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This manuscript empirically focuses on machine learning to identify objects 
from point-cloud data. The literature suggests deep learning can be used as a 
tool to classify objects of interest. Researchers in this study used light 
detection and ranging (LiDAR) point-cloud data to identify power poles and 
towers. This study sought to demonstrate the use of a deep-learning model 
developed by a group based in Australia and ESRI to determine whether 
deep learning is a viable solution for identifying power assets in three 
California areas. This study instantiated an existing trained model to 
determine whether deep learning is an effective solution for extracting the 
desired objects from point-cloud data. The deep-learning model successfully 
identified power poles in both rural and urban areas. However, the model 
performance was better in urban areas than in rural areas. This study 
supports the literature that deep learning can successfully classify point 
clouds. To improve the model performance and to ensure optimal results 
when training the model, the authors emphasize the importance of 
accurately labeled data to represent the objects of interest. To produce the 
desired results, one should develop one’s own training and validation data. 
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1. Introduction 

*Light detection and ranging (LiDAR), a type of 
remote-sensing technology, uses pulsed lasers to 
measure variable distances, heights, or depths of 
objects and areas. LiDAR devices are generally 
mounted on unmanned aerial vehicles (UAV). These 
UAVs are remotely operated to scan areas of interest. 
At a minimum, this process requires a two-person 
team to remotely operate the UAV and verify the 
data is correct (NOAA, 2021). This data can be input 
into software that can read the point-cloud data for 
further processing. UAVs and LiDAR data provide 
several benefits over sending people to physically 
inspect all assets of interest. For instance, a UAV can 
easily scan large areas without regard to the type of 
terrain (steep slopes, dense forests, etc.). Several 
studies have examined extracting objects from point-
cloud data. 

For instance, Van Leeuwen and Nieuwenhuis 
(2010) examined the current and future potential of 
leveraging LiDAR data to assess and manage forest 
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structures, specifically how remote sensing and 
classification can identify specific trees in a cluster 
and more closely identify the species. The article is 
relevant to this research question because this study 
examines whether LiDAR can be used to identify 
power poles and structures, which may be 
embedded in forests or other rural areas. Van 
Leeuwen and Nieuwenhuis (2010) demonstrated 
that remote sensing techniques may help identify 
objects in a forest (in their case, individual trees). 
Power poles and towers may blend into a forest 
canopy and conclude that further research is needed 
to assess remote sensing and forest management, as 
well as using models to recognize point-cloud data 
points. 

Prokhorov (2009) examined how 3D LiDAR 
imaging could be used in conjunction with a 
recurring neural network (RNN) to identify different 
objects. With the progression of scanners, 3D LiDAR 
images provide enhanced measurement data. 
Prokhorov (2009) investigated how the space of 
points between various objects could be leveraged to 
create a model to recognize objects. This research 
concluded that the RNN model showed promise and 
that further research into training RNN models is 
warranted, as is pursuing better 3D data. 

Maggiori et al. (2016) created an end-to-end 
framework to classify satellite imagery using 
convolutional neural networks (CNNs). In their 
study, they observed how a CNN has significant 
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capabilities in classifying satellite imagery data to 
identify objects and produce quality imagery. 
However, they also noticed that untrained models 
did not perform as well. They leveraged an existing 
model and constructed a set of manually classified 
data and saw significant improvement in the model. 
Therefore, they propose a two-step approach 
leveraging a small set of manually classified data to 
train a model to classify a large set of unclassified 
data. 

Kudinov (2019), in collaboration with ESRI and 
AAM Group, used the point convolution neural 
network (PointCNN) framework to automatically 
identify power lines and poles. The group used 
artificial intelligence for the labor-intensive task of 
manually labeling the point cloud. Their study area 
was a city in Australia, and their dataset contained 
around 540 million points. They trained their 
PointCNN model using four classes: other, wires, 
stray wires, and utility poles to successfully identify 
power poles. 

Fan et al. (2021) studied the You Only Look Once 
(YOLO) deep-learning algorithm to detect objects in 
point-cloud datasets. The focus of their research was 
object detection for self-driving vehicles. These 
vehicles need real-time information to make 
decisions and avoid collisions. Consequently, the 
researchers propose an alternate computationally 
efficient algorithm dubbed LS-R-YOLOv4 using color 
images and point-cloud data to precisely segment 
and detect objects. Borcs et al. (2017) proposed a 
pipeline that quickly classifies point clouds. One 
component of this pipeline is a CNN trained to 
classify objects. The model supports the 
identification of vehicles and pedestrians in urban 
settings. 

Brubaker et al. (2013) showed that LiDAR data 
can be used to accurately pinpoint the 
micromorphology of a large area and compared their 
results to field-surveyed plots to determine their 
accuracy. They compared a digital elevation model 
(DEM) generated from LiDAR data to the surveyed 
plots. From their findings, they were able to learn 
that their research was accurate to within 0.3–0.4 m 
of the actual survey, which is accurate up to a single 
point in the point cloud. Their data allowed them to 
generate the surface constraint of the surveyed area 
faster and from a greater distance compared to a 
traditional survey. The DEM is important as it allows 
LiDAR data to be accurately separated from the 
ground, water, or any surface constraints based on 
elevation. 

Azevedo et al. (2019) showcased the use of UAVs 
to replace helicopters due to their risks and 
associated costs. The use of UAVs with LiDAR would 
help companies maintain their equipment at a lower 
cost over time, as it would only need a team of a few 
people to ensure that the data is correct and to 
control the UAV. The UAV is able to quickly scan a 
large area with the proper sensors and send data 
back to the controller. From there, the LiDAR data 
can be converted to point-cloud data and fed through 
an algorithm and software to help identify and sort 

items in the LiDAR data. They argue that, while the 
algorithm they used failed to correctly identify 
possible points, those points were classified as 
unidentified due to the difficulty of differentiating 
between vegetation and other sources. Therefore, 
they conclude that a more powerful algorithm may 
correctly identify the points of interest and that 
graphics processing units (GPUs) can be used to 
increase the speed of processing the raw data. 

Nahhas et al. (2018) proposed machine learning 
with LiDAR data and orthophotos. They showed that 
the CNN algorithm was able to transform, organize, 
and label the data. With the orthophotos and LiDAR 
data, they created a digital surface model, DEM, 
shapes, and input other data through the model to 
detect buildings. From their findings and 
experiments, the CNN and machine-learning model 
accurately classified background and buildings up to 
a single data point and draw the geometry and 
shapes of the building from the LiDAR and 
orthophotos. Using this model, they were able to 
transform low-level detail into highly detailed, 
classified features. 

2. Materials and methods 

In this project, we test the ability of ArcGIS and 
the selected model to classify point clouds and reveal 
transmission-line assets from field-collected LiDAR 
data. 

2.1. Problem definition 

The Public Utility Commission requires utility 
companies, such as Pacific Gas and Electric and 
Southern California Edison, to carefully manage their 
assets due to recent wildfires such as the Camp, 
North Complex, and Carr fires. Senate Bill 901 (SB-
901), passed in 2018, requires utility companies to 
have wildfire-mitigation plans. Utility companies are 
required to visually inspect their assets every 12–24 
months of service and thoroughly inspect them 
every 3–5 years based on their type. Generally, these 
assets require many hours to manage and are not 
easily accessible due to their locations. Dispatching 
teams of people to assess the status of power 
equipment is expensive and time-consuming. LiDAR 
data serves as a cost-efficient alternative for 
surveying large areas of land and generating real-
time images of objects on the ground. 

The point-cloud data generated by scans can be 
analyzed to identify assets in need of maintenance. 
In addition to the efficiency afforded by LiDAR, 
utility companies can potentially lower labor and 
transportation costs as there is no need to 
unnecessarily send maintenance crews into the field. 
The cost of LiDAR depends on the type of equipment 
to be purchased, as well as the range and scope of 
work (Antunes, 2018). LiDAR drones can potentially 
be cost-effective in difficult-to-reach forested areas, 
rural towns, or elevated areas. At the same time, 
LiDAR can be used in high-density areas such as 
urban or suburban areas (Singh et al., 2015). The 
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high upfront cost leaves just maintenance of the 
equipment, future upgrades, and pilot licensing as 
needed (Van Tassel, 2021). These costs can be 
calculated in advance, while the ongoing costs of 
dispatching workers depend on the scope of work 
and may not be easily estimated due to fluctuating 
rates of pay (Glavinich, 2021). In many cases, 
contractors may need to be hired in areas that are 
difficult to reach and may not have the exact quality 
control utility companies need. 

While manually assessing and inspecting 
equipment is beneficial as the information about 
them can be updated in real-time, LiDAR data must 
be processed and analyzed to ensure the data are 
error-free (Azevedo et al., 2019). A high-scale scan 
must be performed of target areas to produce error-
free point-cloud data and these data must be 
processed to ensure assets are correctly identified 
(Nahhas et al., 2018). 

LiDAR technology provides several benefits when 
surveying objects. Therefore, this study sought to 
answer the following question. 

Can a utility company use LiDAR point-cloud data 
to accurately define asset locations (poles and 
towers)? 

The literature suggests deep learning can be used 
as a tool to classify objects of interest. As a result, 
this study deployed a deep-learning model to 
determine its effectiveness in classifying points of 
interest. In addition, other ArcGIS Pro classification 
tools were employed to gauge their effectiveness at 
classifying poles and towers. This study may be of 

interest to utility companies and individuals 
interested in using LiDAR to manage assets. 

2.2. Data selection and acquisition 

This research project used publicly available 
point-cloud data from the United States Geological 
Survey website. Datasets from June 19, 2018, 
covering regions in Santa Cruz, West Hollywood, and 
North Long Beach were explored to determine the 
effectiveness of a PointCNN deep-learning model at 
correctly classifying power poles. The deep-learning 
model employed in this study was obtained from 
ArcGIS Online (see Methodology). Each dataset 
collected for this project contained at least 30 million 
points and the file sizes were at least 1.5 GB (Table 
1). 

 
Table 1: Point-cloud datasets 

Region File size Points 
North Long Beach 1.52 GB 54,586,808 

Santa Cruz 3.20 GB 94,505,117 
West Hollywood 1.57 GB 32,233,675 

 

Step 1: Navigate to the national map on the USGS 
website: https://prd-tnm.s3.amazonaws.com
/LidarExplorer/index.html. 

Step 2: Select the “Show where Lidar is available” 
and “Show AOI Results” check boxes located in the 
left pane of the window (Fig. 1). Note that the 
“Show AOI Results” check box may only show up 
after an area of interest is defined as in Step 3. 

 

 
Fig. 1: USGS 3DEP LiDAR explorer 

 

2.3. Methodology 

This research study explored ArcGIS 
geoprocessing tools, including a deep-learning 

model, and additional tools that complement ArcGIS. 
This paper classifies the tools used into three 
categories: (a) data conversion, (b) deep learning, 
and (c) LAS conversion. This section discusses the 
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process of deploying a deep-learning model to 
classify point-cloud data. 

2.3.1. Data conversion and projection 

The data files downloaded from USGS are 
compressed in the LAZ format. To use these files in 
ArcGIS Pro, the LAZ files must be decompressed. 
Therefore, the first step in the workflow is to convert 
the LAZ files to LAS using the open-source 
application laszip.exe. The program can be executed 
using the command prompt (as done in this study) 
or a graphical user interface. The steps below show 
the process. 
 
Step 1: Download the conversion tool from http://

lastools.org/download/laszip.exe. Place the 

downloaded file tool in the folder where your LAZ 
files are located. 

Step 2: Search for the Command Prompt in the 
search menu, then press CRTL + Shift + Enter. The 
computer will ask if you would like to allow the 
application to make changes to your computer. 
Select YES. 

Step 3: In the Command Prompt, type cd/d 
(“Before” and “After” photos are included in Fig. 2 
clarification on how to perform Steps 3–5) 

Step 4: Copy the location of the LAZ files from the 
computer and enter it in the command prompt. 
Click on the dropdown arrow to copy the location 
address. Once the file location is entered into the 
command prompt, press Enter on your keyboard 
(Figs. 3 and 4). 

 
Before: 

 
After: 

 
Fig. 2: Before and after screenshots for step 3 

 

 
Fig. 3: Executing laszip.exe via command prompt 

 
Before: 

 
After: 

 
Fig. 4: Before and after screenshots for step 4 

 

Step 5: Copy the following command to the 
command line: laszip.exe *.laz (Fig. 5) and press 
Enter on your keyboard (Note: pressing Enter will 
initiate the tool to begin converting the LAZ files to 

LAS files. However, the tool must be located in the 
same folder as the LAZ files, otherwise, the tool will 
not find them). 

 
Before: 
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After: 

 
Fig. 5: Before and after screenshots for step 5 

 

The converted files will appear in the same folder 
as the LAZ files. 

ArcGIS Pro requires a LAS dataset to manipulate 
the point-cloud data. In addition, the deep-learning 
model’s documentation requires the point cloud’s x, 
y, and z coordinates to be based on the metric 
system. For these reasons, the second main step in 
the conversion process uses the Create LAS Dataset 
tool found in ArcGIS. The LAS data sets retrieved 
from the USGS website, by default, are in imperial 
units. The following steps and Figs. 6, 7, and 8 show 
how to create a LAS data set and convert the units of 
measurement to meters using the Create LAS Dataset 
tool. 
 
Step 1: Navigate to the Geoprocessing Tools pane in 

ArcGIS Pro and search for Create LAS Dataset. Then 
click on the folder icon under Input Files and locate 
the LAS files decompressed earlier. Under Create 
PRJ For LAS Files, select All LAS Files (Fig. 6). 

 

 
Fig. 6: Create LAS dataset geoprocessing tool 

 

Step 2: Click on the globe icon under Coordinate 
System (Fig. 7). 

Step 3: A separate window will open where 
coordinate systems can be changed. Click on 
Current XY and navigate to the NAD 1983 
NSRS2007 California (Teale) Albers (Meters) or 
whatever is appropriate for your dataset. It is 
found by expanding Projected Coordinate System–
State Systems (Fig. 8). 

Step 4: Click Current Z and navigate to NAD 1983 
(NSRS2007). It can be found by expanding Vertical 
Coordinate System–Ellipsoidal-based–North 
America. Once the XY and Z coordinates are 
correctly specified, click OK (Fig. 8). 

 
Fig. 7: Changing the projected coordinate system 

 

 

 
Fig. 8: Changing the projected coordinate system 
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2.3.2. Deep-learning tools 

This study’s main approach involved using a 
publicly available PointCNN deep-learning model to 
automatically classify power poles and towers. Due 
to resource and time constraints, this study 
instantiated an existing trained model to determine 
whether deep learning is an effective solution for 
extracting the desired objects from point-cloud data. 

ArcGIS Pro provides three tools to classify data, 
train a model, and use a model: 
 
 Prepare Point Cloud Training Data 
 Train Point Cloud Classification Model 
 Classify Point Cloud Using Trained Model 
 

This project employed the Classify Point Cloud 
Using Trained Model (CPCWTM) geoprocessing tool 
to run the trained model on the LAS datasets. To run 
deep-learning models in ArcGIS, one must ensure the 
Deep Learning Framework for ArcGIS Pro 2.8 is 
installed. Once the LAS dataset has been created, the 
following steps can be followed to install the deep-
learning framework and deploy the deep-learning 
model. 
 
Step 1: Download and install the required 

framework to run deep-learning models on ArcGIS 
(GitHub.com). On the provided link, you will need 
to click on the Deep Learning Libraries Installer for 
ArcGIS Pro 2.8 link to begin the download process. 
The link is located under the Download section. 
You will need to unzip the downloaded file before 
running the executable located in the downloaded 
folder. Then you simply follow the download 
wizard instructions to install the framework. 

Step 2: Download the deep-learning model to 
classify power lines, (ArcGIS.com). You can also 
find the tool on ArcGIS online, accessible through 
the ArcGIS Catalog Pane. You will need to store the 
deep-learning model in your project folder. 

Step 3: Open the CPCWTM geoprocessing tool. 
Enter your LAS data set under Target Point Cloud. 
Under Input Model Definition, locate the deep-
learning model to classify power lines by clicking 
on the folder icon and retrieving the file. Under 
Existing Class Code Heading, select Edit Selected 
Points. Under Existing Class Codes, select “1” to run 
the model on unclassified points. After all 
parameters have been entered, click Run (Fig. 9). 
The required time to complete depends upon the 
size of the data set and the computer’s resources. 
The model may take several hours to classify the 
point-cloud data. 

 

 
Fig. 9: Classify point cloud using the trained model tool 

 

Step 4: Filter the layer to display only power poles: 
Click on the LAS data set map layer located in the 
Contents plane to ensure it is selected. On the 
ribbon, click the Appearance tab. Then click on the 
LAS Data Points button. Turn off all other codes 
besides classification code 15—transmission 
tower—by unchecking the corresponding 
checkboxes (Fig. 10). 

 

 
Fig. 10: Filter LAS dataset 
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Once you click OK, the map will update to include 
only points classified as transmission towers. 

2.3.3. LAS classification tools 

This research study also explored the ArcGIS LAS 
classification tools to evaluate whether these tools 
will support the classification of power poles and 
towers. The following LAS classification tools were 
explored and can be found in the geoprocessing-
tools pane. 
 
• Classify LAS Ground 
• Classify LAS Building 
• Classify LAS by Height 
• Classify LAS Noise 
• Change LAS Classification Codes 
 

The point-cloud data were classified using the 
mentioned tools prior to running the model and 

these tools did not improve the performance of the 
PointCNN deep-learning model. In addition, the 
Classify LAS by Height tool helped determine if poles 
could be classified by their height. The tool did not 
prove effective at classifying poles as it only 
considers the height of the point, not its other 
attributes or its relation to neighboring points. 

3. Results and findings 

3.1. Results 

The CPCWTM geoprocessing tool in conjunction 
with the PointCNN deep-learning model successfully 
classified point-cloud data points as power poles and 
towers. The model was able to identify power poles 
and towers in the Santa Cruz Mountains, West 
Hollywood, and Long Beach. Results of these areas 
are shown in Figs. 11, 12, and 13. 

 

 
Fig. 11: Scotts Valley, CA (Santa Cruz County) 

 

 
Fig. 12: North Long Beach, CA 
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While the tools technically achieved the objective 
of identifying power poles and towers, the 
performance could have been better. The tool 
performed better in urban areas than in rural areas, 
but it had difficulty finding most of the power poles 
and towers within the data sets examined. In the 
Santa Cruz data set, only seven power poles were 
identified. In the North Long Beach dataset, several 
poles were identified but not in their entirety, and 
some poles were not classified at all. Similar results 
were experienced in the West Hollywood dataset. 

Further, the deep-learning model did not identify 
any power poles or towers in the densely forested 
parts of the Santa Cruz Mountains. 

The remote-sensing classification tools did not 
result in increased performance of the model 
compared to unclassified data. With both increased 
classification intensity and unclassified data, the 
model produced similar results. It failed to identify a 
large majority of power poles and towers in the area. 
The model’s overall results were underwhelming. 

 

 
Fig. 13: West Hollywood, CA 

 

This section may be divided into subheadings. It 
should provide a concise and precise description of 
the experimental results, their interpretation, as well 
as the experimental conclusions that can be drawn. 

3.2. Discussion of findings 

Based on our research and efforts to convert LAZ 
files to LAS files and use the CPCWTM geoprocessing 
tool in conjunction with the PointCNN deep-learning 
model, our project produced several findings. 

Troubleshooting the LAZ-to-LAS file conversion 
led us to discover a third-party tool for converting 
LAZ files. The third-party tool, discussed in an earlier 
section, was essential for this research. After the 
download, we found that one must place the 
downloaded tool in the folder containing the LAZ 
files. Otherwise, the command prompt would not be 
able to automate the process. Using the tool and the 
command prompt allowed our group to convert 
multiple files at one time for greater efficiency. One 
group member tried the graphical user interface 
bundled with the third-party tool in lieu of the 
command prompt. When doing so, the tool can be 
saved outside of the folder where the LAZ files are 
stored. 

The deep-learning model required the dataset’s 
projected coordinate system to be based on the 
metric system. We used the Classify LAS Dataset 
geoprocessing tool to change the coordinate system. 

Some group members experienced issues with 
plotting the data. More than once, the point cloud 
was plotted in the middle of the Atlantic Ocean. Each 
time this issue surfaced, team members repeated the 
first steps of the workflow (i.e., converting LAZ to 
LAS files and importing a “fresh” set of converted 
LAS files). Importing newly converted data solved 
the problem each time, and the data was plotted 
correctly. 

Running the CPCWTM geoprocessing tool 
resulted in key findings on how to convert data from 
feet to meters. We found that the data must be 
converted to meters for the PointCNN deep-learning 
tool to run as intended, based on the documentation 
provided by the group who developed the tool. As 
such, our group had to learn to convert the data from 
feet to meters. Finding a method to convert both the 
XY coordinates and the Z coordinates took a 
combined 20 hours. ArcGIS contains many 
coordinate systems with limited explanations of each 
system. We successfully converted the data to 
meters using NAD 1983 NSRS2007 California (Teale) 
Albers (Meters) and NAD 1983 (NSRS2007) for the 
XY and Z coordinates, respectively. See Data 
Conversion Tools for more information on our 
findings and their implementation. 

Using the PointCNN trained deep-learning model 
led us to several key findings. When running the 
model more than once, we found that ArcGIS 
occasionally experienced glitches and other issues 
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accepting the parameters we entered (Fig. 14). In 
one case, ArcGIS would not recognize where the 
downloaded tool was kept. Closing the project and 
creating a new project scene fixed the issue. 

 

 
Fig. 14: Error message 

 

Another issue faced by one member of the group 
was the inability to run the deep-learning model 
using a Windows operating system. The CPCWTM 
tool requires the location of the deep-learning model 
as one of its input parameters. When the correct 
path was input from both the local file directory and 
ArcGIS Online, the tool produced an error indicating 
that the system could not find the path. After several 
hours of troubleshooting, the issue was resolved by 
uninstalling ArcGIS pro and reinstalling it on all 
desktop profiles. 

Varying levels of computer hardware and 
processing capabilities among the different members 
of the research group were a challenge that the 
group had to overcome. Recommended hardware for 
using ArcGIS Pro is a four-core CPU, with two cores 
at a minimum and 10 cores for optimal results. 
Devices with lower specifications had some issues, 
such as freezing and becoming unresponsive. The file 
sizes of the datasets used in the research ranged 
from 1.5 to 3.2 gigabytes, and the group noticed that 
lowering the amount of data processed allowed 
ArcGIS Pro to function with fewer issues. 
Additionally, some troubleshooting was required for 
some users to get the machine-learning model to 
function. For example, ArcGIS Pro must be installed 
for all users or there will be an issue with 
permissions. The differences in computing power 
and file sizes were a challenge that the group had to 
overcome due to the project’s deadline. 

3.3. Discussion and next steps 

Utility companies must manage their assets to 
provide reliable service, but also to prevent 
property-and life-threatening events. The process of 
inspecting power assets is labor intensive, carries 
high financial costs, and is difficult to implement due 
to hard-to-reach locations. LiDAR is a remote sensing 
technology that offers teams the ability to efficiently 
scan surface areas and generate point-cloud data. 
These data can be efficiently and cost-effectively 
processed and classified to visualize objects of 
interest using software such as ArcGIS Pro. 

A small team can use a UAV to quickly scan large 
areas and then analyze the data to determine which 
assets need attention, thus focusing efforts on assets 
in need of maintenance. This study sought to 
determine if a LiDAR point cloud can be used to 
locate power poles and towers. The literature 

showed the successful application of deep learning 
to correctly classify these objects. As a result, this 
study pursued the use of a deep-learning model to 
validate whether this was a viable method. 

The model employed was developed by ESRI in 
collaboration with a group based in Australia. Due to 
time constraints and lack of training data, the group 
opted for a model trained by someone else. Although 
the results garnered in this study were not optimal, 
they do show that deep learning is a viable method. 
According to ESRI’s deep-learning documentation, a 
model developed by someone else may not perform 
as intended due to differences in the project data and 
the data used to train the model in such attributes as 
point spacing, intensity, and the number of returns 
(Esri, 2021a). 

Therefore, to produce the desired results, one 
should develop one’s own training and validation 
data. ArcGIS Pro comes equipped with tools to 
interactively classify points. These tools can be used 
to label points of interest in the training and 
validation data. These data should be an accurate 
representation of the objects of interest. Then, a 
model should be trained using the developed 
training and validation data. These steps should 
produce a model that can be deployed to 
automatically classify other point-cloud datasets 
(Esri, 2021b). 

4. Conclusion 

This manuscript empirically focuses on machine 
learning to identify objects from point-cloud data. 
The literature suggests deep learning can be used as 
a tool to classify objects of interest. This study 
sought to demonstrate the use of a deep-learning 
model to determine whether deep learning is a 
viable solution for identifying power assets in three 
California areas. This study instantiated an existing 
trained model to determine whether deep learning is 
an effective solution for extracting the desired 
objects from point-cloud data. The deep-learning 
model successfully identified power poles in both 
rural and urban areas. However, the model 
performance was better in urban areas than in rural 
areas. This study supports the literature that deep 
learning can successfully classify point clouds. 
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