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Transient analysis of an RLC circuit (or LCR circuit) comprising of a resistor, 
an inductor, and a capacitor are analyzed. Kirchhoff’s voltage and current 
laws were used to generate equations for voltages and currents across the 
elements in an RLC circuit. From Kirchhoff’s law, the resulting first-order and 
second-order differential equations, The different higher-order Runge-Kutta 
methods are applied with MATLAB simulations to check how changes in 
resistance affect transient which is transitory bursts of energy induced upon 
power, data, or communication lines; characterized by extremely high 
voltages that drive tremendous amounts of current into an electrical circuit 
for a few millionths, up to a few thousandths, of a second, and are very 
sensitive as well important their critical and careful analysis is also very 
important. The Runge-Kutta 5th and Runge-Kutta 8th order methods are 
applied to get nearer exact solutions and the numerical results are presented 
to illustrate the robustness and competency of the different higher-order 
Runge-Kutta methods in terms of accuracy. 
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1. Introduction 

*The transient analysis in the circuits and how the 
basic circuit elements like a resistor, capacitor, and 
inductor behave in the transient is of great 
importance (Das, 2010). Whenever we switch on the 
power supply in the circuit or turn off the supply or 
anything in the circuit changes abruptly, then the 
circuit takes some time to respond to this new 
condition and attain new steady state values. During 
the circuit operation, if anything or any parameter 
changes abruptly due to some surge or spike, then 
due to these abrupt changes, there could be a circuit 
failure or components failure. In addition, to 
investigate this failure one needs to look into the 
transient analysis that how voltage and current 
across the circuit elements changes during this 
transient. So, if we do the transient analysis then we 
can design the circuit in such a way that it can 
withstand such abrupt changes. Apart from circuit 
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stability and failure analysis, in switching 
applications also this transient analysis is quite 
helpful. Transient normally results in changing the 
state of the components of an electrical circuit. It is 
very difficult for the capacitor voltage and the 
inductor current in an electrical circuit to assume a 
new steady state value. Transient analysis is very 
important since it can be used in analyzing the 
performance of any electrical circuit (Kee and 
Ranom, 2018). Thus, for an electrical current or 
voltage flowing through an electrical circuit, there 
can be various forms of the voltage or current. 
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage 
law (KVL) are normally in the form of differential 
equations rather than algebraic equations, these 
differential equations are not easily solved 
analytically when the order is high and complex. The 
numerical or approximate methods are one of the 
best techniques in solving almost all mathematical 
equations. The Runge-Kutta method was by far and 
away, the world's most popular numerical method 
for over 100 years, therefore the use of particular 
iterative methods depends on their efficiency. The 
efficiency of iterative methods depends on the 
stability, and cost in terms of time, suitability, and 
accuracy (Kafle et al., 2021). Without the use of the 
most accurate method, one might not be able to get 
an accurate solution and this might affect further 
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decisions based on the results (Suhag, 2013). 
Therefore, in this paper, three different variants of 
the same family the RK4, RK5, and RK8 methods are 
used in analyzing the transient behaviors and the 
damping factor in an RLC circuit taken into 
consideration and determine which method is the 
best in terms of accuracy and convergence analyzed. 

2. Runge-Kutta method 

The Runge-Kutta method is stable which means it 
doesn't exceed or diverge away from the exact 
solution, it retains the same shape and it does not 
diverge, on the contrary, the Euler method is 
unstable because it tends to do the kind of thing 
where it diverges (Ahmadianfar et al., 2021). The 
good thing about the Runge-Kutta study is very 
accurate and it can be used to solve virtually any 
ordinary differential equation even a nonlinear 
differential equation. We have seen in Euler’s 
method if we want a more accurate solution or a 
better approximation of the solution, what do we 
need to do? We have to use a smaller steps value of ℎ 
or in Taylor’s method we want a more accurate 
solution, what do we need to do? We have to go for 
higher-order terms. The higher-order terms mean 
higher-order derivatives of a function. But whether 
we are decreasing step size or we are calculating the 
higher-order derivatives in both cases we need to do 
more calculations, and computational complexity 
will increase. So in RK methods, we attempt to obtain 
greater accuracy and at the same time avoid the 
need for calculation of higher derivatives or with a 
smaller step size. 

2.1. Runge-Kutta of 4th order 

Runge-Kutta 4th order method (sometimes known 
as RK4) is reasonably simple and robust. It is one of 
the simplest methods to remember which makes it 
very popular, in old days (Williamson, 1980; Ashgi et 
al., 2021).  

2.1.1. Construction of the formulae  

Although all formulae of this paper hold for 
systems of differential equations, for the sake of 
brevity the initial value problem for a single second-
order differential special form, 

𝑦′′ = 𝑓(𝑥, 𝑦)                                                                                   (1) 

𝑦(𝑥0) = 𝑦0,          and               𝑦′(𝑥0) = 𝑦′0 

𝑦𝑖+1 = 𝑦𝑖 +
1

6
(𝑅1 + 2(𝑅2 + 𝑅3) + 𝑅4) + 𝑂(ℎ5)                 (2) 

 

where, 
 

𝑅1 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛)

𝑅2 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑅1)

𝑅3 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑅2)

𝑅4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑅3) }
 
 

 
 

                                                 (3) 

2.2. Runge-Kutta of 5th order 

It is not always better just to use the higher 
algorithms there are several tradeoffs one of the 
trade-offs is the amount of time. Butcher’s method or 
5th order Runge-Kutta might be a little bit overkill 
and so that is something to consider, and 
significantly better than several popular methods, 
but then we do have some computational overhead 
as well for doing the 5th order which is given by; 
 

𝑥𝑖+1 = 𝑥 +
1

90
(7𝑅1 + 35𝑅3 + 12𝑅4 + 32𝑅5 + 7𝑅6) +

𝑂(ℎ6)                                                                                                (4) 
 

where, 
 

𝑅1 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛)

𝑅2 = ℎ𝑓(𝑥𝑛 +
2

5
ℎ, 𝑦𝑛 +

2

5
𝑅1)

𝑅3 = ℎ𝑓(𝑥𝑛 +
1

4
ℎ, 𝑦𝑛 +

11

64
𝑅1 +

5

64
𝑅2)

𝑅4 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

3

16
𝑅1 +

5

16
𝑅2)

𝑅5 = ℎ𝑓(𝑥𝑛 +
3

4
ℎ, 𝑦𝑛 +

9

32
𝑅1 −

27

32
𝑅2 +

3

4
𝑅3 +

9

16
𝑅4)

𝑅6 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 −
9

28
𝑅1 +

35

28
𝑅2 −

12

7
𝑅4 +

8

7
𝑅5) }

 
 
 
 

 
 
 
 

   (5) 

2.3. Runge-Kutta of 8th order 

In general, the methods of an order higher than 7 
have an added computational cost which is usually 
not outweighed by order, given the tolerances 
chosen. One reason for this is that the coefficient 
choices for lower order methods are more optimized 
(they have small "principle truncation error 
coefficients," which matter more when we are not 
asymptotically small), the Runge-Kutta 8th order 
given by; 

  

𝑥𝑖+1 = 𝑥𝑖 +
ℎ

840
(41𝑅1 + 27𝑅4 + 272𝑅5 + 27𝑅6 + 216𝑅7 + 216𝑅9 + 41𝑅10)

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

840
(41𝑀1 + 27𝑀4 + 272𝑀5+ 27𝑀6+ 216𝑀7+ 216𝑀9+ 41𝑀10)

}                                                                              (6) 

  
 

whereas the different stages of various orders of 
Runge-Kutta are presented. Table 1 shows a 
minimum number of stages for various orders. 

2.4. Transient and RLC circuit 

The transient response of RLC circuit Fig. 1 with 
external DC excitations, the transient is generated in 

electrical circuits due to abrupt changes in the 
operating conditions when energy storage elements 
like inductor or capacitor are present, this transient 
response is the dynamic response during the initial 
phase before the steady-state response is achieved 
when such abrupt changes are applied, so to obtain 
this transient response of such circuits we have to 
solve the differential equations, which are governing 
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equations representing the electrical behavior of the 
circuit, a circuit having a single energy storage 
element either capacitor or an inductor is called a 
single order circuit and its governing differential 
equation is called a first order differential equation a 
circuit having both inductor and capacitor is called a 
second order circuit and its governing equation is 
called a second order differential equation so the 
variables of these differential equations are currents 
and voltages in the circuit function of time. Where C 
is Capacitance and 𝑉𝑐(𝑡) is a voltage across 
capacitance then the KVL equation for current is 
expressed in Eq. 7, 
 
𝑣 = 𝑣𝑅 + 𝑣𝐶 + 𝑣𝐿                                                                          (7) 

 
Table 1: Minimum number of stages for various orders 

Order 2 3 4 5 6 7 8 
Minimum Stages 2 3 4 6 7 9 11 

 

 
Fig. 1: RLC circuit with capacitor, induction, and resistance 

 

Since the RLC circuit is described as a second-
order differential equation, the voltage across the 2nd 
order RLC circuit according to Suhag (2013) is given 
by Eq. 8, where 𝑉𝑖𝑛is the input voltage. 
 

𝐿 𝐶
𝑑2𝑉𝑐(𝑡)

𝑑𝑡2
+ 𝑅 ∗ 𝐶

𝑑𝑉𝑐(𝑡)

𝑑𝑡
+ 𝑉𝑐(𝑡) = 𝑉𝑖𝑛                                     (8) 

𝑣 = 𝑣𝑐 + 𝑣𝑝                                                                                     (9) 

 

where 𝑣𝑐  is the transient response of the circuit, and 
𝑣𝑝 is a steady-state response of a circuit. For 𝑣𝑐:  
 
𝑣𝑐 = [𝐶1 cos(𝜔𝑑𝑡) + 𝐶2 sin(𝜔𝑑𝑡)] ∗ 𝑒

−𝜎∗𝑡                           (10) 

𝑣𝑝 =
12

𝐿𝐶

𝜔𝑛
2 =

0.01∗0.000001∗0.12

(10000)2
= 12 𝑣                                       (11) 

𝑣𝑐 = 12 + [𝐴 cos(𝜔𝑑𝑡) + 𝐵 sin(𝜔𝑑𝑡)] ∗ 𝑒
−𝜎∗𝑡                   (12) 

𝑣𝑐(0) = 12 + [𝐴 cos(0) + 𝐵sin (0)] ∗ 𝑒
0 

⇒          𝐵 =
−12𝜎

𝜔𝑑
 

𝑖(𝑡) = 𝐶 ∗
𝑑𝑣𝑐
𝑑𝑡

=
𝑑

𝑑𝑡
[12 + [𝐴 cos(𝜔𝑑𝑡) + 𝐵 sin(𝜔𝑑𝑡)]

∗ 𝑒−𝜎∗𝑡] 
𝑖(0) = 𝐶 ∗ [𝐴(−𝜎) + 𝐵(𝜔𝑑)]                                                   (13) 

𝜔𝑛 = √
1

𝐿𝐶
= √

1

0.01∗0.000001
=10000 

𝜎 = 𝜉 ∗ 𝜔𝑛 =0.5*10000=5000  

𝜔𝑑 = 𝜔𝑛√1 − 𝜉
2 = 10000 ∗ √1 − 0.52 = 8660.25 

𝐵 =
−12∗5000 

8660.25
= −6.93 

𝑣 = 12 − [12 cos(8660.25 ∗ 𝑡) + 6.93 sin(8660.25 ∗ 𝑡)] ∗
𝑒−5000∗𝑡                                                                                           (14) 
 

Again by considering homogenous form circuit 
differential equation, 

𝑑2𝑣𝑐

𝑑𝑡2
+
𝑅

𝐿

𝑑𝑣𝑐

𝑑𝑡
+

1

𝐿𝐶
𝑣𝑐 = 0.                                                             (15) 

 

The characteristic equation will be 𝐷2 +
𝑅

𝐿
𝐷 +

1

𝐿𝐶
𝑣𝑐 = 0, 

 

𝐷 =
−𝑅

2𝐿
±√(

𝑅

2𝐿
)2 −

1

𝐿𝐶
 

 
letting 𝐷1 = −𝛼 + 𝛽,                  𝐷2 = −𝛼 − 𝛽. 
 

Notice that LC induces the natural oscillation of 
the circuit, which means they tend to induce the 
oscillation inside the circuit, while R has a tendency 
to damp out the oscillation, depending on the value 
of LC, the response of the circuit can be found, say 

the LC created natural oscillation by 𝜔 =
1

√𝐿𝐶
, which 

is the frequency of oscillation known as natural 

frequency. Earlier we assumed that, 𝛼 =
𝑅

2𝐿
 and 

known as the damping coefficient of the circuit 
because this coefficient decides how well the circuit 

damping the oscillation, a part of this ratio 
𝛼

𝜔
= 𝜉, or 

𝜉 =
𝑅

2
√
𝐶

𝐿
 known as the damping factor of the circuit, 

so this is known as normalizing the damping 
coefficients, the value of the 𝜉 decides different 
oscillations. The transient response or type that a 
circuit exhibit is dependent on the value of the 
damping factor. The damping factor is the amount by 
which the oscillation of a system gradually decreases 
with time (Kee and Ranom, 2018). The following are 
various characteristics of the damping factor: 
 
1.  If 𝜉 > 1, the system is overdamped. 
2.  If 𝜉 = 1, the system is critically damped. 
3.  If 𝜉 < 1, the system is underdamped. 
 

Since the RLC circuit is described as a second-
order differential equation, the voltage across 2nd 
order RLC circuit according, which is replaced by 1st 
order differential Eq. 16, 
 
𝑑𝑖

𝑑𝑡
+
𝑅

𝐿
𝑖 +

1

𝐿𝐶
𝑣𝑐 =

𝑣𝑖𝑛

𝐿𝐶
                                                                   (16) 

 

where, 
𝑑𝑣𝑐

𝑑𝑡
= 𝑖 we will discuss a few cases, therefore, 

 
(Case I),    R=100 Ω 

𝛼 =
𝑅

2𝐿
=

100

2∗0.01
= 5000                                                             (17) 

𝜔0 =
1

√𝐿𝐶
=

1

√10−2√10−6
= 10000                                             (18) 

 
𝛼

𝜔0
=

5000

10000
= 0.5 

 

or, 
 

𝜉 =
𝑅

2
√
𝐶

𝐿
=

100

2
√
0.000001

0.01
= 0.5                                               (19) 

 

Eqs. 17, 18, and 19 yield 𝜉 = 0.5. From the 
resulting damping factor value, the system is 
underdamped. Table 2 shows the voltage outcomes 
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for an underdamped system for the RK4, RK5, and 
RK8 methods as time increases. From Table 2, it can 
be observed that the voltage obtained from RK8 is 
slightly better than RK4, and RK5 at each time t, 
whereas the numerical results of Table 2 also show 
that RK5 is better than RK4. Fig. 2 shows a plot of 
voltage against time for all RK orders used in this 
paper. From Fig. 2, it is observed that the RK8 
method also converges faster than the RK4 and RK5 
methods. 

 
Table 2: Comparison of different variants of RK 

Time(t) 
Under-Damped, R = 100 

RK_4 RK_5 RK_8 
0.0000 0 0 0 
0.0001 4.00000 4.08125 4.08362 
0.0002 10.1875 10.1878 10.1920 
0.0003 13.5790 13.4886 13.4909 
0.0004 13.9329 13.8375 13.8369 
0.0005 12.9353 12.8974 12.8953 
0.0006 12.0123 12.0296 12.0280 
0.0007 11.6574 11.6931 11.6927 
0.0008 11.7241 11.7477 11.7482 
0.0009 11.9107 11.9145 11.9151 
0.0010 12.0332 12.0256 12.0259 
0.0011 12.0560 12.0516 12.0516 
0.0012 12.0349 12.0312 12.0310 

 

 
Fig. 2: Comparing different variants of RK4, RK5, and RK8 

 
(Case II),    R=200 Ω  

𝛼 =
𝑅

2𝐿
=

200

2∗0.01
= 10000                                                           (21) 

𝜔0 = 10000                                                                                  (22) 
𝛼

𝜔0
=

10000

10000
= 1.0                                                                          (23) 

 

Eqs. 21, 22, and 23 yield 𝜉 = 1.0. Table 3, 
presents that as time increases the voltage also 
increases, also observed in classical RK4, the order is 
better and convergence faster than both RK5, and 
RK8 methods, whereas RK5 is better and 
convergences fast than RK8, as presented in Table 3, 
and Fig. 3. 
 
(Case III),    R=300 Ω 

𝛼 =
𝑅

2𝐿
=

300

2 ∗ 0.01
= 15000. 

𝜔0 =
1

√𝐿𝐶
=

1

√10−2√10−6
= 15000 

𝛼

𝜔0
=
15000

10000
= 1.5 

Hence, the system is overdamped since the 
damping factor is greater than one. From Table 4, it 
can be observed; that voltage obtained from the RK4 
order is slightly better than the RK5 and RK8 at each 
time t, whereas the numerical results of Table 4 also 
show both RK5 are better than RK8. Fig. 4 shows a 
plot of voltage against time for all RK orders used in 
this paper. From Fig. 4, it is observed that the RK4 
method also converges faster than the RK5 and RK8. 

 
Table 3: Comparison of different variants of RK 

Time(t) 
Critically-Damped, R=200 

RK_4 RK_5 RK_8 
0.0000 0 0 0 
0.0001 3.50000 3.19375 3.16792 
0.0002 7.31250 7.14167 7.12651 
0.0003 9.67969 9.61611 9.60986 
0.0004 10.9189 10.90313 10.9011 
0.0005 11.5155 11.5154 11.5150 
0.0006 11.7886 11.7919 11.7919 
0.0007 11.9096 11.9124 11.9125 
0.0008 11.9619 11.9637 1.19638 
0.0009 11.9842 11.9852 1.19852 
0.0001 11.9935 11.9940 1.19940 
0.0011 11.9973 11.9976 1.19976 
0.0012 11.9989 11.9990 1.19990 

 

 
Fig. 3: Comparing different variants of RK4, RK5, and RK8 

 
Table 4: Comparison of different variants of Runge-Kutta 

Time(t) 
Over-Damped, R=300 

RK_4 RK_5 RK_8 
0.0000 0 0 0 
0.0001 4.00000 2.93125 2.58624 
0.0002 6.68750 5.58731 5.47020 
0.0003 8.48871 7.56657 7.53434 
0.0004 9.69242 8.95971 8.95135 
0.0005 1.04941 9.92129 9.91918 
0.0006 11.0258 10.58032 10.05798 
0.0007 11.3769 11.0308 11.0307 
0.0008 11.6068 11.3384 11.3384 
0.0009 11.7566 11.5485 11.5485 
0.0010 11.8533 11.6918 11.6918 
0.0011 11.9149 11.7897 11.7897 
0.0012 11.9536 11.8564 11.8564 

 

Table 5 shows a comparison of the absolute error 
of different methods of Runge-Kutta and Fig. 5 shows 
comparative of different Runge-Kutta methods in 
terms of absolute errors. 
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3. Conclusion 

An important conclusion to be drawn from the 
overall numerical, as well as graphical and bar chart 
tests is that the construction of high-order Runge-
Kutta formulae is worthwhile, that RK4 gives 
comparatively superiority, over RK5, and RK8 
numerical results as well as graphical results, 
presented, whereas in terms of error the RK8 is 
superior from RK5, and RK4, numerical results, and 
graphical results confirm it for this problem 
considered in this paper. It is therefore 
recommended that the classical RK4 method is 
better to use, but in a few cases where accuracy is 
necessary, and most important having sensitive data, 
the preference is given to the higher-order RK8 to 
meet the required accuracy, Table 5, shows the 
superiority of the RK8 method over RK4, and RK8 in 
terms of error. 

 

 
Fig. 4: Comparing different variants of RK4, RK5, and RK8 

 

Table 5: Comparison of absolute error of different methods of Runge-Kutta 
h T Y Abs(ERRrk4) Abs(ERRrk5) Abs(ERRrk8) 

0.0001 0 0 0 0 0 
0.0001 0.0001 4.082766857 0.082766857 0.001516857 0.000858584 
0.0001 0.0002 10.19245135 3.525784683 0.004668146 0.000448199 
0.0001 0.0003 13.4920466 5.047602152 0.003476465 0.001121556 
0.0001 0.0004 13.83754969 4.207920057 2.34594E-05 0.000659883 
0.0001 0.0005 12.89522506 2.475471972 0.002174753 0.000105333 
0.0001 0.0006 12.02755479 1.081052732 0.002072006 0.000470801 
0.0001 0.0007 11.69232023 0.394652197 0.000770517 0.000367685 
0.0001 0.0008 11.74805964 0.216280945 0.000332522 9.09678E-05 
0.0001 0.0009 11.91519077 0.227338309 0.000661786 9.66645E-05 
0.0001 0.001 12.02603266 0.234131018 0.000425087 0.000126164 
0.0001 0.0011 12.05165847 0.190390708 6.90512E-05 6.46423E-05 
0.0001 0.0012 12.03102117 0.123509334 0.000129127 9.39348E-07 

 

 
Fig. 5: Comparison of different Runge-Kutta methods in terms of absolute errors 
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