
 International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

9

Pattern-based solution for architecting cloud-enabled software

Jalawi Sulaiman Alshudukhi *

College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 2 February 2021
Received in revised form
16 April 2021
Accepted 27 April 2021

Cloud computing exploits the software as a service model with distributed
and interoperable services for the composition of software systems. Cloud-
enabled systems that demand elasticity, scalability, and composition of
services, etc., there is a need to capitalize on reusable solutions exploiting
patterns and styles to architect cloud-based software. The objective of this
research is to build and exploit a catalog of patterns that support reusable
design knowledge to develop cloud-based architectures. We propose a three-
step process with (i) pattern discovery, (ii) pattern documentation (building
the catalog), and finally, (iii) pattern application (exploiting the catalog) to
enable pattern-based architecting of cloud systems. We discovered seven
patterns as generic and reusable solutions and demonstrate the pattern-
driven architecture of the ECMC case study. Results suggest that pattern-
based architecting enables the reuse of generic design decisions but lacks
fine-grained architectural design. The solution is the first attempt towards
establishing the catalog as a repository of patterns for architecture-based
development of cloud systems.

Keywords:
Cloud architectures
Patterns and tactics
Pattern catalog

© 2021 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Cloud computing has gained widespread
adoption in all sorts of business entities, public as
well as private. Apart from the potential business
benefits of a pay-per-use model as opposed to
upfront investment and set up for IT infrastructures
(Jamshidi et al., 2013a). There are clearly observable
technical advantages of cloud computing compared
with many other models of IT provisionings such as
scalability, multi-tenancy, resource virtualization,
and runtime acquisition of computing resources
(Herbst et al., 2013). Rapid demand in designing
and/or evolving applications for cloud-based
infrastructures requires a number of highly
knowledgeable and experienced architects who may
not be widely available as cloud computing is an
innovative paradigm (Wilder, 2012; Ahmad et al.,
2012a).

Architectural styles and patterns proved a
successful mechanism for providing packaged
knowledge about well-known design solutions to
both experienced and novice architects (Buschmann

* Corresponding Author.
Email Address: j.alshudukhi@uoh.edu.sa
https://doi.org/10.21833/ijaas.2021.08.002

 Corresponding author's ORCID profile:
https://orcid.org/0000-0003-0619-0020
2313-626X/© 2021 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

et al., 2007; Ahmad et al., 2014a). Patterns document
frequent solutions to recurring problems in a given
domain (Harrison et al., 2007; Cámara et al., 2013;
Côté et al., 2007). In recent years, pattern-based
approaches resulted in (i) promoting reuse and (ii)
enhancing the efficiency of the architectural design
and evolution processes (Ahmad et al., 2014a;
Cámara et al., 2013). In addition, pattern-oriented
solutions (Buschmann et al., 2007; Rischbeck and
Erl, 2009) enhance quality (extensibility, coupling,
etc.) by applying the best practices and knowledge to
resolve recurring problems of architectural design.

Ahmad et al. (2014b) asserted that providing
architectural patterns for cloud-based software can
accelerate the process of gaining knowledge and
experience in successfully modeling and evolving the
system’s structure and behavior at higher
abstractions. We focus on providing a collection of
architectural patterns that promote the reuse of
design knowledge for architecting cloud-based
systems. We represent patterns as a collection of
reusable design (service components and
connectors) to determine (i) what is the
architectural composition and a set of constraints
(configuration of elements) to answer how
architectural composition is achieved (Buschmann et
al., 2007; Jamshidi et al., 2013b). While architecting
cloud-based systems one exploits dynamically
composed services (software-as-a-service: SaaS) for
systems that can dynamically reconfigure them as
per changes in systems operational environments

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:j.alshudukhi@uoh.edu.sa
https://doi.org/10.21833/ijaas.2021.08.002
https://orcid.org/0000-0003-0619-0020
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2021.08.002&domain=pdf&

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

10

(Herbst et al., 2013; Wilder, 2012). As opposed to
traditional IT systems (Côté et al., 2007), patterns for
cloud architectures enforce specific requirements
including; composition, elasticity, scalability, and
multi-tenancy of soft-ware services (Arcitura, 2014;
Ahmad et al., 2012a).

One of the key challenges in providing pattern-
based architectural knowledge is systematic
discovery and detailed documentation of patterns as
a generic, yet reusable solution to most frequently
occurring architectural solutions (Ahmad et al.,
2014a; Harrison et al., 2007). Whilst a pattern
language of cloud-based application (Jamshidi et al.,
2013b) and online catalog of patterns for cloud
application (Arcitura, 2014; CDP, 2014) have been
reported, there has been no attempt to
systematically discover and document architectural
patterns for cloud-based applications. We enable a
systematic pattern discovery by investigating the
recurring problems and their generic, repeatable
solutions in existing architectures for cloud systems
(Ahmad et al., 2014b). In this paper, we report our
empirical effort for building a catalog of architectural
patterns for cloud-based applications; and
demonstrate how the discovered architectural
patterns can be applied to design a cloud-based
application. Our approach consisted of three simple
steps including Pattern discovery, pattern
documentation, and pattern application. With
regards to the existing research in Wilder (2012),
Arcitura (2014), Jamshidi et al. (2013b), and CDP
(2014), our contributions are:

 Investigating sources to empirically discover

patterns that address cloud architecture
requirements such as scalability, elasticity, multi-
tenancy, etc. in the SaaS model.

 Exploit the discovered patterns as elements of
reuse knowledge that guides a step-wise process of
pattern-based architecting for cloud systems.

2. Related work on architecture patterns for
cloud computing

We aim to discuss the rationale for the proposed
solution in the context of existing research on (i)
patterns for cloud and SOA systems, and (ii) pattern
discovery and pattern application.

2.1. Architecture patterns for cloud systems

One of the thorough works on cloud architecture
patterns (Wilder, 2012) reports best practices for
scalability, big data, fault handling, and distributed
services on Windows Azure (Platform as a Service:
PaaS). Wilder (2012) provided guidelines and
practical solutions to address the scalability and
elasticity in cloud-native applications for the
Windows Azure platform. However, this research
has two limitations:

1. Lack of empirical discovery patterns has been

reported based on the expertise from a single

source (pattern author) without investigating
multiple sources or systems. This means the
patterns may not be generally applicable to
different solutions (Harrison et al., 2007).

2. Lack of generic solution patterns are specific to
problems in a specific domain (i.e., Windows
Azure) and their reuse across different domains
is not explicit (Buschmann et al., 2007).

The work reported in Jamshidi et al. (2013b)

provides a documented repository of patterns for the
development of cloud computing services (SaaS,
PaaS, IaaS), and their deployment using cloud
deployment models (private, public, hybrid,
community). The patterns are organized in a
framework to guide developers to systematically
select and apply these patterns.

In contrast to Wilder (2012) and Jamshidi et al.
(2013b), the patterns in our catalog are focused on
deployment, execution, and management aspects of
cloud services (focusing SaaS model). With regards
to a fixed number of patterns in Wilder (2012), our
work aims to establish a pattern catalog that would
evolve with the incremental discovery of new
patterns guided by Ahmad et al. (2012b).

2.2. Repositories of cloud computing patterns

The work in Arcitura (2014) and CDP (2014)
reported a community-driven development of
pattern including:

1. Arcitura (2014) presented a collection of 39

patterns to address the scalability, reliability,
security, and monitoring issues of cloud
applications.

2. CDP (2014) presented a collection of patterns
created by various (cloud) architects based on
the type of problems, and their generic design
patterns.

The patterns in Arcitura (2014), and CDP (2014)

are not specific to cloud-based architectures, instead,
they focus on issues like security and monitoring of
cloud computing applications. Also, the repository of
patterns in Ahmad et al. (2019) focused on
addressing the scalability, reliability, security, and
monitoring of the cloud computing infrastructures
(IaaS). In contrast to Ahmad et al. (2019) (IaaS:
addressing cloud infrastructure), and Wilder (2012)
(PaaS: addressing cloud platform) the patterns
presented in this research primarily focus on (i) SaaS
(addressing cloud services) and (ii) exploit
architectural abstraction to develop cloud systems
deployed on PaaS.

2.3. Architecture pattern mining and pattern
application

The existing research to empirically discover
patterns can be broadly categorized into History
Analysis vs Design Review methods. In contrast to
history-based pattern mining (Ahmad et al., 2012b),

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

11

we review the architectural design (Ahmad et al.,
2014b) to discover patterns. Patterns for software
architecture in Buschmann et al. (2007) represented
one of the earlier solutions aimed at proposing a
system-of-patterns to design software architectures.
Since then, the research on patterns for architectural
development and evolution has progressed over
more than a decade (Ahmad et al., 2014a). Based on
the research overview above and the findings of our
systematic reviews (Jamshidi et al., 2013a; Ahmad et
al., 2014a), we claim that the proposed solution is
the first attempt to establish a catalog for pattern-
driven, architecture-based development of cloud
systems.

2.4. Patterns for cloud-based architectures

We clarify (i) how cloud architectures are
distinguished from the rest and (ii) what are the
(quality) characteristics to be addressed by these
patterns with an example.

2.5. Characteristics of cloud-based architectures

By utilizing the SaaS model, cloud architectures
(Ahmad et al., 2012a) can exploit the principle of
service orientation (specifically SOAs (Rischbeck and
Erl, 2009) that enables service composition as a
foundation to develop cloud-based applications
(Ahmad and Babar, 2014a). Also central to cloud
architectures are the quality of service (QoS)
requirements that ensures composable services
must satisfy the desired quality characteristics.
These characteristics include but are not limited to
scalability, elasticity, multi-tenancy, and
virtualization of software services that distinguish
the cloud architectures (Ahmad et al., 2012a) from
the traditional (object and component) ones (Ahmad
et al., 2014a; Côté et al., 2007). Therefore, the
patterns for traditional software development (Côté
et al., 2007) cannot easily be applied to cloud-based
systems unless they support the above-mentioned
characteristics specific to cloud architectures. A
single pattern may not ensure all these
characteristics; however, the pattern collection must
try to address them all.

For example, unlike traditional architectures,
cloud-based architectures are supposed to serve
multiple tenants with each tenant having its own
specific QoS requirement that can vary from
performance and reliability to security aspects.
Multi-tenant capabilities of SaaS need to be
considered not only at service (Arcitura, 2014) but
also at the platform (Wilder, 2012) and
infrastructure (Ahmad et al., 2019) level not
addressed in existing SOA patterns (Rischbeck and
Erl, 2009).

2.6. Pattern abstraction and pattern instantiation

We use an example of one of the discovered
patterns named Service Interoperability to

distinguish abstraction and instantiation in Fig. 1.
We have also reported details about an individual
pattern (Tools as a Service (TaaS)) and our
experiences in Ahmad and Babar (2014a).

A. Abstraction for Pattern Modeling: Abstraction is

vital to promote a pattern as a generic solution by
abstracting the complex implementation-specific
details as in Fig. 1a. As illustrated in Fig. 1a, the
abstraction of the Service Interoperability
pattern is vital to help a pattern user (de-
signer/architect) to analyze the high-level
solution for binding services to available
interfaces. Pattern abstraction is vital to analyze
its impact on the architecture model before
pattern application (preconditions), the
architectural view when the pattern is applied
(post-conditions)–promoting pattern as a generic
and incremental design process.

B. Instantiation for Pattern Application:
Instantiation provides the necessary details in
terms of concrete architectural elements to
instantiate a pattern. This is also referred to as a
pattern application by means of adding
refinements–extending the abstract box and
arrows with architectural components and
connectors from Fig. 1a to pattern abstraction in
Fig. 1b (Zdun, 2007). In Fig. 1b, the instance of
the Service Interoperability pattern utilizes the
Service Bus to bind services in the Service Pool to
interfaces in the Interface Compatibility
component.

3. Research methodology and proposed solution

We now present an overview of the methodology
and then discuss a three-step approach to discover
documents, and apply architecture patterns.

3.1. Methodology for pattern discovery and
documentation

Pattern discovery is based on the design review
method (Chen, 1998) reviewing recurring de-sign
solutions to frequent problems of architecting cloud
systems (Ahmad et al., 2012a) (in 4.1.A-3.1.C). The
review team comprises of 3 members with
experience of (a) conducting the SLRs (Jamshidi et
al., 2013a; Ahmad et al., 2014a), (b) pattern mining
(Ahmad et al., 2012b), and (c) development of cloud
systems (Babar and Chauhan, 2011; Ahmad and
Babar, 2014a).

A. Systematic Review of Architecture Solutions for

Cloud Systems: The review was conducted to
investigate the recurring challenges, design
problems, and existing solutions to develop cloud
architectures. A systematic review (Jamshidi et
al., 2013a) is expected to minimize the potential
bias in the review and has a protocol that guides
the process. Based on the research questions
(RQs) below and the protocol in Ahmad et al.
(2014b), we selected 86 studies (problem-

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

12

solution mapping) as sources of pattern
discovery.

RQ1–What methods/ techniques/ frameworks/
solutions are provided in existing (research and

practices) to model/develop/evolve cloud system
architectures?

RQ2–What are the existing patterns/ styles/
frameworks to support reusable design
knowledge for architecting cloud-based systems?

Service Interoperability Pattern

Pattern Intent: “interoperability between a collection of services (S1,… , SN) in a service pool with compatible interfaces (C1, …, CN) acquired
at run time”.
Design Problem: How to achieve interoperability among services in a service pool?
Solution: Provide a mediator to bind services to their compatible interfaces (Fig. 2)
Architecture Elements: Service Pool and Interface Compatibility components interconnected using a Service Bus connector.
Constraints: specify (i) a one-to-one correspondence between services and interfaces, and (ii) a connector (service bus) that to mediate the
binding. Reuse design knowledge is expressed as loosely coupled components bound by integrating mediators.
Quality Characteristics–e.g., Service Composition and Elasticity
-Elasticity achieved by providing a pool of services independent of their interfaces. This allows a dynamic acquisition of new services or
releasing unutilized ones by delegating the interface binding and unbinding to a mediator.
-Composition is supported through a mediator to enable service orchestration. The pattern assumes that the required interfaces are
provided in Compatible Interface component to ensure service availability.

Reference Diagram

Fig. 1: Service interoperability pattern (abstraction vs instantiation)

B. Identification of Pattern Data Sets–Once the

studies were identified, we extracted the data
sets in Table 1 from selected studies. Datasets
refer to mapping the existing architectural design
problems and their solutions. For example, in the
case of Service Interoperability pattern (Fig. 1),
design problem underlines service

interoperability, while architectural solution
proposes interface binding by using a mediator.
For an objective evaluation, we derived 7 items
(I1 to I7–item collection is referred to as
datasets) based on the recommendations and
guidelines in Buschmann et al. (2007) and
Harrison et al. (2007) and classification of

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

13

architectural styles and patterns (Ahmad et al.,
2014a). Items in Table 1 guided the pattern
mining team to objectively review the problem
(P) and solution (S) mapping, the attributes (A)
that affect the solution and the occurrence
frequency (T) of the repeatable solution by
analyzing the pattern datasets. Once a decision

(D) is reached, the results are documented as
pattern elements (E) for a peer-review before
finalization. We have also published individual
patterns (Ahmad and Babar, 2014a) to seeking
preliminary feedback on our ongoing work from
software architecture community.

Table 1: Dataset items for pattern discovery process

ID Items Description
I1 Design Space (C) All the available architectural designs (C=86 studies).
I2 Recurring Problem (P) Repeatable problems existing in the design space (P∈ C).
I3 Frequent Solution (S) Solutions to repeatable problems in the design space (S∈ C).
I4 Frequency Threshold (T) Threshold for occurrence of S to be discovered as a pattern.

I5 Design Attributes (A)

Attributes affecting S (A=15)
Service Level Agreements, Quality of Service, Service Elasticity, Service Composition, Context
Awareness, Service Versioning, Service Deployment, Service Execution, Service Management, Service
Security, Service Reliability, Service Availability, Service Coupling, Service Interoperability, Data Storage

I6 Discovered Pattern (N) 2=Yes, 1=Not sure (consensus required), 0=No

I7 Pattern Elements (E)
Elements of Pattern Description (E=9)
Name, Intent, Problem (P), Solution (S), Impact, Origin, Uses, Reference Diagram, Architecture Elements,
Constraints

C. Thematic Analysis to Investigate Pattern
Datasets: After identification of the datasets,
thematic analysis as the final step helps to
‘identify, analyze and report’ patterns from
datasets by following three steps. A theme is a
possible solution, or method, or mechanism to
resolve problems (Ahmad et al., 2019).

1. Data Analysis process comprises (a) analyzing

datasets, (b) extracting the design attributes
from problem-solution mapping (I5 in Table 1).

2. Pattern Discovery process involves (a) searching
of the recurring themes based on data analysis,
and (b) reviewing the identified themes. To
discover patterns, we reviewed studies and
aimed at discovering design problems (I2) and
they relate solutions (I3). We consider a
recurring theme as a discovered pattern (I6).

3. Pattern Documentation is the last process that
includes (a) classification of related themes
based on design attributes (I5) and documented
them in a template (I7).

3.2. Solution overview for pattern-based
architecting

We propose pattern-based architecting as a 3-
step process with underlying activities and
repositories in Table 2. Pattern discovery involves
pattern mining and pattern modeling. Pattern
documentation involves pattern classification.
Pattern application involves selection and
instantiation. If a designer finds suitable patterns
from the catalog, then the first two steps are skipped.

Table 2: Processes, activities, repositories for pattern-based architecting

Processes Activities Repositories

Pattern Discovery
Pattern Mining

Pattern Source
Artifacts of data sets that contain patterns in them.

Pattern Modeling

Pattern Documentation
Pattern Classification
Pattern Specification

Pattern Catalogue
Repository to store and retrieve patterns to enable reuse. Pattern Application

Pattern Selection
Pattern Instantiation

3.3. A metamodel of the discovered patterns

Based on the methodological description (Table
1) and applied solution (Table 2), we discovered a
total of seven patterns. However, before presenting
the discovered patterns, we provide a metamodel as
a formalized foundation to model architecture
patterns. The metamodel express pattern-based
architecting as a 5-tuple PatArch:=<ARCH, OPR, CNS,
PAT, CAT> in Fig. 2. For space reasons we only
present a minimal model with extended metamodel
provided in Ahmad et al. (2014b).

 Metamodel represents a structural model and its
required elements and the relationships between
them (e.g.; Pattern is Composed of one or many
Operations).

 A formalization of pattern model to ensure all
pattern instances conform to the same abstraction
(meta-model).

 Also, a formal representation of the metamodel
elements facilitates (semi-) automation and tool-
based manipulation of the pattern descriptions.

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

14

Fig 2: A metamodel representation of architecture pattern

A. Specification of the Cloud Architecture Model
(ARCH): The architectural description is driven by
the Service Component Architecture (SCA)
specifications (Ahmad et al., 2018) with components
that expose services in the SaaS model.

Example: In the Service Interoperability pattern
(Fig. 1), the Service Pool is a component composed of
atomic services (Billing Service, Payment Service).
The connector is represented as a Service Bus to
enable component-level interconnection.

B. Specifying the Constraints on Architecture (CNS):
The constraints on the architecture model are
Preconditions (conditions before pattern is being
applied) and Postconditions (conditions after
pattern application) to ensure consistency of
pattern-based architecture composition. Invariants
restrict the number of components/connectors in a
pattern.

Example: The preconditions for Service
Interoperability pattern specify the existence of
services and their interfaces, while the post-
conditions represent a binding between services and
interfaces. Invariants ensure each service is bound to
one interface only.

C. Specifying the Modification Operators (OPR):
Operators parameterize the addition or removal of
architecture elements to modify the architecture
model (design by modification (Boyatzis, 1998)).
These consist of Add, Remove, and Update operators
on architecture elements.

Example: For example, the operators in the Service
Interoperability pattern enable the addition or
removal of elements (service components and their
interfaces). The addition operator enables the
introduction of Service Bus connectors
(modifications from preconditions to
postconditions) in order to bind components.

D. Specifying the Architecture Pattern (PAT):
Architectural patterns represent the abstraction for
reusable architecting of the system. Pattern is
represented via its name and has an intent,
constrained composition of operationalization on
architecture model, as pattern composition in Fig. 2.

Example: The Service Interoperability pattern helps
to develop interoperable services. It specifies the
constraints on architecture such that services must
be isolated from interfaces and service binding
added at runtime with service bus (Fig. 1).

E. A Catalogue of Architecture Patterns (CAT): A
pattern catalog is a collection of classified patterns
ready for selection and reuse (catalog can be
supported by a repository management system or a
manual system). The guidelines in Harrison et al.
(2007) can be followed to develop and a pattern
template. With the UML metamodel in Fig. 2, we
express the concrete syntax of patterns in the catalog
with eXtensible Markup Language (XML). XML-based
specification of patterns allows us to (i) customize
the pattern elements and preserve the pattern
hierarchy, (ii) extensibility with addition or removal
of pattern (metamodel) elements (when required),
and (iii) machine readability for sharing pattern
specifications.

4. Architecture pattern catalog

Once the patterns are discovered and modeled,
the next step involves classifying the patterns and
documenting them in a catalog in Table 3.

4.1. A taxonomical classification of discovered
patterns

The pattern taxonomy defines a systematic
mapping, naming, and organization of related
patterns. The attributes of classification are
extracted by analyzing the design attributes (I5, cf.
Table 1). For example, analyzing the known uses of

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

15

the Service Interoperability pattern has helped us to
identify the “Service Coupling” and “Service
Elasticity” characteristics associated with this
pattern. The benefits of classification include:

 Pattern Selection from existing repositories a

critical challenge (Zdun, 2007). A pattern
classification helps in reducing the search space
where patterns that share the same attributes can
be located easily. For example, based on the item
(I5, cf. Table 1) the Service Interoperability and
Service Watchdog patterns (Table 3) ensure the
QoS requirements (reliability, scalability, etc.) are
classified under “service execution”.

 Efficient Searching of patterns can be achieved
(using classification as indexing) to reduce the time
taken to search pattern catalog. A (semi–)

automated searching and retrieval of patterns from
the catalog represents part of the planned future
work.

We have classified patterns into three distinct

types including Service Deployment, Execution, and
Management. The name of classification type is
subjective as classification is a manual process–
based on design reviews by the team.

4.2. A template-based specification of
architecture patterns

Table 3 shows a precise view of the pattern
catalog that is derived based on the guidelines from
Ahmad et al. (2014b).

Table 3: A catalog of architecture patterns for cloud-based software

Pattern Name Intent Reference Diagram

End-to-end Service
Binding

Design Problem: How to provide an end-to-end binding between requests of client
devices and available services in a service pool?

Solution: Provide a service integration layer as a mediator that maps the available
services in the pool to the requester client devices.

Multi-tenant Access to
Databases

Design Problem: How to enable multi-tenant access to databases deployed in the
cloud?

Solution: Allocate a dedicated service to each tenant request, responsible for the data
access (handling db drivers and indexes) specific to each tenant.

Tool as a Service
(TaaS)

Design Problem: How to enable the provisioning of software tools and applications as
a cloud service?

Solution: Provide a layered architecture with cloud services (Layer 2) mediating
between the available tools (layer 1) and client requests (layer 3).

Services
Interoperability

Design Problem: How to achieve interoperability among services in a service pool?
Solution: Provide a mediator that binds services in the pool to their java compatible

interfaces at runtime (related pattern: Service Request Handling).

Service
Watchdog

Design Problem: How to continuously monitor the quality of services in a pool?
Solution: Provide a service monitor using MAPE model when a number of service
providers use a pool – monitoring of SLAs and QoS requirements before service

execution.

Service Request
Handling

Design Problem: How to provide a shared pool to providers (producing services) and
the requesters (consuming services)?

Solution: Provide service binding layers to handling clients´ requests by selecting the
provider services (related pattern: Service Interoperability).

Services
Unit

Design Problem: How to service composition in a service pool to satisfy multi- client
requests?

Solution: Provide a service unit (composition of atomic services into composites) - the
cooperating services act as a single unit to external clients (based on Service

Orchestration).

4.3. Architecture pattern application

Finally, we demonstrate how to utilize a specific
pattern from a catalog and clarify a few concepts
relevant to patterns and pattern application.

A. Application Domain of the Patterns: We specify
patterns as a mapping between generic solution(s)
to recurring problem(s) in a specific domain. The
application domain of the proposed patterns is the

SaaS model for cloud-based architectures (Ahmad et
al., 2014b).
B. Runtime Change Support: As a consequence of
ever-changing requirements, architectural design
undergoes frequent modifications (a.k.a design by
modification (Côté et al., 2007)). In cloud
architectures, modifications must be implemented as
runtime adaptations to support dynamic: (1) service
composition, and (2) architectural elasticity for
acquisition and release of services. We abstract the
time implications, as details about pattern-based

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

16

runtime modifications are provided in Ahmad and
Babar (2014b) guided by the IBM MAPE loop (Ganek
and Corbi, 2003).
C. Primitive vs Pattern-based Modifications: A
primitive in an architectural modification refers to
the most fundamental operation applied to the
architecture elements (add, remove or update
architectural elements) in the metamodel (Fig. 2). In
contrast, patterns abstract the primitives and
provide higher-level reusable operations such as
integration, composition, replacement of
architectural elements (Ahmad et al., 2014a; 2012b).
The pattern represents a process-driven approach in
terms of analyzing the architecture (1) before
(preconditions: Source), (2) during (invariants:
intermediate), and (3) after pattern application
(preconditions: Target).
D. Scenario-based Analysis of Architecture
Modification: In order to systematically identify and
analyze the design scenarios and required
architectural modifications, we utilize the
Architecture Level Modifiability Analysis (ALMA)
(Bengtsson et al., 2004) as a 5-step process to Step
1–Analyze design and deployment scenario(s), Step
2–Model software architecture, Step 3–Select
scenario(s), Step 4–Evaluate scenario(s), and finally
Step 5–Interpret the results of architectural
modification.

5. Analyze architecture scenario and cloud
environment

A. Cloud Architecture Case Studies: The evaluation of
pattern-based architecture development is
performed using case studies of (i) Electricity
Consumption Monitoring and Contributing (ECMC)
system, and an online (ii) Auction Management
System (AMS) system. For illustrative purposes, we
utilize the architectural view of ECMC System

(Ahmad and Babar, 2014b; Bengtsson et al., 2004) as
illustrated in Fig. 3a. The ECMC system is offered by
a Danish electricity provider as an online portal to its
customers (electricity consumers) with two
purposes: (i) view electricity consumption, and (ii)
pay electricity bills. Based on increasing client
requests to ECMC architecture, an elastic load
balancer (B) needs to be integrated between the
clients (C1, C2, C3, C4, …, CN) and the ECMC server
(S) that can acquire or release services based on the
number of client requests (R1, R2, R3, R4, …, RN). In
Fig. 3a, ECMC client requests (system layer) trigger
the modifications in the architecture model
(architecture layers), patterns provide reuse of
modifications (pattern layer).
B. Cloud Computing Platform for Service Execution:
We have chosen the Google App Engine (GAE) to
deploy and execute the services (SaaS model) of
ECMC. For space reasons, we abstract technical
details of cloud platform that can be found in Babar
and Chauhan (2011) and Ahmad and Babar (2014a).
The selection of GAE was primarily influenced by the
needs for auto-scaling, resource allocation, and
service implementation framework (Java) for ECMC.

6. Architectural description of ECMC system

ECMC has a layered architecture with components
and a database, where the client can monitor or pay
the bill for their electricity consumption. For
example, a typical usage scenario is view
consumption monitoring: After authentication, the
electricity consumer (ECMCClient1) sends a request
(consumption Data) to the Consumption Monitoring
component in order to view the consumption details.
The monitoring component queries the ECMC
Database to retrieve consumption data (getData) in
Fig. 3b. The architectural view represents the source
architecture (SCA model (Ahmad et al., 2018).

Fig. 3: (a) Overview of pattern application, (b) Architectural view of ECMC

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

17

6.1. Select scenario–load balancing of requests

In Fig. 3b, ECMC Clients are integrated with
Consumption Monitoring and Consumption Billing
components resulting in a tight coupling between
the clients and server that affects load balancing of
the server. The optimal performances (P) of server
response time in relation to an increased client

requests (R) is given as 𝑷 =
𝑹

𝑵
. N (elasticity

threshold) is the maximum number of a client
request that do not hinder P. If client requests at a
given time exceed a certain threshold (X), such that
if: R > X, then server response time (T) deteriorates.
The notion of this scenario is given in Fig. 3
(architecture layer) as exceeding clients affects
server performance.

6.2. Evaluate scenario–integrating the load
balancer

The scenario in Fig. 4 illustrates that ECMC
architecture in Fig. 3 requires an elastic load
balancer to mediate between the clients and server
components that handle client requests. More
specifically:

 if the client requests (R) exceeds a certain
frequency threshold (X), then a new
RequestBroker (B) is added, or alternatively.

 if the client requests a return to the below
threshold, then the B must be removed.

The scenario is evaluated based on the Event
Condition Action (ECA) formalism in Fig. 3a and
Table 4. Details about the ECA-based formalism to
trigger architectural modifications are discussed in
Ahmad and Babar (2014b). The addition or removal
of architectural elements is achieved with
modification operators (Fig. 2).

Table 4: Event condition action
ECA Component Addition Component Removal

Event Client: C sends Requests: R to the Server: S
Condition If: R ≥ X if R < X

Action
then: ADD(B ∈ CMP) in

S
then: REM(B ∈ CMP) from

S

6.3. Interpret results–pattern-based architecting

As the final step, we have selected and applied the
End-to-End Service Binding pattern to enable the
integration of a Request Broker component between
the ECMC Client and Consumption Monitoring
components. At this stage, the pattern selection from
the catalog is a manual process. We automate the
selection of the most appropriate pattern using the
Question Option Criteria (QOC) methodology as
detailed in Zdun (2007). Pattern application results
in architectural modification such that the
application of a pattern on the source architecture
(Src) in Fig. 4a results in the modified or target
architecture (Trg) in Fig. 4c by preserving the
intermediate architecture (Inv) in Fig. 4b.

Architectural modification in Fig. 4 is based on the
Double-Push-Out (DPO with extended details in
(Ahmad et al., 2019) approach for architecture
modification. The DPO approach allows the source
architecture to be modified into the target
architecture by using an intermediate architecture.
The intermediate architecture represents
architectural structures or properties that must be
preserved during modification. For example, in Fig.
4b, the pattern aims at integrating a mediator
(Request Breaker) while preserving the
Consumption Monitoring and ECMC Client
components in the architecture. End-to-End Service
Binding pattern in Fig. 4 is selected from the catalog
(Table 3) for reusable (abstract primitives) and
process-driven modification (pre/post-conditions).

7. Evaluations, lessons learned, and conclusions

We report preliminary results from an evaluation
of the pattern-based architecting process as in Table
5.

7.1. Assertion evaluation

We assert that pattern-based architecting helps
to support the reusable architecture of the cloud-
based software. We formulate:

1 – (
𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑇𝑀𝑂

𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑇𝑀𝑂
) x 100

8. Conclusions and future research

Cloud architectures rely on software services that
entail a recurring need for dynamic composition,
elasticity and scalability, and multi-tenancy, etc. that
can be best supported by applying reusable practices
and solutions. We proposed a 3-step; a pattern-
driven architecting process that exploits empirically
discovered patterns to guide architectural
modifications. A collection of patterns enhances,
reusability by abstracting (design primitives).
Pattern discovery is a continuous process and we
support a systemic approach to investigate emerging
design problems and their recurring solutions. We
conclude the primary contributions as:

 Investigating sources to empirically discover
patterns that address cloud architecture
requirements such as scalability, elasticity, multi-
tenancy, etc. in the SaaS model.

 Exploit the discovered patterns as elements of
reuse knowledge that guides a step-wise process of
pattern-based architecting for cloud systems.

8.1. Dimensions for future research

We envisage potential future research in the
following dimensions:

 Enabling Tool Support: We aim to provide tool
support for pattern-based architecting that can

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

18

automate the manual and laborious tasks that can
be error-prone and time-consuming. Tool-based
and pattern-supported architecting enables
reusability and automation in the architectural
design process.

 Establishing Pattern Language: We focus on
establishing a pattern language as an
interconnected collection of reusable patterns that
can be applied in an incremental manner to
support phase-wise architecting of the cloud-
enabled software.

Table 5: Overview of % reuse for primitive vs patterns

Patterns Primitives % Reuse
Pattern Name TMO Primitive TMO R

End-to-End Service Binding 3 Integration 5 40
Multi-tenant Data Access 3 Data Access 6 50

Tool as a Service 3 Composition 8 62.5
Service Interoperability 3 Integration 5 40

Service Watchdog 3 Monitoring 7 57.1
Service Request Handling 3 Composition 6 50

Service Unity 3 Integration 7 57.1
 21/7=3 44/7=6.2 51 approx.

Fig. 4: Pattern-based modification (end-to-end service binding with DPO)

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Ahmad A and Babar MA (2014a). A framework for architecture-
driven migration of legacy systems to cloud-enabled software.
In the WICSA 2014 Companion, Association for Computing
Machinery, Sydney, Australia: 1-8.
https://doi.org/10.1145/2578128.2578232

Ahmad A and Babar MA (2014b). Towards a pattern language for
self-adaptation of cloud-based architectures. In the Western
Indo-Canadian Students' Association 2014 Companion,
Association for Computing Machinery, Sydney, Australia: 1-6.
https://doi.org/10.1145/2578128.2578227

Ahmad A, Alseadoon I, Alkhalil A, and Sultan K (2019). A
framework for the evolution of legacy software towards
context-aware and portable mobile computing applications. In
the International Conference on Software Engineering
Research and Practice, CSREA Press, Las Vegas, USA: 3-9.

Ahmad A, Chauhan MA, and Babar MA (2014b). Cloud styles-
towards establishing a catalogue of styles for architecting
cloud-based software. Technical Report, TR-2014-171,
Software and Systems Section, IT University of Copenhagen,
Copenhagen, Denmark.

Ahmad A, Jamshidi P, and Pahl C (2012a). Pattern-driven reuse in
architecture-centric evolution for service software. In the 7th
International Conference on Software Paradigm Trends
ICSOFT, Rome, Italy.

Ahmad A, Jamshidi P, and Pahl C (2012b). Graph-based pattern
identification from architecture change logs. In the
International Conference on Advanced Information Systems
Engineering, Springer, Gdansk, Poland: 200-213.
https://doi.org/10.1007/978-3-642-31069-0_18

Ahmad A, Jamshidi P, and Pahl C (2014a). Classification and
comparison of architecture evolution reuse knowledge-A

https://doi.org/10.1145/2578128.2578232
https://doi.org/10.1145/2578128.2578227
https://doi.org/10.1007/978-3-642-31069-0_18

Jalawi Sulaiman Alshudukhi/International Journal of Advanced and Applied Sciences, 8(8) 2021, Pages: 9-19

19

systematic review. Journal of Software: Evolution and Process,
26(7): 654-691. https://doi.org/10.1002/smr.1643

Ahmad A, Pahl C, Altamimi AB, and Alreshidi A (2018). Mining
patterns from change logs to support reuse-driven evolution
of software architectures. Journal of Computer Science and
Technology, 33(6): 1278-1306.
https://doi.org/10.1007/s11390-018-1887-3

Arcitura (2014). Cloud computing design patterns. Available
online at: http://www.cloudpatterns.org

Babar MA and Chauhan MA (2011). A tale of migration to cloud
computing for sharing experiences and observations. In the
2nd International Workshop on Software Engineering for
Cloud Computing, Association for Computing Machinery,
Waikiki, USA: 50-56.
https://doi.org/10.1145/1985500.1985509

Bengtsson P, Lassing N, Bosch J, and van Vliet H (2004).
Architecture-level modifiability analysis (ALMA). Journal of
Systems and Software, 69(1-2): 129-147.
https://doi.org/10.1016/S0164-1212(03)00080-3

Boyatzis RE (1998). Transforming qualitative information:
Thematic analysis and code development. Sage, Thousand
Oaks, USA.

Buschmann F, Henney K, and Schmidt DC (2007). Pattern-oriented
software architecture, on patterns and pattern languages.
Volume 5, John Wiley and Sons, Hoboken, USA.

Cámara J, Correia P, De Lemos R, Garlan D, Gomes P, Schmerl B,
and Ventura R (2013). Evolving an adaptive industrial
software system to use architecture-based self-adaptation. In
the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, IEEE, San Francisco,
USA: 13-22. https://doi.org/10.1109/SEAMS.2013.6595488

CDP (2014). Cloud design patterns. Available online at:
http://en.clouddesignpattern.org/index.php/Main_Page

Chen KZ (1998). Integration of design method software for
concurrent engineering using axiomatic design. Integrated

Manufacturing Systems, 9(4): 242-252.
https://doi.org/10.1108/09576069810217847

Côté I, Heisel M, and Wentzlaff I (2007). Pattern-based evolution
of software architectures. In the European Conference on
Software Architecture, Springer, Aranjuez, Spain: 29-43.
https://doi.org/10.1007/978-3-540-75132-8_4

Ganek AG and Corbi TA (2003). The dawning of the autonomic
computing era. IBM Systems Journal, 42(1): 5-18.
https://doi.org/10.1147/sj.421.0005

Harrison NB, Avgeriou P, and Zdun U (2007). Using patterns to
capture architectural decisions. IEEE Software, 24(4): 38-45.
https://doi.org/10.1109/MS.2007.124

Herbst NR, Kounev S, and Reussner R (2013). Elasticity in cloud
computing: What it is, and what it is not. In the 10th
International Conference on Autonomic Computing, San Jose,
USA: 23-27.

Jamshidi P, Ahmad A, and Pahl C (2013a). Cloud migration
research: A systematic review. IEEE Transactions on Cloud
Computing, 1(2): 142-157.
https://doi.org/10.1109/TCC.2013.10

Jamshidi P, Ghafari M, Ahmad A, and Pahl C (2013b). A framework
for classifying and comparing architecture-centric software
evolution research. In the 17th European Conference on
Software Maintenance and Reengineering, IEEE, Genova, Italy:
305-314. https://doi.org/10.1109/CSMR.2013.39

Rischbeck T and Erl T (2009). SOA design patterns. The Prentice
Hall, Hoboken, USA.

Wilder B (2012). Cloud architecture patterns: Using Microsoft
azure. O'Reilly Media Inc., Newton, USA.

Zdun U (2007). Systematic pattern selection using pattern
language grammars and design space analysis. Software:
Practice and Experience, 37(9): 983-1016.
https://doi.org/10.1002/spe.799

https://doi.org/10.1002/smr.1643
https://doi.org/10.1007/s11390-018-1887-3
http://www.cloudpatterns.org/
https://doi.org/10.1145/1985500.1985509
https://doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/10.1109/SEAMS.2013.6595488
http://en.clouddesignpattern.org/index.php/Main_Page
https://doi.org/10.1108/09576069810217847
https://doi.org/10.1007/978-3-540-75132-8_4
https://doi.org/10.1147/sj.421.0005
https://doi.org/10.1109/MS.2007.124
https://doi.org/10.1109/TCC.2013.10
https://doi.org/10.1109/CSMR.2013.39
https://doi.org/10.1002/spe.799

	Pattern-based solution for architecting cloud-enabled software
	1. Introduction
	2. Related work on architecture patterns for cloud computing
	2.1. Architecture patterns for cloud systems
	2.2. Repositories of cloud computing patterns
	2.3. Architecture pattern mining and pattern application
	2.4. Patterns for cloud-based architectures
	2.5. Characteristics of cloud-based architectures

	2.6. Pattern abstraction and pattern instantiation
	3. Research methodology and proposed solution
	3.1. Methodology for pattern discovery and documentation
	3.2. Solution overview for pattern-based architecting
	3.3. A metamodel of the discovered patterns

	4. Architecture pattern catalog
	4.1. A taxonomical classification of discovered patterns
	4.2. A template-based specification ofarchitecture patterns
	4.3. Architecture pattern application

	5. Analyze architecture scenario and cloud environment
	6. Architectural description of ECMC system
	6.1. Select scenario–load balancing of requests
	6.2. Evaluate scenario–integrating the load balancer
	6.3. Interpret results–pattern-based architecting

	7. Evaluations, lessons learned, and conclusions
	7.1. Assertion evaluation

	8. Conclusions and future research
	8.1. Dimensions for future research

	Compliance with ethical standards
	Conflict of interest
	References

