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Content-Based Image Retrieval (CBIR) systems retrieve images from the 
image repository or database in which they are visually similar to the query 
image. CBIR plays an important role in various fields such as medical 
diagnosis, crime prevention, web-based searching, and architecture. CBIR 
consists mainly of two stages: The first is the extraction of features and the 
second is the matching of similarities. There are several ways to improve the 
efficiency and performance of CBIR, such as segmentation, relevance 
feedback, expansion of queries, and fusion-based methods. The literature has 
suggested several methods for combining and fusing various image 
descriptors. In general, fusion strategies are typically divided into two 
groups, namely early and late fusion strategies. Early fusion is the 
combination of image features from more than one descriptor into a single 
vector before the similarity computation, while late fusion refers either to the 
combination of outputs produced by various retrieval systems or to the 
combination of different rankings of similarity. In this study, a group of color 
and texture features is proposed to be used for both methods of fusion 
strategies. Firstly, an early combination of eighteen color features and twelve 
texture features are combined into a single vector representation and 
secondly, the late fusion of three of the most common distance measures are 
used in the late fusion stage. Our experimental results on two common image 
datasets show that our proposed method has good performance retrieval 
results compared to the traditional way of using single features descriptor 
and also has an acceptable retrieval performance compared to some of the 
state-of-the-art methods. The overall accuracy of our proposed method is 
60.6% and 39.07% for Corel-1K and GHIM-10K datasets, respectively. 
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1. Introduction 

*There are two possible solutions for searching 
large image databases; the first, old and insufficient 
solution is text-based image retrieval (TBIR) 
(Sumathi et al., 2011), in which images are manually 
annotated with suitable names; this meta-data is 
attached to images, and the end-user later applies 
keywords to search for and obtain the necessary 
images. This approach has two major disadvantages; 
the first problem is obvious, as a significant amount 
of time is required for the manual annotation 
process, while the second disadvantage is the 
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amount of responsibility placed on the end user to 
form their own queries. An alternative and effective 
method is content-based image retrieval (CBIR); this 
method has many advantages that solve the major 
problems highlighted by the previous method. Also, 
CBIR became the main method and an area of much 
research in the last two decades due to the rapid 
advancement of multimedia data through modern 
sources such as the Internet, smart devices, internet 
of things IoT devices and sources, social networks, 
and medical image sources (Seetharaman and 
Kamarasan, 2014; Alsmadi, 2020). Most of the 
earlier CBIR studies were based on individual or 
single feature descriptors extracted from color, 
textures, or shape contents/descriptors (Mistry, 
2020); however, single feature spaces are not always 
sufficient to provide the best retrieval results. 
Therefore, most of the recent research has combined 
more than one descriptor from the above examples. 
The early survey of numerous and diverse 
application areas of CBIR was reported by Veltkamp 
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and Tanase (2002), where the authors provided an 
early review of CBIR at the end of the early years. 
Researchers could refer to Latif et al. (2019) for the 
latest comprehensive review of CBIR. 

In this paper, we proposed a retrieval method 
that exploits the use of color and textual information, 
and implements and compares the two common 
types of fusion, after which it suggests the use of the 
best approach to retrieve similar images. The main 
contributions of our work are as follows: 

 
1. A fully automatic CBIR method is proposed for 

retrieving similar images based on the fusion of 
visual and textual characteristics . 

2. The proposed approach has good retrieval results 
when good representative extracted fractures of 
both color and textual images are combined into 
a single vector. The more accurate the features 
used by the system, the higher the performance 
retrieval results obtained by the system. 

3. The method also supports the idea of merging 
more than one result with similar measures. The 
user can use any group of similarity measures 
that may present a good final fused value of 
precision better than individual similarity values. 
 
The rest of the paper is organized as follows. The 

related work is defined in Section 2. In Section 3, the 
proposed method is described in detail; feature 
extraction methods from the color and textual 
information of images are described. In Section 4, the 
experimental setup and image datasets are discussed 
along with implementation details and an evaluation 
of the results. Section 5 concludes the proposed 
work. 

2. Related works 

Over the years, numerous approaches have been 
suggested in the literature to combine and fuse 
various image descriptors (Bhowmik et al., 2014). 
Fusion approaches are usually categorized into two 
classes: Early and late fusion (Snoek et al., 2005; 
Atrey et al., 2010). There are different fusion 
strategies and approaches that have been developed, 
these strategies could be classified into five groups: 
traditional early fusion, features reweighting for 
early fusion, representation by multi-feature spaces 
for late fusion, relevance feedback approaches, and 
multimodal retrieval. In the following, we will give a 
short definition and recent and some examples of 
recent studies that applied these ideas. In normal or 
traditional early fusion, multiple image 
representations (such as color, texture, and shape) 
are combined into a single feature vector. This 
approach is straightforward and very simple and 
normally uses an equal weight value scheme 
assigned to any of the feature spaces. Several studies 
have followed this method, such as that in Singh and 
Hemachandran (2012) and Alsmadi (2020). Feature 
weighting for early fusion is suitable when the 
retrieval process is considered as a classification 
task in which pools of images are assigned to a set of 

labels. In this case, images with the same labels are 
similar to each other; a technique such as principal 
component analysis (PCA) could be used for the 
extraction of a new feature space rather than 
capturing the similarities (Piras and Giacinto, 2017). 
Several studies that address the different weighting 
estimation approaches and their related problems 
can be found in Rui et al. (1997), and reweighting 
schemes for similar retrieval problems can be found 
in Abdelrahim (2013) and Ahmed et al. (2013; 2014; 
2017; 2019). Over the past years, multi-feature 
spaces for late fusion were enhanced; authors in the 
pattern recognition area of research have suggested 
a number of solutions for fusing the information 
based on combinations of the outputs of different 
classifiers that use different feature spaces, as shown 
in Kuncheva (2014). The most popular and effective 
techniques for merging similar outputs are based on 
late fusion methods such as the mean, maximum and 
minimum rules (Alhassan and Alfaki, 2017; Ibrahim 
et al., 2018; Ahmed and Malebary, 2019). Relevance 
feedback has an obvious role in enhancing the 
retrieval task, where an image query is reformulated 
according to the top rank image retrieved (Karamti 
et al., 2018; Ahmed, 2020). Similarly, the query 
expansion process has significantly enhanced the 
retrieval performance (Houle et al., 2017; Ahmed 
and Malebary, 2020). The main idea of multimodal 
retrieval is to combine keywords with low-level 
features in order to use a combined input space. This 
suggestion was followed by some works such as that 
described by Zhou and Huang (2002), in which the 
authors use the word association via relevance 
feedback (WARF) method to learn the keyword 
similarity matrix during user interaction (Sclaroff et 
al., 1999); several other researchers have addressed 
this problem from different points of view (Barnard 
and Forsyth, 2001). 

3. Proposed method 

In this paper, the normal early fusion method 
with no weighting scheme and multi-feature space 
with multiple similarity measures for late fusion is 
proposed. As we will discuss in detail, those two 
proposed fusion methods are considered a simple 
approach that will enhance the retrieval 
performance. The overall CBIR framework is shown 
in Fig. 1. 

3.1. Feature extraction and early fusion 

As shown in the proposed framework, a group of 
color and texture feature extraction functions is first 
applied to extract the most important representative 
image features. After successful extraction, these 
features will be combined into a single vector; this 
process will be performed for both queries as well as 
every image in the database. For color feature 
descriptors, a total of 18 features are extracted using 
most of the common color moment functions. 

First, each image in the database, as well as the 
query images, are converted from the RGB color 
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space to the HSV color space (Erkut et al., 2019), 
then each of the “H”, “S” and “V” channels are used as 

an input for the color moment functions and six 
values are generated. 

 

 
Fig. 1: Workflow of our proposed CBIR method 

 

All color features for this descriptor are 
combined into a single vector. The group of six-
moment functions used here is: mean, variance, 
sknew, kurtos, smoothness, and contrast. The 
following equations (1 to 6) describe the formula for 
each of these functions; these were proposed by 
Maheshwary and Srivastava (2009) and were 
successfully used in recent studies (Zenggang et al., 
2019). Here, the value of pixels at the ith row and jth 
column become vij and the dimension of the image is 
(M, N) pixels; therefore, the six color moment 
functions are defined as follows: 
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Similarly, a total of 12 texture features were 
extracted using the grey-level co-occurrence matrix 
(GLCM); this method was introduced by Weszka et 
al. (1976). As in color features, after converting each 
RGB image to the HSV color space, then every single 
channel is used as an input for the GLCM method; 
then, from the output matrix of co-occurrence, the 

following functions were used for texture feature 
extractions: 
 

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =  ∑ ∑ {𝑝(𝑖, 𝑗)}2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1                                         (7) 
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p(i,j)=(p(i,j))/R is the (i,j)th entry in the normalized 
matrix, Ng is the number of unique or distinct grey 
levels, and µ and σ are the mean and standard 
deviation for image intensity, respectively. 

3.2. Similarity measures and late fusion 

After constructing features extracted using color 
and texture descriptors, the next stage is to perform 
late fusion based on three common similarity 
measures; the measures used for late fusion here are 
Bray, Cityblock, and Euclidean. These distance 
similarity metrics have shown good performance 
results (Shirkhorshidi et al., 2015). The following 
equations describe these distance measures. For the 
late fusion strategy here, the minimum distance 
(maximum similarity) is applied, and then the 
combined values will be used for further ranking 
processes, as will be discussed in the following 
section. 
 

Bray=2
𝐶𝑖𝑗

𝑆𝑖+𝑆𝑗
                                                                                  (11) 
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where, Cij is the sum of the lesser values for only 
those species in common for both vectors, and Si and 
Sj are the total number of specimens counted at both 
vectors. 
 
CityBlock=∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖                                                                 (12) 

Euclidean [∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖 ]

1

2                                                         (13) 
 

where, n is the number of dimensions of the X and Y 
vectors. 

4. Experimental results and discussion 

4.1. Image datasets 

In this study, the Corel-1K (Li and Wang, 2008) 
and GHIM-10K (Liu et al., 2015) datasets were used. 
These two image datasets have been recently used in 
Varish et al. (2020). The images in the first dataset 
were divided into ten different categories: Africans, 
Beaches, Buildings, Buses, Dinosaurs, Elephants, 
Flowers, Horses, Mountains, and Food. Each class or 
category consists of a hundred images with the 
resolution 256×384 or 384×256 pixels. The second 
dataset used in this study is GHIM-10K which has a 
total of 10K images (10 times larger than Corel-1K) 
and is considered to be more challenging and diverse 
and contains various objects. It consists of 10,000 
images divided into 20 groups/categories where 
each group or class has 500 images with a resolution 
of 300×400 pixels or 400×300 pixels; the semantic 
names of the images in each group are sunsets, bikes, 
forts, ships, flies, cars, etc. Figs. 2 and 3 show the 
sample images of each dataset where a single image 
from each class has been taken.  

 

 
Fig. 2: Samples images from the Corel-1K dataset 

 

 
Fig. 3: Samples of images from GHIM-10K 

4.2. Performance evaluation 

For evaluation measures, recall and precision 
were used; these are the most common performance 
measures for most retrieval methods. Here, both 

measures are calculated as the top ten retrieved 
images using the following formula: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠
                          (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠
                   (15) 

4.3. Results and discussion 

In this study, three different experiments were 
conducted: Retrieval was based on individual feature 
descriptors of color and textures only, with the 
implementation of early fusion for both feature 
descriptors and late fusion using combined vectors 
of feature descriptors and three similarity measures 
described in our methodology. For the three 
experiments, the same ten random image queries 
selected from each class of both datasets were used 
and recall and precision were calculated as the top 
ten images retrieved as performed in many related 
studies. The following subsections give more detail 
about our experiment results. The first experiment 
used eighteen color features and twelve texture 
features for both datasets images separately with the 
three individual similarities (distances) measures. 
Average recall and precision for each class were 
computed as the top ten retrieved images, as shown 
in Tables 1 and 2 for both datasets; the results in 
these two tables represent the base results that our 
proposed methods will target to enhance and 
increase their performance, as we will see in the next 
scenarios. From the two tables, we can see that color 
features have better retrieval results or 
performances compared to texture, and Euclidean 
distances provide the best distance measures of the 
three distance coefficients. 

The concept of the early fusion method is 
implemented in the second experiment, in which the 
simple merging of feature vectors of both color and 
texture are combined horizontally, resulting in a 
single feature vector with thirty features (eighteen 
color features and twelve texture features). The 
same random image queries were used for each class 
and the average recall and precision were calculated. 
In the late fusion scenario, the combined vector of 
thirty features was used again and similarity values 
for the three similarity measures are fused or 
grouped together; then, the minimum for these three 
values was taken. Finally, the average recall and 
precision were taken from the fused similarity 
values; the results of early and late fusion 
experiments are shown in Tables 3 and 4 for the two 
datasets, respectively. Also, Figs. 4 and 5 show the 
combined results of the three retrieval methods for 
two datasets which make them easy to compare and 
conclude some important findings from their recall 
and precision values. 

Figs. 6 and 7 show all of the recall and precision 
values for three retrieval methods for the two 
datasets, respectively. The enhanced results from 
Tables 3 and 4 and Figs. 6 and 7 show that both early 
and late fusion were significant and simply enhanced 
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the retrieval performance in terms of recall and precision values.  
 

Table 1: Recall and precision for Corel-1k dataset using color and texture features 

Class 
Based on Colour Features Based on Texture Features 

Bray Cityblock Euclidean Bray Cityblock Euclidean 
R P R P R P R P R P R P 

Africa 0.03 0.3 0.03 0.3 0.03 0.34 0.04 0.42 0.04 0.42 0.04 0.38 
Beach 0.03 0.31 0.03 0.31 0.03 0.32 0.03 0.29 0.03 0.3 0.03 0.26 

Building 0.05 0.45 0.05 0.47 0.05 0.48 0.04 0.45 0.04 0.44 0.04 0.39 
Buses 0.07 0.68 0.07 0.69 0.07 0.74 0.07 0.68 0.07 0.68 0.06 0.59 

Dinosaurs 0.1 1 0.1 1 0.1 1 0.1 1 0.1 0.99 0.1 1 
Elephants 0.05 0.53 0.05 0.52 0.06 0.6 0.03 0.31 0.03 0.31 0.02 0.25 
Flowers 0.05 0.53 0.05 0.53 0.05 0.53 0.08 0.83 0.08 0.83 0.07 0.72 
Horses 0.09 0.93 0.09 0.94 0.09 0.95 0.05 0.5 0.05 0.53 0.05 0.45 

Mountains 0.04 0.41 0.04 0.4 0.04 0.43 0.02 0.2 0.02 0.19 0.02 0.2 
Food 0.04 0.38 0.04 0.38 0.05 0.47 0.03 0.29 0.03 0.27 0.03 0.25 
Mean 0.055 0.552 0.055 0.554 0.057 0.586 0.049 0.497 0.049 0.496 0.046 0.449 

 
Table 2: Recall and precision for GHIM-10k dataset using color and texture features 

Class 
Based on Color Features Based on Texture Features 

Bray Cityblock Euclidean Bray Cityblock Euclidean 
R P R P R P R P R P R P 

Fireworks 0.013 0.63 0.013 0.64 0.014 0.68 0.01 0.5 0.01 0.49 0.009 0.44 
Buildings 0.005 0.25 0.004 0.22 0.005 0.23 0.007 0.36 0.007 0.35 0.007 0.37 

Walls 0.004 0.18 0.004 0.18 0.005 0.25 0.002 0.12 0.002 0.12 0.002 0.09 
Cars 0.003 0.16 0.003 0.15 0.004 0.19 0.004 0.18 0.003 0.17 0.003 0.15 
Flies 0.005 0.24 0.005 0.23 0.006 0.29 0.006 0.31 0.006 0.31 0.005 0.26 

Mountains 0.003 0.16 0.003 0.15 0.003 0.15 0.002 0.12 0.003 0.13 0.002 0.09 
Flowers 0.003 0.17 0.003 0.17 0.004 0.2 0.007 0.36 0.007 0.36 0.006 0.31 

Trees 0.009 0.44 0.009 0.45 0.01 0.48 0.008 0.4 0.008 0.41 0.008 0.39 
Green Grounds 0.008 0.4 0.008 0.39 0.009 0.45 0.009 0.43 0.009 0.43 0.007 0.35 

Beaches 0.005 0.23 0.005 0.23 0.005 0.23 0.003 0.15 0.003 0.15 0.003 0.16 
Aeroplanes 0.004 0.2 0.004 0.19 0.005 0.26 0.006 0.28 0.005 0.27 0.005 0.26 
Butterflies 0.007 0.34 0.006 0.32 0.007 0.35 0.004 0.22 0.004 0.22 0.003 0.17 

Forts 0.002 0.12 0.002 0.11 0.002 0.12 0.008 0.39 0.007 0.37 0.006 0.32 
Sunsets 0.007 0.36 0.007 0.36 0.009 0.46 0.012 0.6 0.012 0.6 0.01 0.5 

Bikes 0.006 0.31 0.006 0.31 0.007 0.34 0.005 0.26 0.005 0.26 0.005 0.25 
Boats 0.006 0.31 0.006 0.3 0.006 0.31 0.004 0.21 0.004 0.2 0.004 0.21 
Ships 0.004 0.19 0.004 0.19 0.003 0.16 0.005 0.26 0.005 0.26 0.005 0.24 

Chickens 0.006 0.32 0.006 0.31 0.006 0.3 0.005 0.23 0.005 0.25 0.004 0.19 
Insects 0.006 0.28 0.006 0.31 0.006 0.32 0.003 0.15 0.003 0.15 0.002 0.12 
Horses 0.002 0.11 0.002 0.12 0.003 0.14 0.004 0.18 0.004 0.18 0.003 0.15 
Mean 0.0054 0.27 0.005 0.266 0.0059 0.296 0.0057 0.286 0.005 0.284 0.005 0.251 

 

Obvious outcomes when considering and using 
fusion methods as an enhancement tool or approach 
are clearly shown in Figs. 6 and 7, which highlight 
the fact that the good retrieval performance (in a red 

color curve) is better than when using traditional 
methods that are based on applying either color or 
texture feature descriptors individually.  

 

 
Fig. 4: Recalls and precisions for Corel-1K dataset 
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Fig. 5: Recalls and precisions for GHIM-10K dataset 

 

 
Fig. 6: Recalls and precisions graph for Corel-1K dataset 

 

 
Fig. 7: Recalls and precisions graph for GHIM-10K dataset 
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Table 3: Recall and precision for Corel-1k dataset based on early and late fusion 

Class 
Based on Early Fusion 

Based on Late Fusion Yue et al. (2011) 
Bray Cityblock Euclidean 

R P R P R P R P P 
Africa 0.04 0.4 0.04 0.41 0.04 0.38 0.0412 0.412 0.5875 
Beach 0.03 0.33 0.03 0.32 0.04 0.37 0.0338 0.338 0.4119 

Building 0.05 0.53 0.05 0.54 0.05 0.51 0.0575 0.575 0.4235 
Buses 0.08 0.8 0.08 0.81 0.07 0.72 0.0825 0.825 0.7169 

Dinosaurs 0.1 1 0.1 1 0.1 1 0.1 1 0.7453 
Elephants 0.05 0.46 0.05 0.49 0.04 0.42 0.0438 0.438 0.6508 
Flowers 0.09 0.9 0.09 0.88 0.09 0.86 0.0912 0.912 0.8324 
Horses 0.08 0.79 0.08 0.81 0.07 0.71 0.0825 0.825 0.693 

Mountains 0.04 0.38 0.04 0.37 0.04 0.37 0.0362 0.362 0.4486 
Food 0.03 0.35 0.03 0.34 0.03 0.29 0.0375 0.375 0.4454 
Mean 0.059 0.594 0.059 0.597 0.057 0.5630 0.06062 0.6060 0.5960 

 
Table 4: Recall and precision for GHIM-10k dataset based on early and late fusion 

Class 
Based on Early Fusion 

Based on Late Fusion 
Bray Cityblock Euclidean 

R P R P R P R P 
Fireworks 0.01 0.65 0.01 0.59 0.01 0.62 0.01 0.637 
Buildings 0.01 0.37 0.01 0.35 0.01 0.32 0.01 0.375 

Walls 0.01 0.29 0.01 0.28 0.01 0.26 0.007 0.313 
Cars 0.01 0.26 0.01 0.27 0.01 0.26 0.01 0.263 
Flies 0.01 0.38 0.01 0.42 0.01 0.37 0.01 0.4 

Mountains 0.001 0.23 0.002 0.23 0.001 0.21 0.006 0.25 
Flowers 0.01 0.37 0.01 0.39 0.01 0.36 0.01 0.375 

Trees 0.01 0.51 0.01 0.48 0.01 0.49 0.01 0.512 
Green Grounds 0.01 0.63 0.01 0.62 0.01 0.63 0.01 0.65 

Beaches 0.01 0.29 0.01 0.28 0.01 0.26 0.008 0.313 
Aeroplanes 0.01 0.37 0.01 0.37 0.01 0.37 0.01 0.375 
Butterflies 0.01 0.39 0.01 0.39 0.01 0.35 0.01 0.4 

Forts 0.01 0.27 0.01 0.27 0.01 0.29 0.01 0.275 
Sunsets 0.01 0.67 0.01 0.67 0.01 0.69 0.011 0.675 

Bikes 0.01 0.3 0.01 0.31 0.01 0.32 0.01 0.313 
Boats 0.01 0.36 0.01 0.36 0.01 0.29 0.01 0.362 
Ships 0.001 0.23 0.001 0.23 0.001 0.24 0.007 0.237 

Chickens 0.01 0.42 0.01 0.42 0.01 0.37 0.01 0.45 
Insects 0.01 0.37 0.01 0.37 0.01 0.34 0.01 0.388 
Horses 0.002 0.23 0.001 0.24 0.01 0.31 0.01 0.25 
Mean 0.0085 0.3795 0.0085 0.377 0.009 0.3675 0.00945 0.3907 

 

More analytical results were shown using the 
Kendall W concordance test (Siegel and Castellan Jr., 
1988). This test was found to evaluate the 
effectiveness of different retrieval approaches; it 
could also be used to measure the level of agreement 
between multiple sets of rankings for the same set of 
retrieved objects. This test was used in the current 
study, where the classes of images represent judges 
while the average precision objects were considered 
judges in the present context, and the precision rates 
of the three different methods were considered 
objects. The input for this test is the precision rates 
of the three different retrieval methods; it has two 
outputs: The Kendall coefficient and the associated 
level of significance. The first output parameter (W) 
ranges from 0 (which means there no agreement 
between a set of ranks) to 1 (which means complete 
agreement), while the second output parameter (P) 
indicates whether this coefficient value could have 
occurred by chance. Here, since all the retrieval 
performances were taken for the top 10 images, the 
results will be significant for this test if the value of 
the (P) parameter is less than or equal to 0.01 for the 
Corel-1K dataset and less than or equal to 0.001 for 
GHIM-10K, respectively. The results for this test are 
shown in Table 5, where the late fusion method has 
the agreement or confidence of 61.1% for the Corel-
1K dataset and 52.4% for the GHIM-10K dataset and 

the ranking of the different methods in the 
corresponding rows in Table 5 shows the good 
retrieval performance of the proposed methods. 
Finally, Figs. 8 and 9 show visual examples of the top 
retrieved images and queries used for the retrieval 
process; ten out of ten retrieved images were 
achieved for the Corel-1K dataset while eight out of 
the top ten images were retrieved in the GHIM-10K 
dataset. 

 
Table 5: Ranking of two retrieval fusion methods based on 

Kendall W test for precision values at top term retrieved 
images 

Dataset W P Ranking 

Corel-1K 0.611 
0.0085 
<0.01 

Late Fusion>CEarly> BEarly> 
EEarly 

GHIM-
10K 

0.524 
0.0009 
<0.001 

Late Fusion>BEarly> CEarly> 
EEarly 

5. Conclusion 

This study proposed a retrieval method based on 
early and late fusion approaches. The proposed 
method is a simple process used to enhance the 
retrieval performance of image retrieval based on 
combining feature descriptors from color and 
texture spaces; also, combining similarity measure 
values for three known distance coefficients was 
implemented. The proposed method has two main 
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advantages: The automatic retrieval process and 
simplicity in early and late merging processes. Also, 
it has an acceptable level of enhancement. Further 
studies should be performed using more accurate 
and representative features; also, future studies 
could include some other descriptor features such as 
image shapes.  

 

 
Fig. 8: Query and top retrieved images for Corel-1K 

 

 
Fig. 9: Query and top retrieved images for GHIM-10K 
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