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This paper examines the phenomenon of wildfires in California and 
investigates the buildings affected by the Woolsey Fire in Central Malibu in 
2018. We focus empirically on machine learning to identify damaged objects 
from point-cloud data. This project includes a literature review with 
references to methods used for wildfire research and LiDAR data processing. 
In this study, researchers trained an existing deep learning model to 
determine if it offers an effective solution for extracting damaged objects. 
Data sources for this study include point-cloud data retrieved via the 
LidarExplorer tool and Kaggle’s 2013–2020 California wildfire data. Using 
two layers of building footprints in the Malibu “T-Zone” revealed 907 
structures, of which 435 were damaged or destroyed based on map 
observations. This analysis of structure identification supports the literature 
that deep learning can successfully classify objects damaged by wildfires. 
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1. Introduction 

*The California Department of Forestry and Fire 
Protection (Cal Fire) summarized that more than 
9,000 fires burned over 4 million acres in 2020 
(Knight et al., 2022). The fires destroyed over 11,000 
structures and caused over $10 billion in damages. 
The economic toll of our state's wildfires is still being 
calculated, but early estimates peg it at $10 billion so 
far. The prediction for 2021 (as of August) was 
another severe wildfire season with the changing 
climate, higher temperatures, limited rainfall, and 
excess fuels. According to Cal Fire statistics, the 
number of acres burned in 2021 had increased by 
257% compared to the previous year around the 
same time. As of August 2021, 6,347 fires had 
burned 959,611 acres. 

1.1. Inverse distance weighted tool 

One of the datasets that were needed for this 
project contains 1,636 California wildfires from 2013 
to 2020. The dataset is called “California Wildfires 
(2013–2020)” (Kaggle, 2021). This dataset includes 
some such basic information on those wildfires as 
acres of land affected, the year the data was 
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archived, count of structures destroyed. After 
importing the dataset into ArcGIS Pro, we were able 
to perform preliminary analyses based on this data. 
The left side of Fig. 1 shows all the structures 
destroyed by wildfires along with a power-line map. 
The right side of Fig. 1 shows the results of using 
ArcGIS Pro’s Inverse Distance Weighted (IDW) tool. 
IDW allows ArcGIS to identify and create zones 
based on the dataset. IDW makes it possible to 
determine cell values by using a linearly weighted 
combination of a set of sample points. The tool also 
allows users to set the cell radius. The image on the 
right is a more accurate representation of the 
damaged areas compared to the image on the left 
due to the results of acres burned in the dataset. 
According to the dataset, 47,402 structures were 
destroyed, and 15,644 structures were threatened 
by wildfires. The mean value of structures destroyed 
per wildfire is 290.8 in 153 wildfires. 

1.2. Woolsey fire 

The Woolsey Fire was one of the most 
devastating fires in Southern California. Caused by 
faulty electrical and communication equipment, the 
fire started on November 8, 2018, in Los Angeles and 
Ventura Counties, and burned for 13 days before it 
was contained. The fire burned 96,949 acres of land 
and destroyed 1,643 buildings. Three people 
perished and damages were over $6 billion. 
Hundreds of homes in Malibu were destroyed or 
damaged on both sides of the Pacific Coast Highway 
and thousands of residents were evacuated. 
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Fig. 1: Structures destroyed and detection of destroyed structures by IDW 

 

1.3. Project goals 

The main goal for the project focuses on the 
buildings impacted in central Malibu. The analysis 
uses Light Detection and Ranging (LiDAR) data to 
conduct a risk assessment on the City of Malibu 
where the buildings are extracted using ArcGIS Pro. 
A before-and-after analysis compared how that area 
has changed since the wildfire. We also analyzed the 
elevation in Central Malibu in relation to wind speed. 
Higher elevations offer more potential for high wind 
speeds, which can cause a wildfire to spread quickly 
toward the vast and dry vegetation throughout the 
Santa Monica Mountains. Furthermore, ArcGIS deep 
learning helped the project team detect how many 
buildings were destroyed. To add more to the 
research on this wildfire, other observations were 
considered, such as the power grid and outdated 
poles still present near central Malibu, which could 
be hazards in the long term. 

2. Literature reviews 

Fernández-Álvarez et al. (2019) described a 
methodology using LiDAR point clouds in forest 
vegetation characterization to improve protection 
capabilities in the wildland-urban interface (WUI) 
and to further prevent wildfires. The author tested 
the methodology with three LiDAR datasets 
corresponding to different areas in Galicia, Spain, 
located next to buildings or roads. The present 
methodology is based on individual tree detection 
(ITD), a measurement over a LiDAR point cloud for 
detection, measurement, and characterization of 
individual trees and analysis of shrub coverage. 

Fig. 2 shows the detection of the biomass-
management strips, where the vegetation might be 
measured and controlled. The biomass management 
strips are detailed as boundary regions around 
anthropogenic features in Fig. 2. These features 
include public communication infrastructures, 
buildings, recreational areas, and urban and forest 
roads. The first picture (a) is the infrastructure layer 
that shows buildings and tertiary and secondary 
roads. The second picture (b) represents biomass-
management strips with purple polygons. The third 
picture (c) is the legend of both parts (a) and (b), 
showing the compass, graphic scale, and road, 
building, and forest-management zone symbols. Fig. 
3 illustrates the identified individual trees with the 
variable-sized window (VSW) algorithm, part of ITD 
for determining the certainty of estimated 
maintenance actions and management efficacy for 
wildfire-prevention purposes. 

Schmidt (2020) focused on the relationship 
between different vegetation variables and 
structure-loss rates. This study used pre-fire LiDAR 
data of the vegetation variables to predict the 
structure losses for the Butte Fire using elevation, 
topography, structure density, and access as 
additional variables. The outcome was based on the 
comparison between the prediction and imagery. 
According to the report, a 10% increase in 
vegetation density in the 50-foot buffer zone caused 
a 10.2% increase in structure loss. Additionally, a 
15% increase in structure loss resulted from a 1,000-
foot rise in elevation. The study also pointed out that 
topographic position, structure density, and access 
are not key predictors of structure-loss rates. Fig. 4 
shows most structures were burned in the high-
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vegetation-density area. The soil-burn severity 
shows the same result. 

Eidenshink et al. (2007) aimed to provide burn-
severity information for a national analysis of trends 
in fire severity for the National Fire Plan. The 
secondary objectives include providing geographic 
and fire-specific data at regional and subregional 
scales to support resource and risk assessments, 
resource management, monitoring, and research 
activities.  

The normalized burn ratio (NBR) enhances the 
spectral response of fire-affected vegetation. 
Differenced NBR images (postfire NBR subtracted 

from pre-fire NBR) are known as dNBR images. The 
differenced prefire and postfire NBR images result in 
a fire-related-change image classified into severity 
classes to provide an unbiased basis for analyzing 
additional fire effects. Moreover, the project supplies 
a valuable data legacy to support a broad range of 
research and operational uses at multiple scales. 
Mapping the historical fires and burn severity will 
enable experts to recognize burn severity trends 
over time. Fig. 5 shows the processing sequence of 
LandSat imagery to produce burn severity and fire-
perimeter imagery. 

 

 
Fig. 2: The process of creating the biomass-management strips. Part (a) is the map of the dataset study, showing buildings 

and roads. Part (b) is the map including the forest-management zones. Part (c) is the legend 
 

 
Fig. 3: Trees identified with the estimated crown diameters; trees are represented by red dots 
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Fig. 4: Vegetation density, structure-loss, and soil-burn severity 

 

 
Fig. 5: The processing sequence using Landsat images to map burn severity and a fire perimeter for a fire in the Okefenokee 

national wildlife refuge (the yellow line is the refuge border) 
 

Schulze et al. (2021) conducted research to 
understand post-wildfire outcomes for buildings to 
prevent structures from being damaged or 
destroyed. The article details an in-depth framework 
the authors created using multiple layers of field-
collected data to assess wildfire damage, including 
LiDAR data, drone imaging data, and social media 
photos. The LiDAR scans were used to measure the 

buildings’ structure for deterioration due to fire 
damage. An assessment was created of post-wildfire 
damage to infrastructure and the likelihood of 
buildings collapsing due to the damage. The specific 
study includes three-compartment fires to examine 
the influence of the building characteristics on the 
fire’s maximum temperature and duration (Schulze 
et al., 2021). 
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The goal explained in this article is to learn from 
wildfire-damaged buildings, fire hazards, and the 
buildings’ structural responses during the fire. The 
analysis elaborated in this article is particularly 
helpful for engineers to determine a more effective 
construction type so buildings can better resist fires. 

The LiDAR scan shown in Fig. 6 demonstrates the 
exterior and interior of Achieve Charter High School 

in Paradise, CA after the Camp Fire. The LiDAR scans 
in the research were used to determine the post-
wildfire deformation of the structure and frames. 
This building included classrooms, offices, and a 
gymnasium. This type of LiDAR scan shows how 
useful and powerful LiDAR can be in practice and in 
research for the details that can be extracted. 

 

 
Fig. 6: LiDAR scan of achieving charter high school in Paradise, CA 

 

Platt (2014) included metrics that characterize 
land cover, a burned area, and topography in the 
home ignition zone (HIZ). The HIZ is the area that 
includes a structure and its surroundings within a 
specific range (30 to 60 yards). Many specific studies 
of wildfire hazard focus on the WUI instead, which is 
the area where natural vegetation crosses or blends 
with structures. One reason that studies of the HIZ 
are so scarce is the cost or limited availability of 
LiDAR data and very high resolution (VHR) 
multispectral imagery. Object-oriented image 
analysis (OBIA) was used on an HIZ metric, pre-fire 
land cover, to obtain information about vegetation 
and fuel. The OBIA uses both ethereal and contextual 
data extracted from remotely sensed imagery to 
detect significant objects at multiple dimensions. The 
average study uses supervised categorization to 
categorize each pixel into discrete classes (Objects 
from terrain) based on the spectral response 
compared to a training sample. 

The study took place in Fourmile Canyon, an area 
west of Boulder, Colorado, partially because of 
Fourmile Fire. From September 6 through 16, 2010, 
the Fourmile Fire burned about 6,180 acres and 
destroyed 168 homes. Most of the fire growth and 
home destruction took place during short bursts of 
extreme fire on September 6. About 83% of the 
destroyed houses were caused by low-intensity fire 
along with the degree of consumed vegetation 
surrounding each home. To learn from the Fourmile 
Fire background, the diagrams in Fig. 7 present the 
most accurate visual representations of the study’s 
results. The left diagram is known as the Local 
Moran’s I map. This diagram shows that HIZs in this 
area tend to score high in the hazard index due to the 
steep slopes, narrow canyon topography, and 
contiguous forest canopy. The HIZ Hazard Index on 
the right is used to evaluate or classify individual 
HIZs. Box A was rated “more hazardous” for canopies 
to structures and ridges. 

 

 
Fig. 7: Left: Local Moran’s HIZ hazard index within the four-mile fire perimeter; Right: HIZ hazard index 

 

3. Tools and data source 

The tools used in the LiDAR/Imagery project are 
ArcGIS Pro, Microsoft Excel, LASzip, Google Maps, 
and Earth Pro. With ArcGIS Pro, the team explored, 
visualized, and analyzed data, creating 2D maps and 
3D scenes. From LiDAR data, 3D buildings were 

extracted, a Raster layer was created for the terrain, 
Deep Learning analysis was performed to assess 
damaged buildings, and destroyed structures were 
predicted by IDW. Microsoft Excel was used to load 
the Kaggle dataset of wildfires that occurred in 
California between 2013 and 2020. The LASzip tool 
was used to compress point cloud data files and to 
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decompress a merged “.laz” file into a “.las” file. 
Google maps were needed to choose between 
locations based on building damage and to discover 
the power grid and poles using Street View to know 
which area files to download from the LidarExplorer 
website. LidarExplorer provides LiDAR point-cloud 
data files to anyone for research. The dataset 
accessed on this site was known as “CA Los Angeles 
2016” (USGS, 2021). The Google Earth Pro software 
offers the most comprehensive set of publicly 
available geospatial data, including high-resolution 
imagery, 3D cityscapes, detailed road maps, 
panoramic imagery at street level, and historical 
imagery. The Woolsey Fire satellite imagery that was 
taken in April 2019 was downloaded and used for 
the project. 

4. Observations and analysis 

4.1. Observations 

The analysis focuses mainly on the Woolsey Fire, 
17 miles from central Malibu by the measure tool in 
ArcGIS. About 96,949 acres were burned as shown in 
Fig. 8, in which the yellow patch is the fire’s extent. 
The image shows how the devastating fire began in 
an area controlled by a major utility company in 
Southern California, between Simi Valley and Canoga 
Park. Then, the fire spread south to all areas of 
Malibu. One key observation for this project was to 
find out which houses were damaged or destroyed in 

central Malibu. This was shown by creating two 
layers of a building footprint using LiDAR data 
representing the outlines of structures. This layer is 
useful for determining the damaged area of each 
building, a valuable resource for future research. 

For this project, a “T-Zone” was created by 
merging the “.laz” files in LASzip. A specific zone was 
needed instead because covering the entire area of 
central Malibu would require too much processing 
time. Then the merged “.laz” file was converted to a 
.las file in LASzip to be loaded into ArcGIS Pro. Fig. 
A1 in Appendix A shows a screenshot of the LiDAR 
data. When loading the LiDAR data in ArcGIS Pro, 
one must first make sure that the ground, noise, and 
building points are classified. Otherwise, it will not 
be possible to create the building footprint layer or 
extract 3D buildings. After classifying the points, the 
LAS Point Statistics as Raster tool can build a raster 
corresponding to the location of the LiDAR building 
points. Then the Raster to Polygon can convert the 
building raster to a polygon layer. Fig. 9 shows two 
screenshots of the building footprint layer. The left 
image shows that 907 structures in the T-Zone were 
detected by LiDAR in 2016. The right image shows 
that 435 structures were damaged or destroyed by 
the Woolsey Fire. Most of the polygons were deleted 
in ArcGIS Pro by observing the map carefully. A more 
professional layout for the project was to extract 3D 
buildings by running the LAS Building Multipatch 
tool (Appendix A, Fig. A2). 

 

 
Fig. 8: Woolsey fire’s affected area 
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Fig. 9: Left: Structures detected by LiDAR; Right: Structures affected by the Woolsey fire 

 

The elevation in the DEM (Fig. 10) layer made for 
central Malibu shows an interesting observation. The 
orange and brown areas indicate high elevation, and 
the yellow and green indicate low elevation. The 
mountains get higher in elevation toward the 
northeast where the fire started. The Santa Ana 
winds are another factor: They cause low humidity 
and can blow faster than 40 mph. These winds 
caused the fire to spread toward the coast. The Santa 
Ana winds are categorized as strong and extremely 
dry downslope winds that form throughout the land 
and blow towards the coast in Southern California. 
These winds blow at their worst during the fall. 

These dangerous winds made matters worse for the 
thousands of firefighters working to contain it. 

4.2. Analysis: Deep learning to assess damaged 
buildings 

The deep learning workflow includes four steps: 

 
I. Image classification: Image classification involves 

assigning a label or class to a digital image. The 
classification tool is used to search the labeled 
objects with the deep-learning option. With all the 
buildings selected, the result appears like the image 
in Fig. 11. 

 

 
Fig. 10: Digital elevation model layer for central Malibu, 2018 

 

II. Exporting training samples: Deep-learning training 
samples are small subimages known as “image 
chips.” They contain the feature or class of interest. 
This tool creates folders containing image chips for 
training the model and labels. 

III. Train the deep learning model: From the 
Geoprocessing pane, one searches and opens the 
Train Deep Learning Model tool. This step creates an 
ESRI model definition “.emd” file. The file contains 

the trained model, class names, model type, and 
image specifications of the image used for training. 

IV. Object detection using single shot detector model: 
Object detection is the process of locating features in 
an image and typically requires multiple tests to 
achieve the best results. Several parameters are 
used to get better results. The current generation of 
object-detection networks such as SSD (single-shot 
detector) uses a fully convolutional approach in 
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which the network can find all objects within an 
image in one pass (i.e., a single shot). Fig. 12 is the 

result of this process showing the destroyed 
buildings. 

 

 
Fig. 11: Image classification step to label damaged-building objects 

 

 
Fig. 12: Detected destroyed buildings 

 

Fig. 13 shows the result of the image chips folder 
that was also referenced in the export-training 

sample. The sample step contains all the selected 
damaged-building features.  

 

 
Fig. 13: Image chips and real building predictions 
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5. Discussion and conclusion 

A background on wildfires in California provided 
a strong introduction. This environmental issue has 
yet to be resolved. Since June 14, 2021, its actual 
cause is under investigation, but the fire was most 
likely caused by faulty equipment. The news came as 
a major utility company reported to the California 
Public Utilities Commission [CPUC] that its 
“equipment may have been involved in the start of 
the big Dixie Fire burning in the Sierra Nevada.” Yet 
another wildfire occurred from another power 
company just three years after the Woolsey Fire. 
This project shows the importance to our daily lives 
in California of emphasizing which structures are 
destroyed by wildfires. Displaying information about 
wildfires in California from 2013 to 2020 and 
running this analysis using the IDW tool is important 
because so many wildfires are a huge threat to the 
environment. Creating visuals in ArcGIS Pro to 
develop building footprint layers can help 
researchers determine how much of an area has 
been deeply affected by wildfire. Observations like 
elevation and wind factors will help power 
companies consider alternatives to prevent more 
environmental disasters. Finally, spending less time 

creating a visual by letting the program run a deep-
learning analysis can be very useful and more 
accurate for research. The four steps of the deep-
learning workflow can help develop better research 
for business intelligence. The main difficulty in the 
project was getting the LiDAR point cloud data files 
to work in ArcGIS Pro. The location for this project 
was originally going to be in Butte County to cover 
the 2018 Camp Fire which was also devastating. 
When the files in that location were loaded to ArcGIS 
Pro, the coordinates were missing, preventing the 
necessary tools from running. Regardless, the project 
turned out to be a success, but it signals the 
substantial work needed to provide adequate 
research about wildfires in California. 

Appendix A. ArcGIS analysis with built-in tools 

The screenshots below show features of ArcGIS 
that help you provide visual data for your analysis. 
The first part of Fig. A1 shows LiDAR data in the T-
Zone. The second part of Fig. A1 shows a much closer 
look at the LiDAR data by demonstrating the 
elevation of buildings and objects. Fig. A2 shows 
buildings rendered in 3D. 

 

 
Fig. A1: Screenshots of LiDAR data layer in the T-zone 

 

 
Fig. A2: Extraction of 3D buildings in the T-zone 
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