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A common practice in statistical distribution theory involves exponentiating 
existing distribution functions to include some extra parameters that 
increase the flexibility of the distribution. This paper examines the effect of 
exponentiating some generalized models by adding three extra parameters 
to their probability distribution. Particularly, a new generalized distribution 
that is a member of the inverted Kumaraswamy family of distributions is 
considered. Afterward, three additional parameters are applied to enhance 
this generalized distribution, which results in a novel distribution referred to 
as the new generalized exponentiated generalized inverted Kumaraswamy 
Gompertz distribution (NGEGIKGD). Some of the statistical and mathematical 
characteristics of this distribution were derived. Additionally, parametric 
estimation of the new distribution parameters was considered using the 
maximum likelihood method. Several Monte Carlo simulation studies were 
conducted in order to explore the usefulness of the estimation method. The 
proposed distribution is then compared with its corresponding sub-models 
in order to assess the effects of the exponentiation. Further evaluation of the 
distribution is accomplished by comparing it to some relative distributions. 
Specifically, three real-world datasets were analyzed to demonstrate the 
potentiality of the suggested new modeling approach in enhancing the 
goodness of fit of the generalized models. Results indicate that 
exponentiating a generalized model significantly improves its fit compared to 
the non-exponentiating distributions. 
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1. Introduction 

*Statistical distributions play an important role in 
describing, modeling, analyzing, simulating, and 
performing inferences in relation to many world 
phenomena. Specifically, statistical distributions play 
a key role in understanding data and their 
characteristics through the implementation of 
calculations to make critical decisions about a 
phenomenon based on the results. Thus, the best 
distribution needs to be found to fit datasets. 

Numerous and powerful statistical distributions 
have been applied to explain and fit a variety of 
phenomena in different areas. However, some of 
these classical distributions cannot describe or fit 
the complex behavior of real data, such as symmetry 
or strong skewness. Thus, there is a continuous need 
to find more flexible and adaptable distributions in 

                                                 
* Corresponding Author.  
Email Address: hklakattawi@kau.edu.sa (H. S. Klakattawi) 

https://doi.org/10.21833/ijaas.2022.11.006 
 Corresponding author's ORCID profile:  

https://orcid.org/0000-0001-6617-2081 
2313-626X/© 2022 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

order to improve data fitting. Recently, many 
statisticians have been interested in extending the 
classical distributions and adding one or more extra 
shape parameters to an existing distribution in order 
to propose some new family of distributions that will 
enhance their goodness of fit; for a review, see Gupta 
et al. (1998), Cordeiro et al. (2013), and Rezaei et al. 
(2017). 

According to the T-X method, a new generator 
family of distributions has been proposed (Jamal et 
al., 2019) using the inverted Kumaraswamy 
distribution as a generator; for more information 
about this method, see Alzaatreh et al. (2013). The 
cumulative distribution function (cdf) and the 
probability density function (pdf) of the new 
generalized inverted Kumaraswamy family of 
distributions are obtained as: 
 

𝐹(𝑥) = [1 − (1 − 𝐺𝛾(𝑥, 𝜁))𝛼]𝛽 , 𝛼, 𝛽, 𝛾 > 0,                           (1) 
𝑓(𝑥) = 𝛼𝛽𝛾𝑔(𝑥, 𝜁)𝐺𝛾−1(𝑥, 𝜁)(1 − 𝐺𝛾(𝑥, 𝜁))𝛼−1 ×
[1 − (1 − 𝐺𝛾(𝑥, 𝜁))𝛼]𝛽−1, 𝛼, 𝛽, 𝛾 > 0,                                     (2) 
 

where, 𝜁 is the parametric space of the baseline 
distribution and 𝐺(𝑥, 𝜁) and 𝑔(𝑥, 𝜁) are the cdf and 
pdf of any statistical distribution. The fundamental 
motivations for obtaining this class of distributions 
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could be summarised in some points including 
improving the flexibility of the kurtosis and 
skewness in comparison with the baseline 
distribution, constructing heavy-tailed models 
without exhibiting longer tails for fitting real data, 
providing various shapes for the pdf of the generated 
distributions, and enhancing the goodness-of-fit for 
the given distribution when compared to other 
competitive distributions. 

The Gompertz distribution proposed in Gompertz 
(1825) is a classical distribution that represents the 
survival function based on the laws of mortality. The 
cdf and pdf of the Gompertz distribution are defined, 
respectively, as: 
 

𝐺(𝑥) = 1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1), 𝑥 ≥ 0, 𝜆, 𝑘 > 0,                                   (3) 

𝑔(𝑥) = 𝜆𝑒𝑘𝑥𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1), 𝑥 ≥ 0, 𝜆, 𝑘 > 0.                                  (4) 

 

Although this Gompertz distribution is one of the 
most common distributions used to describe 

lifespans, it must be understood that its hazard rate 
function is monotonically increasing. In practice, 
however, it is necessary to take into account cases 
with non-monotonic increasing functions. Therefore, 
many authors (Joshi and Kumar, 2020; Eghwerido et 
al., 2021; Shama et al., 2022) have recently 
incorporated extra parameters into the Gompertz 
distribution to overcome this disadvantage. 

It is argued in this paper that the benefits of the 
generalized inverted Kumaraswamy family of 
distributions can be applied to the Gompertz 
distribution in order to construct a more flexible 
distribution for accurately fitting real-world data. 
Specifically, by replacing 𝐺(𝑥, 𝜁) in Eq. 1 by the cdf in 
Eq. 3 and 𝑔(𝑥, 𝜁) in Eq. 2 by the pdf in Eq. 4 we 
obtain a new distribution namely, the generalized 
inverted Kumarswamy Gompertz distribution with a 
cdf and pdf as follows: 
 

𝐺(𝑥) = (1 − {1 − [1 − 𝑒− 
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽 ,    𝑥 ≥ 0,               (5) 

  

𝑔(𝑥) = 𝛼𝛽𝛾𝜆𝑒𝑘𝑥𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)[1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾−1{1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼−1

× (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽−1,    𝑥 ≥ 0,

                                                                                               (6) 

  
 

where, 𝑘 > 0 is a scale parameter and 𝜆, 𝛼, 𝛽, and 
𝛾 > 0 are shape parameters. 

Adding extra parameters to classical or existing 
models can be accomplished using the 
exponentiation method. Recently, taking inspiration 
from series-parallel-series systems, the authors of 
Rezaei et al. (2017) proposed a new generalized 
exponentiated class of distributions with three extra 
shape parameters. The cdf and pdf of this new class 
are defined, respectively, as: 
 

𝐹(𝑥) = 1 − (1 − {1 − [1 − 𝐺(𝑥, 𝜁)]𝑎}𝑏)𝜃 ,                             (7) 
𝑓(𝑥) = 𝑎𝑏𝜃𝑔(𝑥, 𝜁)[1 − 𝐺(𝑥, 𝜁)]𝑎−1 × 

{1 − [1 − 𝐺(𝑥, 𝜁)]𝑎}𝑏−1(1 − {1 − [1 − 𝐺(𝑥, 𝜁)]𝑎}𝑏)𝜃−1,   (8) 
 

where, 𝜁 is the parametric space of the baseline 
distribution, 𝐺(𝑥, 𝜁) and 𝑔(𝑥, 𝜁) are the cdf and pdf of 
any statistical distribution and a, b and 𝜃 > 0 are 
positive real numbers. Different generalizations have 
been introduced based on the new generalized 
exponentiated class of distributions; for example, 
Nasiru et al. (2019) proposed the exponentiated 
generalized exponential Dagum distribution and De 
Andrade et al. (2019) proposed the exponentiated 
generalized extended Gompertz distribution. 

Reasons for the adoption of this generator in Eq. 
7 include its simplicity. That is, besides the ability of 
the additional parameters to control both the 
weights of the data, this cdf is always tractable, as it 
has no complicated function, and obtaining its 
inverse is very straightforward. The distributions 
generated from this family can also be interpreted 
physically in terms of the series-parallel-series 
systems and the hierarchical structure with three 
levels. For the purpose of exploring the usefulness of 
exponentiating a generalized model by adding the 
three parameters in Eq. 7, this paper compounds the 

generalized inverted Kumarswamy Gompertz 
distribution to the new generalized exponentiated 
class. Particularly, 𝐺(𝑥, 𝜁) in Eq.7 is replaced by the 
cdf in Eq. 5, and 𝑔(𝑥, 𝜁) in Eq. 8 is replaced by the pdf 
in Eq. 6, aiming to provide a more flexible, practical 
and accurate distribution in describing a variety of 
real life applications, e.g., engineering, reliability, and 
real-life data. It becomes evident from the 
application of this novel distribution to a number of 
different datasets that the exponentiation method 
plays a very important role in the concept of model 
flexibility. These reasons highlight the importance of 
examining further the proposed distribution, namely 
the new generalized exponentiated generalized 
inverted Kumaraswamy Gompertz distribution 
(NGEGIKGD). 

This article consists of the following: In Section 2, 
we propose the new distribution, the NGEGIKGD, 
and some graphical representations of its density 
and hazard rate function (hrf) are provided. In 
Section 3, the expansion of the pdf for the NGEGIKGD 
is derived. In Section 4, we study some of the 
statistical properties of the proposed distribution. 
The distribution parameters are determined using 
the maximum likelihood (ML) method in Section 5. 
Section 6, reports the simulation results. In Section 7, 
three real datasets are presented. Conclusions are 
provided in Section 8. 

2. The new generalized exponentiated 
generalized inverted Kumaraswamy Gompertz 
distribution 

A random variable X is said to have an NGEGIKGD 
with eight parameters 𝑘 > 0 as scale parameters and 
𝑎, 𝑏, 𝜃, 𝛼, 𝛽, 𝛾, 𝜆 > 0 as shape parameters if its cdf and 
pdf are given by the following form: 
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𝐹(𝑥) = 1 − (1 − {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏)𝜃 ,    𝑥 ≥ 0,                                                                                               (9) 

 

and,  
 

𝑓(𝑥) = 𝑎𝑏𝜃𝛼𝛽𝛾𝜆𝑒𝑘𝑥𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)[1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾−1{1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼−1

× (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽−1[1 − (1 − {1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎−1

× {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏−1

× (1 − {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏)𝜃−1,    𝑥 ≥ 0.

                                                                         (10) 

  
 

The survival function (SF) is frequently used to 
describe the distribution of survival time. Then, the 
SF of the NGEGIKGD is given by: 
  
 

𝑆(𝑥) = (1 − {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏)𝜃 ,    𝑥 ≥ 0.                                                                                                     (11) 

  
 

The hrf of the NGEGIKGD, which is often used in 
lifespan modeling as it indicates the likelihood of 
failure, is defined as: 
  

ℎ(𝑥) =
𝑎𝑏𝜃𝛼𝛽𝛾𝜆𝑒𝑘𝑥𝑒

−
𝜆
𝑘

(𝑒𝑘𝑥−1)
[1−𝑒

−
𝜆
𝑘

(𝑒𝑘𝑥−1)
]𝛾−1{1−[1−𝑒

−
𝜆
𝑘

(𝑒𝑘𝑥−1)
]𝛾}𝛼−1

1−{1−[1−(1−{1−[1−𝑒
−

𝜆
𝑘(𝑒𝑘𝑥−1)

]𝛾}𝛼)𝛽]𝑎}𝑏

× (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽−1[1 − (1 − {1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎−1

× {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏−1.

                                                                         (12) 

  
 

The pdf and hrf plots for the NGEGIKGD are given 
in Fig. 1, and Fig. 2, respectively, at some certain 
values of the distribution’s parameters. 

 

 
Fig. 1: The pdf’s plots of the NGEGIKGD 

 

In Fig. 1, it can be seen that the NGEGIKGD’s pdf is 
decreasing, symmetrical, positively skewed, and 
negatively skewed. In addition, in Fig. 2, the hrf of 
the NGEGIKGD takes constant, increasing, decreasing 
and bathtub shapes which makes it an ideal choice 
for fitting different hazard behaviors that are more 
likely to appear in real-world situations such as 
reliability analysis, human mortality, and biological 
applications. 

 

 
Fig. 2: The hrf’s plots of the NGEGIKGD 

3. Expansion of the NGEGIKGD’s pdf 

For a non-negative power, the binomial 
expansion is defined as: 
 

(1 − 𝑧)𝜂−1 = ∑∞
𝑖=0 (−1)𝑖  (

𝜂 − 1
    𝑖

) 𝑧𝑖 ,    |𝑧| < 1, 𝜂 > 0.   (13) 

 

Applying the binomial expansion in Eq. 13 six 
times to Eq. 10, we obtain: 
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𝑓(𝑥) = 𝑎𝑏𝜃𝛼𝛽𝛾𝜆 ∑

∞

𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6=0

(−1)𝜐1+𝜐2+𝜐3+𝜐4+𝜐5+𝜐6 (
𝜃 − 1
    𝜐1

) (
𝑏(𝜐1 + 1) − 1
            𝜐2

)

× (
𝑎(𝜐2 + 1) − 1
            𝜐3

) (
𝛽(𝜐3 + 1) − 1
            𝜐4

) (
𝛼(𝜐4 + 1) − 1
            𝜐5

) (
𝛾(𝜐5 + 1) − 1
            𝜐6

)

×  𝑒𝑘𝑥𝑒−
𝜆(𝜐6+1)

𝑘
𝑒𝑘𝑥

𝑒
𝜆
𝑘

(𝜐6+1).

 

  
 

The power series for the exponential function 
expansion is defined as: 
 

𝑒−𝑥 = ∑∞
𝜂=0

(−1)𝜂

Γ(𝜂+1)
𝑥𝜂 .                                                                (14) 

 

The pdf of the NGEGIKGD is then obtained as: 
  
 

𝑓(𝑥) = 𝑎𝑏𝜃𝛼𝛽𝛾𝜆 ∑∞
𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7=0 𝑉𝜐 𝑒

𝜆

𝑘
(𝜐6+1)𝑒[𝑘(𝜐7+1)]𝑥     , 𝑥 ≥ 0,                                                                                                       (15) 

  
 

where, 
 

𝑉𝜐 =
(−1)𝜐1+𝜐2+𝜐3+𝜐4+𝜐5+𝜐6+𝜐7

Γ(𝜐7+1)[
𝜆(𝜐6+1)

𝑘
]−𝜐7

(
𝜃 − 1
    𝜐1

) (
𝑏(𝜐1 + 1) − 1
            𝜐2

) (
𝑎(𝜐2 + 1) − 1
            𝜐3

)

× (
𝛽(𝜐3 + 1) − 1
            𝜐4

) (
𝛼(𝜐4 + 1) − 1
            𝜐5

) (
𝛾(𝜐5 + 1) − 1
            𝜐6

) .

                                                                                                     (16) 

  
 

4. Properties of the NGEGIKGD 

This section discusses some of the NGEGIKGD’s 
properties. 

4.1. The quantile and median 

The quantile of the NGEGIKGD is: 
 

𝑄(𝑢) =
1

𝑘
𝑙𝑜𝑔 {1 −

𝑘

𝜆
𝑙𝑜𝑔(𝑧(𝑢))},                                             (17) 

 

where, 
𝑧(𝑢) = 1 − [1 − {1 − (1 − [1 − {1 − (1 −
𝑢)1/𝜃}1/𝑏]1/𝑎)1/𝛽}1/𝛼]1/𝛾  and u is any value in (0,1). 

The median of the NGEGIKGD (𝑀𝑒𝑑) is derived 
by setting 𝑢 = 0.5 in Eq. 17 as: 
 

𝑀𝑒𝑑 =
1

𝑘
𝑙𝑜𝑔 {1 −

𝑘

𝜆
𝑙𝑜𝑔(𝑧(0.5))},                                          (18) 

 

where, 
𝑧(0.5) = 1 − [1 − {1 − (1 − [1 − {1 −
(0.5)1/𝜃}1/𝑏]1/𝑎)1/𝛽}1/𝛼]1/𝛾.  
 

Therefore, the first quantile (Q(0.25)) and third 
quantile (Q(0.75)) of the NGEGIKGD are obtained by 
substituting 𝑢 = 0.25 or 𝑢 = 0.75, respectively. 

The interquartile range (IQR) of the NGEGIKGD 
can be derived as: 
 

𝐼𝑄𝑅 = 𝑄(0.75) − 𝑄(0.25) 

𝐼𝑄𝑅 =
1

𝑘
𝑙𝑜𝑔 [

{1−
𝑘

𝜆
𝑙𝑜𝑔(𝑧(0.75))}

{1−
𝑘

𝜆
𝑙𝑜𝑔(𝑧(0.25))}

].                                                  (19) 

4.2. The Galton skewness and Moors kurtosis 

The Galton skewness (GS) (Galton, 1883) 
measures the symmetry of distribution and is 
defined as: 
 

𝐺𝑆 =
𝑄(

6

8
)−2𝑄(

4

8
)+𝑄(

2

8
)

𝑄(
6

8
)−𝑄(

2

8
)

.                                                                   (20) 

 

The Moors kurtosis (MK) (Moors, 1988) is based 
on octiles and is defined as: 
 

𝑀𝐾 =
(𝑄(

7

8
)−𝑄(

5

8
))+(𝑄(

3

8
)−𝑄(

1

8
))

(𝑄(
6

8
)−𝑄(

2

8
))

.                                                    (21) 

 

The GS and MK of the NGEGIKGD are given in Fig. 
3. From Fig. 3 the NGEGIKGD can be left skewed and 
for fixed 𝛼, the MK is an increasing function of 𝜃. 

4.3. The mode 

The mode of the NGEGIKGD can be obtained by 
taking the derivative of the pdf in Eq. 10 with respect 

to x and equating to zero, 
𝑑

𝑑𝑥
𝑓(𝑥) = 0. That is,  

  
 

[𝑎𝑏𝜃𝛼𝛽𝛾𝜆𝑒𝑘𝑥𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)[1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾−1{1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼−1

× (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽−1[1 − (1 − {1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎−1

× {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏−1

× (1 − {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏)𝜃−1] = 0.

                                                                              (22) 
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Then, the mode can be calculated numerically by 
solving the nonlinear Eq. 22. 

 

 
 

 

 

Fig. 3: GS (Left) and MK (Right) for the NGEGIKGD 
 

4.4. The 𝒓𝒕𝒉 moment 

The 𝑟𝑡ℎ  moment of the NGEGIKGD can be derived 
based on El-Gohary et al. (2013), and Khan et al. 
(2017) as: 

 

 
 

𝜇𝑟 = 𝐸(𝑥𝑟) = ∫
∞

0
𝑥𝑟𝑓(𝑥) 𝑑𝑥

= 𝑎𝑏𝜃𝛼𝛽𝛾𝜆 ∑∞
𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7=0 𝑉𝜐[

−1

𝑘(𝜐7+1)
]𝑟+1𝑒

𝜆

𝑘
(𝜐6+1)Γ(𝑟 + 1),

                                                                                         (23) 

  
 

where, 𝑉𝜐  is defined in Eq. 16. Then, the mean and 
variance of the NGEGIKGD are respectively, given as: 
 

𝜇1 = 𝑎𝑏𝜃𝛼𝛽𝛾𝜆 ∑

∞

𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7=0

𝑉𝜐[
−1

𝑘(𝜐7 + 1)
]2𝑒

𝜆
𝑘

(𝜐6+1) , 

                                                                                                         (24) 

𝜎2 = 𝜇2 − 𝜇1
2 =

𝑎𝑏𝜃𝛼𝛽𝛾𝜆 ∑∞
𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7=0 2𝑉𝜐[

−1

𝑘(𝜐7+1)
]3𝑒

𝜆

𝑘
(𝜐6+1)  − 𝜇1

2.  

                                                                                                         (25) 
 

The observed mean, variance, median and IQR of 
the NGEGIKGD for various values of the parameters 
are listed in Table 1. 

 
Table 1: The observed mean, variance, median and IQR of the NGEGIKGD for various values of parameters 

Case 
Parameter 

Mean Variance Median IQR 
a b 𝜃 𝛼 𝛽 𝛾 k λ 

I 0.5 0.4 0.6 0.7 0.9 0.4 0.6 0.9 1.0772 1.4703 0.5170 1.9088 
II 0.3 0.8 0.8 1.7 1.9 0.9 1.7 0.7 0.9517 0.2168 0.9357 0.7079 
III 0.6 2.0 1.8 4.3 4.8 2.1 4.2 1.7 0.3340 0.0023 0.3314 0.0662 
IV 2.4 2.5 2.9 4.5 5.0 2.7 4.6 4.9 0.1416 0.0002 0.1414 0.0183 
V 2.5 2.7 3.0 4.7 5.1 3.0 4.8 6.0 0.1268 0.0001 0.1267 0.0149 

 

In Table 1, we generate samples from the 
NGEGIKGD and calculate the mean, variance, median 
and IQR by using the built-in function in R program. 
Thus, Table 1, shows that when the values of the 
parameters increase the values of the mean, variance 
and IQR of the NGEGIKGD decrease. 
 

4.5. The NGEGIKGD’s moment generating 
function 

The moment generating function of the 
NGEGIKGD can be derived from the 𝑟𝑡ℎ  moment by 

using the expansion of 𝑒𝑡𝑥 = ∑∞
𝑟=0

𝑡𝑟𝑥𝑟

𝑟!
 as: 
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𝜇𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫
∞

0

𝑒𝑡𝑥𝑓(𝑥) 𝑑𝑥, 

𝜇𝑥(𝑡) = 𝑎𝑏𝜃𝛼𝛽𝛾𝜆 ∑∞
𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7,𝑟=0 𝑉𝜐 ×

𝑡𝑟

𝑟!
[

−1

𝑘(𝜐7+1)
]𝑟+1𝑒

𝜆

𝑘
(𝜐6+1) Γ(𝑟 + 1).                                              (26) 

4.6. The NGEGIKGD’s characteristic function 

A characteristic function is a unique function that 
can characterize any probability distribution. We can 
also calculate the characteristic function based on 
the 𝑟𝑡ℎ  moment of the NGEGIKGD as: 
 

𝜙𝑥(𝑡) = 𝐸(𝑒𝑖𝑡𝑥) = ∫
∞

0

𝑒𝑖𝑡𝑥𝑓(𝑥) 𝑑𝑥, 

𝜙𝑥(𝑡) = 𝑎𝑏𝜃𝛼𝛽𝛾𝜆 ∑∞
𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7,𝑟=0 𝑉𝜐 ×

(𝑖𝑡)𝑟

𝑟!
[

−1

𝑘(𝜐7+1)
]𝑟+1𝑒

𝜆

𝑘
(𝜐6+1) Γ(𝑟 + 1).                                          (27) 

 

where, 𝑉𝜐  is defined in Eq. 16. 

4.7. Order statistics 

Let 𝑋1, . . . , 𝑋𝑛 is a random sample (RS) from the 
NGEGIKGD, where, 𝑋𝐿 is the 𝐿𝑡ℎ order statistics, then 
the pdf of the 𝐿𝑡ℎ order statistics is: 
 

𝑓𝐿:𝑛(𝑥) =
𝑛!

(𝐿 − 1)! (𝑛 − 𝐿)!
[𝐹(𝑥)]𝐿−1[1 − 𝐹(𝑥)]𝑛−𝐿𝑓(𝑥), 

 

where, F(x) and f(x) are defined in Eqs. 9, and 10. By 
using the binomial expansion in Eq. 13, then we 
have: 
 

[1 − 𝐹(𝑥)]𝑛−𝐿 = ∑𝑛−𝐿
𝜐9=0 (−1)𝜐9 (

𝑛 − 𝐿
    𝜐9

) [𝐹(𝑥)]𝜐9 .             (28) 

 

  

thus, 
 

𝑓𝐿:𝑛(𝑥) = ∑

𝑛−𝐿

𝜐9=0

(−1)𝜐9𝑛! 𝑓(𝑥)

(𝐿 − 1)! (𝑛 − 𝐿)!
(

𝑛 − 𝐿
    𝜐9

)

× [1 − (1 − {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆
𝑘

(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏)𝜃]𝐿+𝜐9−1,

 

 

where, f(x) is given by Eq. 15, if we define, 
 

𝑉𝑂𝜐 =
𝑛!(−1)𝜐1+𝜐2+𝜐3+𝜐4+𝜐5+𝜐6+𝜐7+𝜐8+𝜐9

(𝐿−1)!(𝑛−𝐿)!Γ(𝜐8+1)[
𝜆(𝜐7+1)

𝑘
]−𝜐8

 (
𝑛 − 𝐿
    𝜐9

) (
𝐿 + 𝜐9 − 1
        𝜐1

)

× (
𝜃(𝜐1 + 1) − 1
            𝜐2

) (
𝑏(𝜐2 + 1) − 1
            𝜐3

) (
𝑎(𝜐3 + 1) − 1
            𝜐4

)

× (
𝛽(𝜐4 + 1) − 1
            𝜐5

) (
𝛼(𝜐5 + 1) − 1
            𝜐6

) (
𝛾(𝜐6 + 1) − 1
            𝜐7

) .

                                                                                                                        (29) 

 

then,  
 

𝑓𝐿:𝑛(𝑥) = 𝑎𝑏𝜃𝛼𝛽𝛾𝜆 ∑𝑛−𝐿
𝜐9=0 ∑∞

𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7,𝜐8=0 𝑉𝑂𝜐 𝑒
𝜆

𝑘
(𝜐7+1) 𝑒[𝑘(𝜐8+1)]𝑥 ,    𝑥 ≥ 0.                                                                                  (30) 

  
 

4.8. Rényi entropy 

The entropy of a random variable is a measure of 
uncertainty variation. It can be applied in various 
applications, including engineering and physics. One 
popular entropy measure is the Rényi entropy 
(Abraham and Sankaran, 2006), in which, if X is a 

random variable, then Rényi entropy can be 
calculated as follows: 
 

𝐼𝑅(𝑥) =
1

1 − 𝑅
log [∫

∞

0

[𝑓(𝑥)]𝑅𝑑𝑥] ,    𝑅 > 0, 𝑅 ≠ 1. 

 

The Rényi entropy of the NGEGIKGD is: 

  
 

[𝑓(𝑥)]𝑅 = [𝑎𝑏𝜃𝛼𝛽𝛾𝜆]𝑅𝑒𝑅𝑘𝑥𝑒−
𝜆𝑅
𝑘

(𝑒𝑘𝑥−1)[1 − 𝑒−
𝜆
𝑘

(𝑒𝑘𝑥−1)]𝑅(𝛾−1){1 − [1 − 𝑒−
𝜆
𝑘

(𝑒𝑘𝑥−1)]𝛾}𝑅(𝛼−1) 

× (1 − {1 − [1 − 𝑒−
𝜆
𝑘

(𝑒𝑘𝑥−1)]𝛾}𝛼)𝑅(𝛽−1)[1 − (1 − {1 − [1 − 𝑒−
𝜆
𝑘

(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑅(𝑎−1) 

× {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆
𝑘

(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑅(𝑏−1) 

× (1 − {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆
𝑘

(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏)𝑅(𝜃−1). 
 
  

By applying the binomial expansion in Eq. 13 six 
times and using the power series expansion in Eq. 
14, we obtain: 
 

[𝑓(𝑥)]𝑅 = [𝑎𝑏𝜃𝛼𝛽𝛾𝜆]𝑅 ∑∞
𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7=0 𝑉𝑅𝜐 𝑒

𝜆

𝑘
(𝜐6+𝑅)𝑒[𝑘(𝜐7+𝑅)]𝑥,                                                                                                            (31) 

 

where,  



Hadeel S. Klakattawi, Aisha A. Khormi/International Journal of Advanced and Applied Sciences, 9(11) 2022, Pages: 51-63 

57 
 

 

𝑉𝑅𝜐 =
(−1)𝜐1+𝜐2+𝜐3+𝜐4+𝜐5+𝜐6+𝜐7

Γ(𝜐7 + 1)[
𝜆
𝑘

(𝜐6 + 𝑅)]−𝜐7

 (
𝑅(𝜃 − 1)
       𝜐1

) (
𝑏(𝜐1 + 𝑅) − 𝑅
            𝜐2

) (
𝑎(𝜐2 + 𝑅) − 𝑅
            𝜐3

)

× (
𝛽(𝜐3 + 𝑅) − 𝑅
             𝜐4

) (
𝛼(𝜐4 + 𝑅) − 𝑅
             𝜐5

) (
𝛾(𝜐5 + 𝑅) − 𝑅
             𝜐6

) .

 

 

thus,  
 

∫
∞

0

[𝑓(𝑥)]𝑅𝑑𝑥 = [𝑎𝑏𝜃𝛼𝛽𝛾𝜆]𝑅 ∑

∞

𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7=0

𝑉𝑅𝜐 𝑒
𝜆
𝑘

(𝜐6+𝑅) ∫
∞

0

𝑒[𝑘(𝜐7+𝑅)]𝑥𝑑𝑥. 

 

if,  
 

𝑙𝑜𝑔 ∫
∞

0

[𝑓(𝑥)]𝑅𝑑𝑥 = 𝑅 𝑙𝑜𝑔[𝑎𝑏𝜃𝛼𝛽𝛾𝜆] + 𝑙𝑜𝑔 ( ∑

∞

𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7=0

𝑉𝑅𝜐  𝑒
𝜆
𝑘

(𝜐6+𝑅) ∫
∞

0

𝑒[𝑘(𝜐7+𝑅)]𝑥𝑑𝑥), 

 

the Rényi entropy of the NGEGIKGD is then given as: 
 

𝐼𝑅(𝑥) =
𝑅

1−𝑅
𝑙𝑜𝑔[𝑎𝑏𝜃𝛼𝛽𝛾𝜆] +

1

1−𝑅
 𝑙𝑜𝑔 (∑∞

𝜐1,𝜐2,𝜐3,𝜐4,𝜐5,𝜐6,𝜐7=0 𝑉𝑅𝜐𝑒
𝜆

𝑘
(𝜐6+𝑅)

∫
∞

0
𝑒[𝑘(𝜐7+𝑅)]𝑥𝑑𝑥) .                                                            (32) 

  
 

5. Estimation of the NGEGIKGD parameters 

In this section, we estimate the eight unknown 
parameters for the NGEGIKGD using the ML method. 
Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be an RS from the NGEGIKGD with 

unknown parameters Θ = (𝑎, 𝑏, 𝜃, 𝛼, 𝛽, 𝛾, 𝑘, 𝜆), then 
the log-likelihood function, (𝑙𝑜𝑔𝐿(Θ)) will have the 
following form: 

 

𝑙𝑜𝑔𝐿(Θ) = 𝑛 𝑙𝑜𝑔[𝑎𝑏𝜃𝛼𝛽𝛾𝜆] + 𝑘 ∑𝑛
𝑖=1 𝑥𝑖 −

𝜆

𝑘
∑𝑛

𝑖=1 (𝑒𝑘𝑥𝑖 − 1) + (𝛾 − 1) ∑𝑛
𝑖=1 𝑙𝑜𝑔[1 − 𝜉]

+(𝛼 − 1) ∑𝑛
𝑖=1 𝑙𝑜𝑔{1 − [1 − 𝜉]𝛾} + (𝛽 − 1) ∑𝑛

𝑖=1 𝑙𝑜𝑔(𝜉2)

+(𝑎 − 1) ∑𝑛
𝑖=1 𝑙𝑜𝑔[1 − (𝜉2)𝛽]

+(𝑏 − 1) ∑𝑛
𝑖=1 𝑙𝑜𝑔{1 − [1 − (𝜉2)𝛽]𝑎}

+(𝜃 − 1) ∑𝑛
𝑖=1 𝑙𝑜𝑔(1 − {1 − [1 − (𝜉2)𝛽]𝑎}𝑏),

                                                                  (33) 

  
 

where, 𝜉 = 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥𝑖−1) and 𝜉2 = 1 − {1 − [1 − 𝜉]𝛾}𝛼 . 

The maximum likelihood estimates (MLEs) of the 
NGEGIKGD’s parameters can be directly obtained by 
employing non-linear optimization tool in the R 
program such as, "optim" or "nlm" which maximizes 
the (𝑙𝑜𝑔𝐿(Θ)) in Eq. 33. If the parameters are 
restricted to be greater than zero, then either the 
parameters must be transformed, or the constraints 
used in the optimization tool. For more details, see 
MacDonald (2014). 

6. Simulation studies of the NGEGIKGD 

We ran numerous simulation studies for different 
sample sizes at 25, 50, 100, 200 and 500 with 1000 
repetitions to examine the performance of the MLEs 
for the NGEGIKGD. This Monte Carol simulation was 
performed with various cases of the true parameter 
values as follows: 
 
Case I: 𝑎 = 0.6, 𝑏 = 2.8, 𝜃 = 1.3, 𝛼 = 1.4, 𝛽 = 0.7, 
𝛾 = 0.3, 𝑘 = 0.8, 𝜆 = 1.2. 
Case II: 𝑎 = 1.8, 𝑏 = 0.8, 𝜃 = 1.6, 𝛼 = 0.5, 𝛽 = 1.6, 
𝛾 = 0.6, 𝑘 = 1.3, 𝜆 = 0.6. 
Case III: 𝑎 = 0.9, 𝑏 = 1.2, 𝜃 = 0.8, 𝛼 = 1.7, 𝛽 = 0.5, 
𝛾 = 0.9, 𝑘 = 0.7, 𝜆 = 1.4. 
 

The MLE was obtained using the "optim" function 
in R, and the samples were generated from Eq. 17, 
where u is uniformly distributed within [0,1]. For 
each parameter, we calculated the mean estimates 
and the coverage rate (CR) of the confidence 
intervals (CI) of the mean estimates at a 95% 
confidence level. Additionally, we calculated the 
mean square error (MSE), the root MSE (RMSE), the 
standard deviation (SD) and the standard error (SE) 
using the following relations and the results 
reported in Tables 2-4, in which, 
 

𝑀𝑆𝐸 = 𝑣𝑎𝑟(𝜃) + [𝐵𝑖𝑎𝑠(𝜃)]2 =
1

𝑁
∑

𝑛

𝑖=1

(𝜃 − 𝜃𝑡𝑟)2, 

where, 𝐵𝑖𝑎𝑠 =
1

𝑁
∑𝑛

𝑖=1 (�̂� − 𝜃𝑡𝑟) and, 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑

𝑛

𝑖=1

(𝜃 − 𝜃𝑡𝑟)2. 

 

In addition,  
 

95% 𝐶𝐼 = 𝑚𝑒𝑎𝑛(𝜃) ± 1.96 × 𝑆𝐸, 
 

where, 𝑆𝐸 =
SD

√𝑛
. 
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Table 2: Simulation study: True parameter, parameter estimates, MSE, RMSE, SD, SE, and CR of 95% CI of the NGEGIKGD for 
the case I 

Sample size Parameter True Estimate MSE RMSE SD SE CR of 95% CI 

n=25 

a 0.6 2.0000 6.1799 2.4859 2.0542 0.4108 (1.1948,2.8053) 
b 2.8 2.1033 6.1113 2.4721 2.3719 0.4744 (1.1735,3.0330) 
𝜃 1.3 1.2976 3.1793 1.7831 1.7831 0.3566 (0.5986,1.9966) 
𝛼 1.4 2.2797 6.5312 2.5556 2.3994 0.4799 (1.3391,3.2203) 
𝛽 0.7 1.4514 3.3371 1.8268 1.6651 0.3330 (0.7987,2.1041) 
𝛾 0.3 1.7594 5.2671 2.2950 1.7712 0.3542 (1.0651,2.4537) 
k 0.8 1.2945 1.2488 1.1175 1.0022 0.2004 (0.9016,1.6873) 
𝜆 1.2 2.2323 6.2846 2.5069 2.2845 0.4569 (1.3368,3.1279) 

n=50 

a 0.6 1.6445 3.7582 1.9386 1.6331 0.2310 (1.1919,2.0972) 
b 2.8 2.0923 4.6710 2.1613 2.0421 0.2888 (1.5263,2.6584) 
𝜃 1.3 1.3675 2.7904 1.6704 1.6691 0.2360 (0.9049,1.8302) 
𝛼 1.4 2.0648 4.1769 2.0438 1.9326 0.2733 (1.5291,2.6005) 
𝛽 0.7 1.3463 2.5983 1.6119 1.4767 0.2088 (0.9370,1.7556) 
𝛾 0.3 1.4147 3.1910 1.7863 1.3958 0.1974 (1.0278,1.8016) 
k 0.8 1.1109 0.7445 0.8628 0.8049 0.1138 (0.8879,1.3340) 
𝜆 1.2 1.9858 4.0144 2.0036 1.8431 0.2606 (1.4749,2.4966) 

n=100 

a 0.6 1.5045 3.0626 1.7500 1.4982 0.1498 (1.2108,1.7981) 
b 2.8 2.0031 3.9448 1.9862 1.8193 0.1819 (1.6465,2.3596) 
𝜃 1.3 1.2864 1.7829 1.3353 1.3352 0.1335 (1.0247,1.5481) 
𝛼 1.4 1.8390 2.9429 1.7155 1.6584 0.1658 (1.5139,2.1640) 
𝛽 0.7 1.2176 1.8327 1.3538 1.2509 0.1251 (0.9724,1.4628) 
𝛾 0.3 1.2134 2.0637 1.4365 1.1088 0.1109 (0.9961,1.4307) 
k 0.8 1.0266 0.4052 0.6365 0.5948 0.0595 (0.9100,1.1432) 
𝜆 1.2 1.8873 3.1001 1.7607 1.6210 0.1621 (1.5696,2.2051) 

n=200 

a 0.6 1.3352 1.7830 1.3353 1.1147 0.0788 (1.1808,1.4897) 
b 2.8 2.1175 3.1305 1.7693 1.6324 0.1154 (1.8912,2.3437) 
𝜃 1.3 1.2660 1.1265 1.0614 1.0608 0.0750 (1.1190,1.4130) 
𝛼 1.4 1.6893 1.9850 1.4089 1.3789 0.0975 (1.4981,1.8803) 
𝛽 0.7 0.9375 0.8706 0.9331 0.9023 0.0638 (0.8124,1.0625) 
𝛾 0.3 1.1071 1.5426 1.2420 0.9439 0.0667 (0.9763,1.2380) 
k 0.8 0.9636 0.2487 0.4987 0.4711 0.0333 (0.8983,1.0289) 
𝜆 1.2 1.6447 1.8945 1.3764 1.3026 0.0921 (1.4642,1.8252) 

n=500 

a 0.6 1.0727 0.7724 0.8789 0.7409 0.0331 (1.0078,1.1377) 
b 2.8 2.2447 1.9844 1.4087 1.2946 0.0579 (2.1312,2.3581) 
𝜃 1.3 1.3620 0.9019 0.9497 0.9477 0.0424 (1.2789,1.4452) 
𝛼 1.4 1.4697 0.9836 0.9918 0.9893 0.0442 (1.3829,1.5564) 
𝛽 0.7 0.8310 0.5323 0.7296 0.7177 0.0321 (0.7681,0.8939) 
𝛾 0.3 0.8385 0.7782 0.8822 0.6987 0.0312 (0.7772,0.8998) 
k 0.8 0.8666 0.1072 0.3274 0.3205 0.0143 (0.8385,0.8947) 
𝜆 1.2 1.5323 1.0859 1.0421 0.9876 0.0442 (1.4458,1.6189) 

 
Table 3: Simulation study: True parameter, parameter estimates, MSE, RMSE, SD, SE, and CR of 95% CI of the NGEGIKGD for 

the case II 
Sample size Parameter True Estimate MSE RMSE SD SE CR of 95% CI 

n=25 

a 1.8 2.2701 6.2408 2.4982 2.4535 0.4907 (1.3083,3.2318) 
b 0.8 1.4830 3.8938 1.9733 1.8513 0.3703 (0.7573,2.2087) 
𝜃 1.6 1.3090 3.2806 1.8113 1.7877 0.3575 (0.6082,2.0098) 
𝛼 0.5 2.0859 7.6884 2.7728 2.2745 0.4549 (1.1943,2.9775) 
𝛽 1.6 2.0046 4.7450 2.1783 2.1404 0.4280 (1.1655,2.8436) 
𝛾 0.6 2.1160 6.6097 2.5709 2.0764 0.4153 (1.3020,2.9300) 
k 1.3 1.5563 0.9785 0.9892 0.9554 0.1911 (1.1819,1.9309) 
𝜆 0.6 1.8387 5.2061 2.2817 1.9162 0.3832 (1.0876,2.5899) 

n=50 

a 1.8 1.8758 3.8242 1.9556 1.9541 0.2764 (1.3341,2.4174) 
b 0.8 1.4087 2.7563 1.6602 1.5446 0.2184 (0.9806,1.8368) 
𝜃 1.6 1.3559 2.5606 1.6002 1.5815 0.2237 (0.9175,1.7943) 
𝛼 0.5 1.8817 5.5046 2.3462 1.8962 0.2682 (1.3561,2.4073) 
𝛽 1.6 1.8123 3.3701 1.8358 1.8234 0.2579 (1.3069,2.3178) 
𝛾 0.6 1.7607 4.0012 2.0003 1.6291 0.2304 (1.3091,2.2123) 
k 1.3 1.4847 0.5732 0.7571 0.7342 0.1038 (1.2812,1.6882) 
𝜆 0.6 1.7160 3.9789 1.9947 1.6533 0.2338 (1.2577,2.1743) 

n=100 

a 1.8 1.8479 3.1083 1.7630 1.7624 0.1762 (1.5024,2.1933) 
b 0.8 1.2301 1.8441 1.3580 1.2881 0.1288 (0.9777,1.4826) 
𝜃 1.6 1.3130 2.1398 1.4628 1.4344 0.1434 (1.0319,1.5941) 
𝛼 0.5 1.5381 3.3258 1.8237 1.4994 0.1499 (1.2442,1.8320) 
𝛽 1.6 1.6755 2.3201 1.5232 1.5213 0.1521 (1.3774,1.9737) 
𝛾 0.6 1.5979 3.0573 1.7485 1.4358 0.1436 (1.3164,1.8793) 
k 1.3 1.4553 0.4233 0.6507 0.6318 0.0632 (1.3315,1.5791) 
𝜆 0.6 1.5052 2.7872 1.6695 1.4028 0.1403 (1.2303,1.7802) 

n=200 

a 1.8 1.7042 2.1592 1.4694 1.4663 0.1037 (1.5009,1.9074) 
b 0.8 1.1401 1.2759 1.1296 1.0771 0.0762 (0.9908,1.2894) 
𝜃 1.6 1.3853 1.5972 1.2638 1.2454 0.0881 (1.2127,1.5579) 
𝛼 0.5 1.2469 1.8654 1.3658 1.1435 0.0809 (1.0884,1.4054) 
𝛽 1.6 1.5563 1.6188 1.2723 1.2716 0.0899 (1.3801,1.7326) 
𝛾 0.6 1.3576 1.7555 1.3250 1.0870 0.0769 (1.2070,1.5083) 
k 1.3 1.4521 0.3023 0.5498 0.5284 0.0374 (1.3789,1.5253) 
𝜆 0.6 1.2914 1.6611 1.2888 1.0877 0.0769 (1.1407,1.4422) 

n=500 

a 1.8 1.6850 1.4632 1.2096 1.2041 0.0539 (1.5794,1.7905) 
b 0.8 1.0347 0.6973 0.8351 0.8014 0.0358 (0.9645,1.1050) 
𝜃 1.6 1.4104 1.1820 1.0872 1.0705 0.0479 (1.3165,1.5049) 
𝛼 0.5 1.0071 1.0110 1.0055 0.8683 0.0388 (0.9310,1.0832) 
𝛽 1.6 1.4574 1.0565 1.0279 1.0179 0.0455 (1.3682,1.5467) 
𝛾 0.6 1.1767 1.0230 1.0115 0.8309 0.0372 (1.1039 ,1.2496) 
k 1.3 1.4369 0.1655 0.4069 0.3831 0.0171 (1.4033,1.4705) 
𝜆 0.6 1.1383 1.1030 1.0502 0.9018 0.0403 (1.0592,1.2173) 
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Table 4: Simulation study: True parameter, parameter estimates, MSE, RMSE, SD, SE, and CR of 95%  CI of the NGEGIKGD for 
the case III 

Sample size Parameter True Estimate MSE RMSE SD SE CR of 95% CI 

n=25 

a 0.9 2.0940 6.4188 2.5335 2.2346 0.4469 (1.2180,2.9699) 
b 1.2 1.5227 3.2008 1.7891 1.7597 0.3519 (0.8329,2.2125) 
𝜃 0.8 1.4181 3.3178 1.8215 1.7134 0.3427 (0.7464,2.0897) 
𝛼 1.7 2.5083 7.3049 2.7028 2.5791 0.5158 (1.4973,3.5193) 
𝛽 0.5 1.6240 4.5448 2.1319 1.8115 0.3623 (0.9140,2.3341) 
𝛾 0.9 1.7071 3.5598 1.8868 1.7054 0.3412 (1.0386,2.3757) 
k 0.7 1.3493 1.9691 1.4032 1.2440 0.2488 (0.8617,1.8370) 
𝜆 1.4 2.4011 6.7649 2.6009 2.4006 0.4801 (1.4601,3.3421) 

n=50 

a 0.9 1.6735 3.7569 1.9383 1.7772 0.2513 (1.1809,2.1662) 
b 1.2 1.5327 2.7801 1.6674 1.6338 0.2311 (1.0798,1.9856) 
𝜃 0.8 1.3964 2.4729 1.5725 1.4551 0.2058 (0.9931,1.7998) 
𝛼 1.7 2.3031 4.9835 2.2324 2.1494 0.3040 (1.7073,2.8989) 
𝛽 0.5 1.4341 3.3775 1.8378 1.5827 0.2238 (0.9954,1.8728) 
𝛾 0.9 1.4688 2.1821 1.4772 1.3633 0.1928 (1.0909,1.8467) 
k 0.7 1.1684 1.1447 1.0699 0.9619 0.1360 (0.9018,1.4351) 
𝜆 1.4 2.2361 5.5820 2.3626 2.2097 0.3125 (1.6236,2.8486) 

n=100 

a 0.9 1.6826 3.5183 1.8757 1.7046 0.1705 (1.3485,2.0167) 
b 1.2 1.3809 1.9080 1.3813 1.3694 0.1369 (1.1125,1.6493) 
𝜃 0.8 1.3427 2.0346 1.4264 1.3191 0.1319 (1.0842,1.6013) 
𝛼 1.7 1.9708 2.9296 1.7116 1.6901 0.1690 (1.6396,2.3021) 
𝛽 0.5 1.2171 1.9755 1.4055 1.2088 0.1209 (0.9802,1.4541) 
𝛾 0.9 1.3164 1.3778 1.1738 1.0975 0.1097 (1.1013,1.5315) 
k 0.7 0.9779 0.6137 0.7834 0.7325 0.0732 (0.8343,1.1214) 
𝜆 1.4 2.0737 3.8517 1.9626 1.8433 0.1843 (1.7124,2.4349) 

n=200 

a 0.9 1.5121 2.1802 1.4766 1.3439 0.0950 (1.3259,1.6984) 
b 1.2 1.2032 1.3053 1.1425 1.1425 0.0808 (1.0449,1.3615) 
𝜃 0.8 1.2989 1.6031 1.2661 1.1637 0.0823 (1.1376,1.4602) 
𝛼 1.7 1.9048 2.2610 1.5037 1.4897 0.1053 (1.6983,2.1112) 
𝛽 0.5 1.2219 1.7605 1.3268 1.1132 0.0787 (1.0676,1.3762) 
𝛾 0.9 1.1785 0.8921 0.9445 0.9025 0.0638 (1.0534,1.3035) 
k 0.7 0.8813 0.3722 0.6101 0.5826 0.0412 (0.8006,0.9620) 
𝜆 1.7 1.8307 2.5253 1.5891 1.5296 0.1082 (1.6187,2.0427) 

n=500 

a 0.9 1.2393 1.0661 1.0325 0.9752 0.0436 (1.1539,1.3248) 
b 1.2 1.1233 0.7910 0.8894 0.8860 0.0396 (1.0456,1.2009) 
𝜃 0.8 1.1990 0.9215 0.9600 0.8731 0.0390 (1.1225,1.2755) 
𝛼 1.7 1.8060 1.5381 1.2402 1.2357 0.0553 (1.6976,1.9143) 
𝛽 0.5 1.0199 0.9553 0.9774 0.8277 0.0370 (0.9473,1.0924) 
𝛾 0.9 1.1303 0.6142 0.7837 0.7491 0.0335 (1.0647,1.1960) 
k 0.7 0.8107 0.1658 0.4072 0.3918 0.0175 (0.7764,0.8451) 
𝜆 1.4 1.7118 1.4313 1.1964 1.1550 0.0517 (1.6105,1.8130) 

 

The results reported in Tables 2-4 reveal that the 
estimates are quite stable and become closer to the 
actual value of the parameters when n increases. In 
addition, the MSE, RMSE, SD and SE decrease and the 
CR become shorter as n increases, so, the ML method 
provides a good estimate and is appropriate for 
estimating the parameters for the NGEGIKGD. 

7. Applications of the NGEGIKGD 

Three real datasets are used in this section to 
demonstrate the flexibility of the proposed 

distribution in comparison to other models. The 
NGEGIKGD is compared with some of its sub-models 
including  

 
 the Gompertz distribution (GD) with the pdf in Eq. 

4,  
 the generalized inverted Kumarswamy Gompertz 

distribution (GIKGD) with the pdf in Eq. 6,  
 the exponentiated generalized inverted 

Kumaraswamy Gompertz distribution (EGIKGD) 
with the pdf as follows: 

  

𝑓(𝑥) = 𝑎𝛼𝛽𝛾𝜆𝑒𝑘𝑥𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)[1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾−1{1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼−1

× (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽−1[1 − (1 − {1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎−1,    𝑥 ≥ 0,

                                                         (34) 

 

and the exponentiated generalized inverted 
Kumaraswamy Gompertz distribution (EGGIKGD) 
with, the pdf as follows: 
 

𝑓(𝑥) = 𝑎𝑏𝛼𝛽𝛾𝜆𝑒𝑘𝑥𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)[1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾−1{1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼−1

× (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽−1[1 − (1 − {1 − [1 − 𝑒−

𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎−1

× {1 − [1 − (1 − {1 − [1 − 𝑒−
𝜆

𝑘
(𝑒𝑘𝑥−1)]𝛾}𝛼)𝛽]𝑎}𝑏−1,    𝑥 ≥ 0.

                                                                         (35) 

  

We also compared the NGEGIKGD with a related 
distribution, which is the Kumaraswamy Weibull 

BurrXII distribution (KWBXIID) by Hassan and 
Elgarhy (2016) with the following pdf: 

 

𝑓(𝑥) = 𝑎𝑏𝑐𝛼𝛽𝜎𝜇−𝑐𝑥𝑐−1𝑒
−𝛼[(1+(

𝑥

𝜇
)𝑐)𝜎−1]𝛽

(1 + (
𝑥

𝜇
)𝑐)𝜎−1[(1 + (

𝑥

𝜇
)𝑐)𝜎 − 1]𝛽−1

× [1 − 𝑒
−𝛼[(1+(

𝑥

𝜇
)𝑐)𝜎−1]𝛽

]𝑎−1{1 − [1 − 𝑒
−𝛼[(1+(

𝑥

𝜇
)𝑐)𝜎−1]𝛽

]𝑎}𝑏−1,    𝑥 > 0.

                                                                                        (36) 
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We calculated the MLEs, the SEs, and the length of 
confidence intervals (LCIs) of the point estimates at 
a confidence level of 95% as 𝐿𝐶𝐼 = (upperlimit −
lowerlimit) for each parameter. Furthermore, we 
compared the NGEGIKGD with other distributions 
according to some criteria; the negative log-
likelihood function (−𝐿𝑜𝑔𝐿), Akaike information 
criterion (AIC), Bayesian information criterion (BIC), 
consistent Akaike information criterion (CAIC), 
Hannan-Quinn information criterion (HQIC) and the 
Kolmogorov-Smirnov (K-S) statistic as 𝐷𝑛 =
sup𝑥{|𝐹𝑛(𝑥) − 𝐹(𝑥|Θ)|} with its P-value. These 
statistics or criteria are frequently used to evaluate a 
distribution’s performance in modeling a dataset. As 

a general rule, distributions with a lower value of all 
these criteria, except the highest value for the P-
values, provide the best fit to the data. The results of 
the analyzed datasets are reported in Tables 5–13 
and Figs. 4–6. 

7.1. The first dataset 

The first dataset reported by Bhaumik et al. 
(2009), contains the vinyl chloride information 
obtained from clean upgrading, observing wells in 
milligrams per Liter (mg/L). 

 
Table 5: Descriptive statistics of the first dataset 

Sample size Mean Median IQR SD Skewness Kurtosis 
34 1.8790 1.1500 1.9750 1.9526 1.6037 5.0054 

 
Table 6: The goodness-of-fit measures for the first dataset 

Distribution -LogL AIC CAIC BIC HQIC K-S P-value 
GD -76.2349 156.4697 161.5224 159.5224 157.5108 0.5024 7.0068e-08 

GIKGD -79.3854 168.7709 181.4027 176.4027 171.3735 0.5461 3.1092e-09 
EGIKGD -61.1751 134.3502 149.5083 143.5083 137.4734 0.1568 3.7332e-01 

EGGIKGD -60.9433 135.8866 153.5711 146.5711 139.5304 0.1505 4.2473e-01 
KWBXIID -57.3444 128.6887 146.3732 139.3732 132.3324 0.0892 9.4971e-01 

NGEGIKGD -54.5293 125.0585 145.2694 137.2694 129.2228 0.0762 9.8911e-01 

 
Table 7: The MLE, SE (in parentheses) and LCI [in square brackets] for the first dataset 

Distribution MLE, SE in ( ) and LCI in [ ] 

GD 
�̂�=0.0911 
(0.1210) 
[0.4745] 

�̂�=0.1167 
(0.0217) 
[0.0851] 

- - - - - - 

GIKGD 
�̂�=1.1677 
(0.2286) 
[0.8961] 

�̂�=0.3438 
(0.0642) 
[0.2515] 

�̂� =0.4664 
(0.1104) 
[0.4329] 

�̂� =0.1658 
(0.1842) 
[0.7221] 

�̂� =0.1462 
(0.0611) 
[0.2395] 

- - - 

EGIKGD 
�̂� =0.2847 
(0.1348) 
[0.5283] 

�̂�=0.8081 
(0.3928) 
[1.5399] 

�̂� =0.5551 
(0.2360) 
[0.9252] 

�̂� =0.5911 
(0.2661) 
[1.0431] 

�̂� =0.2354 
(0.1011) 
[0.3962] 

�̂� =0.8753 
(0.4748) 
[1.8613] 

- - 

EGGIKGD 
�̂� =0.4624 
(0.4729) 
[1.8537] 

�̂�=1.2160 
(0.4401) 
[1.7251] 

�̂� =0.4624 
(0.4290) 
[1.6814] 

�̂�=0.6087 
(0.2834) 
[1.1108] 

�̂�=0.3956 
(0.2374) 
[0.9306] 

�̂� =0.2023 
(0.1161) 
[0.4552] 

�̂�=1.1677 
(1.0402) 
[4.0775] 

- 

KWBXIID 
�̂� =0.1230 
(0.0224) 
[0.0879] 

�̂� =3.4622 
(1.0669) 
[4.1823] 

�̂� =5.4712 
(0.3070) 
[1.2035] 

�̂�= 1.1160 
(0.0324) 
[0.1270] 

𝑐̂=6.4271 
(0.0129) 
[0.0506] 

�̂�=14.8036 
(0.1795) 
[0.7037] 

�̂�=5.2755 
(0.1730) 
[0.6784] 

- 

NGEGIKGD 
�̂�=0.2802 
(0.2129) 
[0.8347] 

�̂� =0.3341 
(0.2598) 
[1.0182] 

𝜃 =1.2156 
(0.6702) 
[2.6271] 

�̂� =0.2940 
(0.2204) 
[0.8641] 

�̂� =1.5928 
(1.2494) 
[4.8975] 

�̂� =2.9319 
(0.5012) 
[1.9647] 

�̂� =0.1102 
(0.0373) 
[0.1460] 

�̂� =2.2058 
(0.0379) 
[0.1484] 

 

  
Fig. 4: Comparison of the NGEGIKGD with the other distributions for the first dataset; (Left): Cdf for the NGEGIKGD. (Right): 

Observed and expected frequencies for each model 
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7.2. The second dataset 

The second dataset discussed in Murthy et al. 
(2004), represents the failure time between the 
repairable items.  

7.3. The third dataset 

The third dataset, initially used by Meeker and 
Escobar (1998), represents the failure times and 
running times of a larger system. 

 
Table 8: Descriptive statistics of the second dataset 

Sample size Mean Median IQR SD Skewness Kurtosis 
30 1.5427 1.2350 1.2250 1.1277 1.2955 4.3192 

 
Table 9: The goodness-of-fit measures for the second dataset 

Distribution -LogL AIC CAIC BIC HQIC K-S P-value 
GD -69.8603 143.7205 148.5229 146.5229 144.6170 0.6188 2.1033e-10 

GIKGD -66.0702 142.1404 154.1463 149.1463 144.3816 0.4040 1.1183e-04 
EGIKGD -44.5641 101.1282 115.5354 109.5354 103.8178 0.2147 1.2587e-01 

EGGIKGD -49.8944 113.7888 130.5972 123.5972 116.9266 0.3190 4.4625e-03 
KWBXIID 

NGEGIKGD 
-42.8519 
-39.4716 

99.7039 
94.9432 

116.5122 
114.1528 

109.5122 
106.1528 

102.8417 
98.5293 

0.1160 
0.0635 

8.1394e-01 
9.9973e-01 

 
Table 10: The MLE, SE (in parentheses), and LCI [in square brackets] for the second dataset 

Distribution MLE, SE in ( ) and LCI in [ ] 

GD 
�̂� =0.9193 
(0.1348) 
[0.5286] 

�̂� =0.0305 
(0.0062) 
[0.0244] 

- - - - - - 

GIKGD 
�̂�=16.0856 
(12.1334) 
[47.5631] 

�̂� =1.0952 
(0.5340) 
[2.0933] 

𝛾 =3.0657 
(1.1632) 
[4.5599] 

�̂� =0.2418 
(0.2350) 
[0.9214] 

�̂� =0.1774 
(0.2664) 
[1.0445] 

- - - 

EGIKGD 
�̂� =0.3202 
(0.1316) 
[0.5160] 

�̂�=0.8887 
(0.4759) 
[1.8655] 

�̂� =0.9695 
(1.1330) 
[4.4415] 

𝛾=0.7254 
(0.7892) 
[3.0935] 

�̂� =0.6261 
(0.1796) 
[0.7040] 

�̂� =0.6433 
(0.3155) 
[1.2367] 

- - 

EGGIKGD 
�̂� =0.7455 
(0.0411) 
[0.1613] 

�̂� =0.3814 
(0.0932) 
[0.3655] 

�̂� =0.7450 
(0.2043) 
[0.8008] 

�̂� =1.1729 
(0.3264) 
[1.2794] 

𝛾 =0.8446 
(0.2963) 
[1.1616] 

�̂� =0.6391 
(0.3657) 

[1.4336576] 

�̂�=0.3430 
(0.1395) 
[0.5467] 

- 

KWBXIID 
�̂� =6.9831 
(5.5968) 

[21.9396] 

�̂� =0.5333 
(0.3192) 
[1.2512] 

�̂� =2.0648 
(2.8917) 

[11.3356] 

�̂� =1.6989 
(0.5192) 
[2.0353] 

�̂� =3.3006 
(1.4014) 
[5.4936] 

�̂� =0.0135 
(0.0142) 
[0.0558] 

�̂� =0.0562 
(0.0230) 
[0.0903] 

- 

NGEGIKGD 
�̂� =0.4301 
(0.4606) 
[1.8054] 

�̂�=2.3119 
(1.2098) 
[4.7423] 

𝜃=0.2741 
(0.3238) 
[1.2692] 

�̂�=2.0623 
(0.0161) 
[0.0632] 

�̂�=0.5570 
(0.0154) 
[0.0604] 

𝛾=1.6421 
(0.0229) 
[0.0898] 

�̂� =0.0855 
(0.0039) 
[0.0155] 

�̂�=2.9868 
(0.0155) 
[0.0612] 

 

  
Fig. 5: Comparison of the NGEGIKGD with the other distributions for the second dataset; (Left): Cdf for the NGEGIKGD. 

(Right): Observed and expected frequencies for each model 
 

Table 11: Descriptive statistics of the third dataset 
Sample size Mean Median IQR SD Skewness Kurtosis 

30 1.7703 1.9650 2.2950 1.1499 -0.2840 1.4537 
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Table 12: The goodness-of-fit measures for the third dataset 
Distribution -LogL AIC CAIC BIC HQIC K-S P-value 

GD -71.0404 146.0807 150.8831 148.8831 146.9772 0.3821 0.0003 
GIKGD -44.1388 98.2776 110.2836 105.2836 100.5189 0.2654 0.0292 

EGIKGD -41.8710 95.7420 110.1492 104.1492 98.4315 0.1991 0.1855 
EGGIKGD -37.0195 88.0390 104.8474 97.8474 91.1768 0.2100 0.1418 
KWBXIID -40.4191 94.8382 111.6466 104.6466 97.9760 0.2246 0.0970 

NGEGIKGD -34.2318 84.4636 103.6732 95.6732 88.0497 0.1518 0.4939 

 
Table 13: The MLE, SE (in parentheses) and LCI [in square brackets] for the third dataset 

Distribution MLE, SE in ( ) and LCI in [ ] 

GD 
�̂�=2.7452 
(0.1470) 
[0.5764] 

�̂�=0.0026 
(0.0009) 
[0.0035] 

- - - - - - 

GIKGD 
�̂�=0.0469 
(0.0116) 
[0.0456] 

�̂�=0.7227 
(0.1552) 
[0.6086] 

𝛾=2.2372 
(0.0601) 
[0.2355] 

�̂� =0.1038 
(0.0046) 
[0.0180] 

�̂�=10.3699 
(0.0344) 
[0.1349] 

- - - 

EGIKGD 
�̂�=0.1578 
(0.0583) 
[0.2285] 

�̂�=0.2387 
(0.0977) 
[0.3829] 

�̂�=0.1309 
(0.0660) 
[0.2587] 

𝛾=11.3132 
(0.1731) 
[0.6786] 

�̂� =0.2175 
(0.0009) 
[0.0034] 

�̂�=8.5949 
(0.0223) 
[0.0876] 

- - 

EGGIKGD 
�̂�=5.5073 
(4.9746) 

[19.5005] 

�̂�=0.2480 
(0.5677) 
[2.2254] 

�̂�=15.0891 
(3.5360) 

[13.8612] 

�̂�=0.7324 
(1.3300) 
[5.2136] 

𝛾=3.4494 
(0.0681) 
[0.2669] 

�̂� =1.0680 
(0.2101) 
[0.8237] 

�̂�=0.0133 
(0.0108) 
[0.0423] 

- 

KWBXIID 
�̂�=0.1904 
(0.0509) 
[0.1997] 

�̂� =1.7932 
(1.4993) 
[5.8771] 

�̂� =0.6073 
(0.3247) 
[1.2728] 

�̂�=3.6473 
(0.0441) 
[0.1727] 

�̂�=1.4256 
(0.1521) 
[0.5963] 

�̂� =18.2797 
(0.0628) 
[0.2462] 

�̂�=7.1158 
(0.2281) 
[0.8940] 

- 

NGEGIKGD 
�̂� =0.0963 
(0.1001) 
[0.3923] 

�̂� =0.4818 
(0.4705) 
[1.8442] 

𝜃 =0.6496 
(0.5398) 
[2.1160] 

�̂�=0.6983 
(0.4094) 
[1.6049] 

�̂� =0.1877 
(0.2500) 
[0.9801] 

𝛾 =6.3527 
(0.0528) 
[0.2072] 

�̂� =1.5033 
(0.0403) 
[0.1578] 

�̂� =0.6086 
(0.0402) 
[0.1577] 

 

 
 

Fig. 6: Comparison of the NGEGIKGD with the other distributions for the third dataset; (Left): Cdf for the NGEGIKGD. (Right): 
Observed and expected frequencies for each model 

 

The MLE and SE of the distribution parameters 
for all datasets are listed in Tables 7, 10, and 13. 
Furthermore, Tables 6, 9, and 12 show that the 
measures AIC, CAIC, BIC, HQIC, and K-S of the 
NGEGIKGD are the smallest, also, the NGEGIKGD has 
the best P-values. Moreover, based on Figs. 4–6, it is 
clear that the NGEGIKGD provides the closest fits to 
the actual distribution of the analyzed datasets. As a 
result, the NGEGIKGD is the best model for the 
investigated real-life datasets compared to 
competitive distributions. 

8. Conclusions 

This study investigated the effect of a new 
modeling approach that adds three shape 
parameters to a generalized distribution by 

introducing the NGEGIKGD. The proposed 
NGEGIKGD was inspired by the notion that 
generalization allows for greater flexibility in 
analyzing practical data. The NGEGIKGD’s hazard 
rate function takes a variety of forms, which 
supports its application in modeling different hazard 
behaviors in real-world scenarios, such as human 
mortality and biological applications. Several useful 
statistical and mathematical properties of the 
NGEGIKGD were obtained. Additionally, we 
estimated the NGEGIKGD’s parameters, and the 
performance of the estimators were examined via 
various simulation studies. Finally, the usefulness 
and flexibility of the NGEGIKGD were illustrated by 
means of three real-life datasets. The suggested 
NGEGIKGD with the extra parameters is capable of 
providing a better fit than several lifetime models. 
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We expect that this generalization will lead to 
further lifetime and reliability analysis applications. 
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