proposed estimators. Adopting 
the approximate forms for different Bayes estimates 
using the Lindley procedure, seem to be appropriate 
and adequate (in terms of MSEs) to obtain 
acceptable Bayes estimates for models of multi-
parameters such as the Kumaraswamy Weibull 
distribution as shown in this study. However, The 
MCMC technique is the best. 

Data availability

The data in application 1 is openly available from
the book by Lee and Wang (2003). The data in 
application 2 is openly available in Barlow et al. 
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(1984). The data in application 3 is openly available 
from the book by Gross and Clark (1975). 
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