
 International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

107

Test case prioritization techniques in software regression testing: An
overview

Muhammad Qasim 1, Asifa Bibi 2, Syed Jawad Hussain 3, N. Z. Jhanjhi 4, Mamoona Humayun 5, Najm Us Sama 6, *

1Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
2Department of Computer Science, University of Northern Virginia, Annandale, USA
3Department of Computer Science, Barani Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University,
Rawalpindi, Pakistan
4School of Computer Science and Engineering, Taylor’s University, Subang Jaya, Malaysia
5Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia
6Department of Computer Science, Deanship of Common First Year, Jouf University, Sakaka, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 20 October 2020
Received in revised form
24 January 2021
Accepted 5 February 2021

The importance of Software Testing (ST) in the Software Development Life
Cycle (SDLC) can never be ignored. Smarter ST can give us more relievable
and defect-free products which are as per our stakeholder demand. That is
the reason it takes more time and resources. But unfortunately, the limited
time has left when the product reached the testing stage, especially in
Regression Testing (RT). That is the reason proper planning is required in
each SDLC phase, especially in the testing phase. Regression testing is an
essential part of the testing phase. It guarantees defect-free software after
any changes made to the requirement or software product. Because of the
limited time available, it is impossible to execute all the test cases every time
any changes made in the code there comes the role of the test case
prioritization. TCP chooses only test cases that are most important to
execute. The priority of test cases could be based on code, requirement,
defects, execution time, cost, etc. After TCP the developer and tester have a
minimum test case suite with better coverage in all respects. TCP definitely
improves the quality of software and brings the best product within a limited
time and cost. In this paper, we have provided a detailed survey of the TCP
methodologies. This survey includes 2010 to the most recent studies. In this
study, we have select carefully the most recent and relevant study of our
topic.

Keywords:
Software development life cycle
Regression testing
Software testing
Test case prioritization

© 2021 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Software Testing (ST) plays an important role in
the SDLC as it guarantees defect-free software and
customer satisfaction. Despite the complexity and
importance of this phase when it comes to testing a
small amount of time has been left behind which
makes this phase costlier. ST techniques involve the
execution of software to find if all the components
are as per customer need. If any issue is found, it will
be considered a defect or bug.

There are lots of stages of ST and lots of ST
techniques are used. Among all the ST techniques the

* Corresponding Author.
Email Address: najmussama@gmail.com (N. U. Sama)

https://doi.org/10.21833/ijaas.2021.05.012
 Corresponding author's ORCID profile:

https://orcid.org/0000-0002-0093-6461
2313-626X/© 2021 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

most important one is Regression Testing (RT). The
importance of RT could never be ignored as this
verifies that newly updated code impacting
previously build functionality or not? It doesn’t
matter how many times we make changes in the
code we have to run RT to make sure software
stability against the code change.

Because of the limited time given for RT, it
becomes the difficult phase in the sense of how and
which test case to be selected for RT suits. Different
methodologies have been used to make the best test
suite for regression testing which is called Test Case
Prioritization (TCP) or Test Case Selection (TCS).
These methodologies include search, coverage, fault,
requirement, history, risk and cost-effective based,
etc. (Shah et al., 2019). Each of the methodologies
has its own algorithms. Best TCP/TCS is dependent
upon different criteria like the selection of dataset,
incomplete data extraction (Shah et al., 2016). In this
study, we have selected the most recent algorithms

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:najmussama@gmail.com
https://doi.org/10.21833/ijaas.2021.05.012
https://orcid.org/0000-0002-0093-6461
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2021.05.012&domain=pdf&

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

108

used for software TCP from the most popular
repositories like IEEE Access, Elsevier, and Springer.

In this survey, we have studied 40 articles from
2010 to 2020 on TCP. This study organized as
follows. In Section 2 which is a literature review, we
will describe all the chosen algorithms in Table 1. In
Section 3 we will compare the results generated by
using each algorithm. In Section 4 we will describe
research methodologies and try to answer the
research questions. Section 5 contains state-of-the-
art challenges and Section 6 contains conclusions
and future research topics.

Table 1: TCP algorithms

S.No. Name of Algorithm

1 Firefly Algorithm
Firefly Algorithm

Optimal FA
Hybrid FA

2 Genetic Algorithm (GA) Hypervolume GA

3
Ant Colony Optimization (ACO)

Algorithm

ACO
Modified ACO

ETS ACO
Hybrid ACO

4 Local Beam Search (LBS) LBS

5 Particle Swarm Optimization (PSO)

PSO
Weight Hybrid

PSO
Greedy PSO

6 Greedy Algorithm (GA)
Additional GA
Enhanced GA
Graphite GA

2. Literature review

Test Case Prioritization (TCP) not only saves time
and resources but also stakeholder confidence in us
if we used it properly. Various methods and
techniques have been used in this regard to obtain
the best optimal test suite for Regression Testing. In
this study, we will cover and summarize all those
algorithms as shown in Fig. 1.

3. Firefly algorithm

Firefly Algorithm (FA) after getting inspired by
the flashy behavior of the fireflies (Shah et al., 2019).

 Fireflies are attracted to each other because all of

them are unisexual.
 The attraction of fireflies is depending upon their

brightness. Both are directly proportional to each
other

 Fireflies only move randomly if the same/no
brightness is found nearby.

Quite a few algorithms were proposed using the

Firefly technique.

Fig. 1: Test case prioritization techniques

3.1. Optimal firefly algorithm

This algorithm uses a metaheuristic firefly
algorithm to generate an optimal path. In this
modified firefly algorithm, he used a new objective
function/brightness function and guidance matrix to
traverse the graph (Shah et al., 2016).

The process starts with creating Control flow
graphs (CFG) and Data flow diagrams (DFD) and
generating XML files from the CFG diagram. This
XML file goes as input into Optimal Firefly Test
Sequence Generator (OFTSG). OFTSG perform the
following steps (Shah et al., 2016):

 Calculate nodes and edges
 Calculate Cyclomatic Complexity
 Create Adjacency matrix which is the edge between

the nodes is considered as 1 everything else is 0.

 Create Guidance matrix using Eq. 1
 Path traversal: Algorithm generates best path

sequences.
 Path Prioritization
 Calculation of brightness value at every node using

the Eq. 2
 Calculation of mean value of brightness.

Higher the mean value of brightness will have
higher priority.

𝐺𝐹 = 10 ∗ [𝐶𝐶𝑖 ∗ ((𝑁 − 𝑖) − 0.1)] (1)

𝑓(𝑥) = [
1000

(𝐶𝐶𝑖∗𝑟𝑎𝑛𝑑())
] (2)

The author tested this algorithm using 4 different
programs as shown in Table 2.

This shows that as the number of states increases
the cyclomatic complexity increases which causes an

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

109

increase in the percentage of redundancy in path
coverage. Results of this study were compared with
the state of the art algorithm Ant Colony
Optimization Algorithm (ACO). This shows FA
generates better paths with reducing or no
redundancy as compared to ACO as shown in Table
3.

Following limitations were found during this
study, first, the proposed algorithm was not tested
on any benchmarks program with a big test case
pool. Secondly, it’s not clear that which testing
criteria are used for example statement coverage,
fault coverage, etc.

Panthi and Mohapatra (2015) used the same
methodology to minimized test cases by exploring
the state diagrams. Nor Hashim and Dawood (2018)
proposed a similar approach to minimized test cases
and the process has been analyzed using a UML
statechart diagram. This study also shows prominent
results in the form of minimizing the number of test
cases.

Both used ATM case studies to test their
approaches which provide satisfactory results.

3.2. Firefly algorithm

Khatibsyarbini et al. (2019) used Firefly
Algorithm with string metrics as a fitness function to
find the best TCP arrangement.

Steps of Firefly Algorithm:

 Extraction of test cases from dataset
 Calculating distance and weight of test cases
 Perform movement update based on highest values

of weight/distance
 Selection of test cases based on shortest distance

as an optimal sequence.

Two variables Term Distance Inverse Document
Frequency (TDIDF) and Term Frequency Inverse
Document Frequency (TFIDF) were used to store
distance among the test case and frequency (weight)
of the test case respectively. The weight of test cases
could be calculated as follows given in Eq. 3
(Khatibsyarbini et al., 2019).

𝑇𝐹𝐼𝐷𝐹 =
𝑡

𝑇
× log𝑁 = 𝑛𝑡 (3)

The next move decided by the highest value of
weight over distance and the shortest distance
among test cases was selected as the optimum test
case sequence. FA uses average percentage fault
detection rate (APFD) to calculate the rate of fault
detection which could be calculated using the
formula given in Eq. 4 (Khatibsyarbini et al., 2019).

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝐹1 + 𝑇𝐹2 + … + 𝑇𝐹𝑛

𝑛×𝑚
+

1

2𝑛
 (4)

Six Software-artifact Infrastructure Repository
(SIR) programs were used for testing. Three of them
are UNIX-based programs (flex, grep, gzip) and three
are SIEMENs programs (tcas, cs-tcas, j-cas) as shown
in Table 2. Comparisons were made in this approach

with state-of-the-art algorithms PSO, LBS, Greedy,
and GA and among all of them, FA shows prominent
results although LBS has quite better results at some
places as shown in Table 3. Following limitations
were observed during this study. The first one is a
selection of datasets. The dataset used for testing
this approach is very small SIR benchmark
programs. This approach may give different results
when applied to a bigger size of test case spools.

The second is less data utilization. For example,
only distance and weight of test cases were used as
input while we have a lot of other data available like
system coding, etc. that could give totally different
results. The third and final one is that the only TCP
techniques were considered on the other hand we
have a lot of other similar techniques available which
was not included in validation.

3.3. Hybrid firefly algorithm (HFA)

Su et al. (2020) proposed this hybrid model of the
firefly algorithm, main purpose is to prioritize test
cases and reduce the test cost. HFA adopted a hybrid
model in which first it correlates all the available test
data and test cases and secondly applies enhanced
FA on this hybrid model. The new fitness function of
this HFA is shown in Eq. 5.

𝑓(𝑥𝑖,𝑗) = 𝑚𝑎𝑥𝑘 {
𝑊𝑖−1

𝑅𝑎𝑛𝑑𝑜𝑚(.)
∗ 𝐵𝑟𝑖𝑔𝑛𝑡𝑛𝑒𝑠𝑠𝑖,𝑗| 𝑗 − 1 ∈

𝑂𝑟𝑑𝑒𝑟, 𝑖 𝑢𝑛𝑂𝑟𝑑𝑒𝑟} (5)

where, Wi-1 shows the test cases weight i-1, a label
“Order” is used for the test cases where the priority
is known, “un-order” is for test cases where the
priority is unknown, Random (·)={N-2<[[Ni-i]-
0.1]<N}, where N is the total number of test cases.

The steps of this algorithm are as follows (Su et
al., 2020):

 Define the new fitness function as shown in Eq. 5.
 Calculate brightness of firefly using Eq. 6.
 Calculate the degree of attraction by creating a

distance matrix as shown in Eq. 7.
 The movements of the fireflies are based on

brightness only. Once all nodes have been visited,
the firefly stop moving and their path is recorded.

 In the end, the smallest path will be an optimal
sequence.

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖,𝑗 = 𝑊𝑖/ (
𝑛𝑖,𝑗

Σ𝑘𝑛𝑘,𝑗
∗ log

|𝐷|

|{𝑑:𝑑∋𝑡𝑖}|
) (6)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛽𝑒−𝛾𝑆𝑖,𝑗
2

(𝑋𝑖
𝑡 − 𝑋𝑗

𝑡) + 𝛼𝜀𝑡 (7)

where, β and α are constants, β is the light
absorption rate, Є is a random factor of a uniform
distribution, ɣ is attraction coefficient, HFA used
three Software-artifact Infrastructure Repository
(SIR) programs for testing. Which are flex, grep and
gzip as shown in Table 2. Comparisons were made in
this approach with state-of-the-art algorithms FA,
PSO, and Greedy and among all of them, HFA gave
the better execution time and best performance as
shown in Table 3.

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

110

The following limitation was observed during this
study is the selection of the dataset. The dataset used
in this approach is three very small SIR benchmark
programs. This approach may give different results
when applied to a bigger size of test case spools.

3.4. Hypervolume genetic algorithm (HGA)

The method uses GA with Hypervolume Indicator
to prioritized test cases with more than three testing
criteria. He proposed an enhanced genetic algorithm
which is called HGA (Hypervolume-based Genetic
Algorithm). Earlier GAs was used to solve only
single-objective optimization problems. But
hypervolume allows us to combine multiple-objects
to teat as a single object. HGA consist of two parts (Di
Nucci et al., 2018; 2015).

Part-I
1. Initialization of cumulative coverage scores.
2. Computation of cumulative coverage scores (cost,

branch, and statements) for each testing case.
3. Computation of actual IH using equation8.
4. Normalized IHP using Eq. 9.

𝐼𝐻(𝜏) = ∑ [𝑐𝑜𝑠𝑡(𝑝𝑖+1) − 𝑐𝑜𝑠𝑡(𝑝𝑖) × |𝐶𝑜𝑣𝑖(𝑝𝑖)| × …×

𝑛−1
𝑖=1

|𝐶𝑜𝑣𝑚(𝑝𝑖)|]

𝐼𝐻𝑃(𝜏) =
∑ [𝑐𝑜𝑠𝑡(𝑝𝑖+1)−𝑐𝑜𝑠𝑡(𝑝𝑖)×|𝐶𝑜𝑣𝑖(𝑝𝑖)|×…×|𝐶𝑜𝑣𝑚(𝑝𝑖)|]
𝑛−1
𝑖=1

𝑐𝑜𝑠𝑡(𝑝𝑛)× |𝐶𝑜𝑣1
𝑚𝑎𝑥|×… ×|𝐶𝑜𝑣𝑚

𝑚𝑎𝑥|

Eq. 8, 9

Part-2
1. Test cases order generation.
2. Permutations evaluation by IHP (t) metric.
3. GA evolution derivation.

HGA used five Software-artifact Infrastructure
Repository (SIR) programs for testing. Which are
bash, flex, grep, gzip and sed as shown in Table 2.

Comparisons were made in HGA with state-of-
the-art algorithms Additional Greedy Algorithm, GA
(AUC metrics), NSGA-II, GDE3, MOEA/D-DE, and
among all of them HGA shows the prominent results
as shown in Table 3.

Following limitations were observed during the
study of this algorithm. The first one is the type of
construction used to validate the algorithm depends
upon the results obtained. In order to validate the
results APFDc matrix was used and only three
testing criteria were used which include statement
coverage, fault coverage, and execution cost. On the
other hand, if we include the time parameter the
results could be different. The second one is internal
validity. a) Only different types of GA were used to
compare the results of this algorithm. It would be
highly appropriate to choose some other algorithm
as well. b) Tuning of the parameter could really
affect the validity of results Study shows that the
value of parameters was kept the same as used in
basic GA. Results should be tested by changing the
values of parameters. The third which could affect
the results is the dataset used in this approach which

are six trademark programs from SIR only. The
algorithm should be validated against real-time
industry programs to test results.

3.5. Ant colony optimization (ACO)

ACO is another prominent approach used for test
case prioritization. Following different types of the
algorithm has been proposed based on ACO.

Ant colony optimization is a metaheuristic
optimization methodology that was first introduced
by Márquez et al. (2016). Zhang et al. (2019) used
requirement-based criteria in his proposed ACO
technique to solve the prioritization problem. He
divided it into two ways TCP-ACA-1 in which he
calculated the distance between two test cases and
TCP-ACA-2 which is used to update the value of
pheromone continuously (Zhang et al., 2019).

This method was successfully used in solving
various optimization problems and the Test case
prioritization problem is one of the combinatorial
optimization problems where ACO showed
impressive results. As per the technique used by Gao
et al. (2015) during the test case prioritization
problem, there are two rules that must be followed
while using ACO methodology.

ACO algorithm works as follows as at the start
ants are placed on the initial Test case list from
where they randomly select the next node until all
the faults are identified. It updates the pheromone
value once each iteration is finished. The two most
important steps in this algorithm are given below
(Gao et al., 2015):

 Pheromone updating rule: Pheromone is a kind of

variable used in ACO which is representing the
Ants pheromone. Which they deposit on their path
during food search when the next ant comes in
contact with pheromone they know that they are
on right track and add more pheromone for the
next group and so on (Márquez et al., 2016).

This Algorithm updates the pheromone values

after each iteration by using this Eq. 10 (Gao et al.,
2015).

𝜏𝑖𝑑(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑑(𝑡) + ∆𝜏𝑖𝑑 (10)

where, 𝜌 is evaporation rate; 𝜏𝑖𝑑(𝑡 + 1) is updated
value; 𝜏𝑖𝑑(𝑡) is last value of pheromone; ∆𝜏𝑖𝑑 is
increse in pheromone.

 Test case selection rule: As per Ants' behaviors, the

movement of ants is irrelevant to all other ants.
Similarly, an ACO algorithm selecting the next node
is the most important step which uses pheromone
quantity and then decided which node to move. So,
the next test case selection is calculated using Eq.
11 (Gao et al., 2015).

𝑝𝑖𝑑
𝑘 (𝑡) =

[𝜏𝑖𝑑(𝑡)]
𝛼.[𝜂𝑖𝑑(𝑡)]

𝛽

∑𝑠𝜖𝐿𝑗+1
𝑘 [𝜏𝑖𝑑(𝑡)]

𝛼.[𝜂𝑖𝑑(𝑡)]
𝛽 (11)

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

111

where, 𝜂𝑖𝑑(𝑡) is visibility function; 𝐿𝑗+1
𝑘 is a list of

alternative test cases. Where α and β are the
parameters to regulates the influence of pheromone
and visibility respectively. Both ACOs techniques
used really small programs with a set of 8-10 test
cases having 10 faults only as shown in Table 2.

In TCP-ACA comparisons were made with particle
swarm optimization (PSO) algorithm, genetic
algorithm (GA), and random test methods which
showed better results. On the other hand, Gao-ACO
was only compared with random test case selection
none of the other comparison algorithms were
mentioned as shown in Table 3.

Following limitations were observed during the
study of this algorithm. The first one is the type of
construction used to validate the algorithm depends
upon the results obtained. In order to validate the
results, the APFDc matrix was used. Secondly, a new
technique was not compared with any of the state-
of-the-art methodologies and the third but most
important one is that the technique is tested with a
very small program with eight test cases having 10
faults only.

3.6. Modified ant colony optimization (m-ACO)

Solanki et al. (2015; 2016) proposed a modified
ant colony optimization technique (m-ACO). In this
algorithm when an ant finds food, it brings food back
home and goes again to collect and this process
repeats until all food sources are finished. Moreover,
if the path is short all ants follow the same path until
food finishes. This technique used the following test
criteria code coverage, fault detected, and execution
time. In order to achieve the maximum fault
coverage, the APFD metric was used proposed by
Elbaum et al. (2002). Algorithm proceeds as follows:

 Initialization of Ant variable
 Randomly search food source
 Calculate food fitness
 Calculate the probability of selection
 Calculate the reduction in pheromone

In order to validate m-ACO author used 3 small
case studies were used. 1) 10 test cases with 10
faults 2) 9 test cases with 5 faults 3) 5 test cases with
5 faults. All the test case was executed on a Perl
program as shown in Table 2. In m-ACO none of the
comparisons were made with any state-of-the-art
methodologies to verify the correctness of this
algorithm. Instead of that only APFD was calculated
with prioritized and un-prioritized test cases with
showed comparatively better results than un-
prioritized test cases as shown in Table 3.

This technique has the following limitations. First
is only 3 small case studies with a limited number of
test cases were used and it is highly recommended
that this methodology should be validated with real-
time and big data sets. By doing this we can get a real
picture of results. The second is external validity.
This approach is not compared with any of the state-

of-the-art methodologies. It would be good to
perform a comparison with some state-of-the-art
prioritization methodologies. The third is the type of
construction used to validate the algorithm depends
upon the results obtained. In order to validate the
results only the APFDc matrix was used, in which the
APFD value of prioritized and un-prioritized results
was compared.

3.7. ETS-based ACO algorithm for TCP

Epistasis-based Ant Colony Optimization
technique is Multiobjective search-based regression
Test Case Prioritization (MoTCP). This technique is a
Metaheuristics that is inspired by nature (movement
of ants to find food) (Gao et al., 2015). Study shows
that epistasis theory also improved the effectiveness
and efficiency in a single-objective GA (Deb et al.,
2000). The use of epistasis theory in the
multiobjective problem also showed promising
results. ETS-Based ACO Algorithm for TCP is given
below (Yuan et al., 2015).

Algorithm

Steps of ETS-Based ACO Algorithm for TCP.

 Setting of parameters of ACO
 Initialization of all the new sequences.
 Initialization of pheromone (weights of

transitions).
 New test case sequence creation based on ant

method equation 12.
 Test sequence evaluation using a fitness function.
 Ranking of test sequences as per NSGA-II method

(Deb et al., 2000).
 Comparisons and Updation of the test sequence.
 Updating pheromone.

𝑃𝑖𝑗
𝑘 = {

[𝜏𝑖𝑗]
𝛼
∏ [𝜂𝑖𝑗

𝑑]
𝜆𝑑𝛽2

𝑑=1

∑ 𝑙𝜖𝑁𝑡
𝑘[𝜏𝑡𝑙]

𝛼 ∏ [𝜂𝑡𝑙
𝑑]
𝜆𝑑𝛽2

𝑑−1

0

 (12)

where, 𝜏𝑖𝑗=pheromone (weight of the transitions);

𝑑=number of objectives; 𝜂𝑖𝑗=heuristic information of

an object; 𝛼=heuristic factor; 𝛽=relative weight of
heuristic value; 𝑁𝑖

𝑘=is the set of candidate test cases;
𝑘=ant.

In order to validate E-ACO author used the SIR
program for unit test and the V8 program for the
smoke test. The size of the V8 program is quite large
which is good but it’s still not that large enough for
big experiments as shown in Table 2.

E-ACO showed very impressive results as
compared with the above-explained ACO algorithms.
This new methodology was also compared with the
state-of-the-art algorithms NSGA-II for MoTCP and
ACO which shows the prominent results as shown in
Table 3. E-ACO showed very prominent results still it
has some limitations that must need to address to
make it a standard algorithm. The first one is
instrumentation accuracy, which could yield
different results. It would be better if we test this
using different software instead of using only gcov

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

112

(A GCC tool). Secondly, since the real-time program
was not used in testing, in compensation to this test
was run 10 times. It would be much better to use the
real-time big program to get accurate analysis
results. Third swarm sizes of different scales should
be used. So we could easily compare the efficiency of
ACO and E-ACO. The fourth and last one is the
parameters configuration used in E-ACO which is the
same used by NSGA-II. It would be rather good to
change the parameters to verify the conclusion.

3.8. Hybrid ACO

This approach is proposed by Ahmad et al. (2018)
which is the combination of two different
approaches.

Step-I: In the first section by using test factors
priorities are assigned to the test cases.

Step-II: Once we have priorities assigned to test
cases we apply ACO to calculate the optimal
sequence which has the lowest execution time but
the highest fault rate.

The approach seems interesting but the study
doesn’t show anything about testing or if any
comparisons were made with any state of art
techniques.

3.9. Local beam search algorithm (LBS) for TCP

Jiang and Chan (2015) proposed a novel Local
Beam Search Algorithm (LBS) which is an input-
based search technique. LBS technique uses
lightweight input as compared to other techniques
like code-coverage. In each iteration of this
algorithm width of the beam is kept constant that’s
the reason this approach is much more efficient than
the other. For example, the greedy algorithm doesn’t
select the new test cases from uncovered test cases
only directly increases cost and time (Elbaum et al.,
2002). This input-based LBS algorithm takes
randomly selected test case set as input, and
processes it, and generates the set prioritized set of
test cases.

This approach uses distance matric f to calculate
the distance between prioritized and un-prioritized
test cases (Gusfield, 1997). The steps of the
algorithm are given below (Jiang and Chan, 2015).

Algorithm
 Selection of candidate set which is not yet selected
 Calculation of distance matrix between the

candidate and already prioritized ones
 Test cases are sorted in descending order.
 Appending the top test case in the successor pool.
 Repeating the process until all the test case has

been prioritized.

LBS used 4 Software-artifact Infrastructure
Repository (SIR) programs for testing. Three of them
are UNIX-based programs (flex, grep, gzip, and sed)
as shown in Table 2. Comparisons were made in LBS
with state-of-the-art algorithms ART, Greedy, and
Genetic Algorithm (GA). LBS showed more

impressive results than GA and Greedy but less than
the Adaptive Random Test case (ART) as shown in
Table 3.

Results shown by LBS are very impressive but
this algorithm has some limitations. 1) Platform
used, during the testing of this approach only a C
program was used. In order to cross-validate the
finding other programming languages should be
considered. 2) Testing Suites, during the analysis of
this approach only branch-adequate test suites were
used. The use of different test case suites could
improve the results. 3) Use of distance metric, there
are a lot of other metrics available like Hamming
distance matric could also be tried to analyze results.
4) Since the LBS follows a randomized procedure so,
the author repeats the testing 50 to get better
results. It would be much more appropriate to use a
big population of the test case to avoid such issues.
50 study shows that search-based TCP techniques
don’t use fault rate detections. While this research
used APFD which make it difficult to access that
whether the results produced by this research are
consistent with previous studies or not.

3.10. Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) is a multi-
object TCP technique which prioritizes test case
based on changes in the code. PSO is an optimization
methodology that was first introduced by Eberhart
et al. (2001). Souza used the Binary Constrained PSO
approach to prioritize test cases using the following
three steps (Tyagi and Malhotra 2014; de Souza et
al., 2010):

 Removal of extra test cases.
 Selection of test cases with the highest coverage

but lowest execution time.
 Prioritizing test cases.

Hla et al. (2008) proposed an algorithm that
performed test case prioritization based on changes
in software sections by the PSO algorithm. This
algorithm has been used a lot in various functional
optimization problems because of its fast
convergence property. This algorithm uses multi-
objects to calculate fitness values using statement,
branch, function, and code coverage as shown in Eq.
13. Also, it uses the velocity and position of the test
cases for the next fitness evaluation which can be
calculated using Eqs. 14 and 15. PSO algorithm has
two parts (Hla et al., 2008).

Part-I: Tokenizer

 Take code as input
 Converts into token line by line
 Save into database

Part-II: Prioritizer

 Initialize priorities and fitness values
 Fitness value calculation using Eq. 13

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

113

 Position value calculation using Eq. 14, 15

𝐹(𝑓) = 𝐸(𝑓𝑠⋀ 𝑓𝑏⋀𝑓𝑝 ⋀𝑓𝑢) (13)

where, 𝑓𝑠 maximum statement coverage out of set of
statements {𝑠1, 𝑠2, … , 𝑠𝑛}= arg𝑚𝑎𝑥 𝑓𝑠(𝑢𝑖, 𝑇, 𝑆,𝑚); 𝑓𝑏
total branch coverage out of set of compound
conditions {𝑐1, 𝑐2, … , 𝑐𝑛}= arg𝑚𝑎𝑥 𝑓𝑏(𝑢𝑖, 𝑇, 𝐶,𝑚);
𝑓𝑝total function coverage out of set of procedures

{𝑝1, 𝑝2, … , 𝑝𝑛}= arg𝑚𝑎𝑥 𝑓𝑝 (𝑢𝑖, 𝑇, 𝑃,𝑚); 𝑓𝑢total code

coverage out of set of software units
{𝑢1, 𝑢2, … , 𝑢𝑛}= arg𝑚𝑎𝑥 𝑓𝑢(𝑢𝑖, 𝑇, 𝑈,𝑚).

𝑉𝑖𝑘+1 = 𝑐0. 𝑉𝑖𝑘 + 𝑐1. 𝑟𝑎𝑛𝑑. (𝑓𝑖𝑘 − 𝑥𝑖𝑘) + 𝑐2. 𝑟𝑎𝑛𝑑. (𝑓𝑔𝑘 −

𝑥𝑖𝑘) (14)

𝑋𝑖𝑘+1 = 𝑋𝑖𝑘 + 𝑉𝑖𝑘+1 (15)

where xi is the position vector and vi is rate of
change of position vector. c0, c1, and c2 are weight
factors.

PSO used 20 test cases from JUnit as shown in
Table 2. A JUnit test suite provides automatic test
case creation and execution as shown in Table 2.

Comparisons were made in PSO with the state-of-
the-art Greedy algorithm. PSO showed less run time
complexity as shown in Table 3. Following
limitations were observed during this study. 1) In
order to keep internal validity in mind. This
approach was tested using 20 test cases from JUnit
which is really less. 2) Second is external validity,
this new approach is only compared with the Greedy
algorithm. It is highly recommended to validate the
procedure using some real-time application and
make a comparison with some other state-of-the-art
techniques to get a better picture of results.

3.11. Weight hybrid TCP using PSO (WH-PSO)

Khatibsyarbini et al. (2017) proposed this
weight-hybrid string distance technique. The main
purpose of this technique was to get a higher APFD
rate and efficiency in execution. A hybrid string
distance was created using weight and distance
between test cases. String distance is of two types;
character-based and term-based. Two character-
based string metrics used in this study are
Manhattan Distance by Ledru et al. (2012) Eq. 16
and Levenshtein Distance by Jiang and Chan (2015)
Eq. 17.

∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 (16)

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{

 max

(𝑖, 𝑗)

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1)

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

 (17)

Two term-based string metrics used are Cosine
Similarity distance (Jiang and Chan, 2015) Eq. 18 and
Jaccard Coefficient distance (Cha, 2007) Eq. 19.

𝑆𝐶𝑜𝑠 =
∑ 𝑃𝑖𝑄𝑖
𝑑
𝑖=1

√∑ 𝑃𝑖
2𝑑

𝑖=1 √∑ 𝑄𝑖
2𝑑

𝑖=1

 (18)

𝑆𝐽𝑎𝑐 =
∑ 𝑃𝑖𝑄𝑖
𝑑
𝑖=1

∑ 𝑃𝑖
2𝑑

𝑖=1 + ∑ 𝑄𝑖
2𝑑

𝑖=1 − ∑ 𝑃𝑖𝑄𝑖
𝑑
𝑖=1

 (19)

Hybrid string distance is calculated by
multiplying the distance with the next test case
weight.

“Term frequency-inverse document frequency”
(TFIDF) shows the importance of a word in the
whole document.

𝑡𝑓𝑖𝑘 =
𝑓𝑖𝑘

∑ 𝑡𝑓𝑖𝑘
𝑡
𝑗=1

. log(𝑓𝑖𝑘) (20)

𝑖𝑑𝑓𝑘 = log
𝑁

𝑛𝑘
 (21)

The whole process is divided into three phases:

A. Information Extraction phase: In this phase test
cases and their inputs are extracted. The extracted
inputs are saved into a separate document which
will be used so, that they could be utilized in the next
phase. After that, the test cases from both programs
(original and version) are executed and a fault
matrix sheet is prepared to compare both results.
B. String Distance Calculation: The extracted in the
previous phase is used to calculate the string
distances using Eqs. 16 and 17. The weight of test
cases is also calculated using Eqs. 18 and 19 and the
results of both calculations are populated into the
test case distance matrix. Then hybrid string
distance is calculated. After the completion of
calculations, PSO is used to prioritize the distance
matrix.
C. Evaluation phase: In this phase, a matrix sheet is
created using results obtained in an earlier phase.
WH-PSO used 3 Software-artifact Infrastructure
Repository (SIR) programs for testing. Three of them
are SIEMENs benchmark programs (tcas, jtcas, and
cs-tcas) as shown in Table 2. This new approach was
not compared with any state-of-the-art algorithms
only comparison was made among character-based,
term-based, weight-hybrid character-based, and
weight-hybrid term-based results as shown in Table
3. Results shown by weight hybrid PSO are very
impressive but it would be really good to test this
approach with other states of the art methodologies.

3.12. Greedy particle swarm optimization (G-
PSO)

Allawi et al. (2020) proposed this novel hybrid
greedy and PSO algorithm (GPSO) which is the
combination of both greedy and PSO algorithms.

In this approach, the author creates the fitness
function using Particle Swarm Optimization (PSO)
and then applies the Greedy approach to find the
partial best and makes them as global best and select
the optimal solution from there. After this step new
algorithm moves back to the PSO approach where it
finds the velocity of each particle is calculated using
Eq. 22 and the location of the next partial using Eq.
23. This process repeats until the termination
condition occurs.

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

114

𝑣𝑖(𝑡) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑝𝑏𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔𝑏𝑖(𝑡) −
𝑥𝑖(𝑡)] (22)
𝑥𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡) (23)

Algorithm proceeds as follows (Allawi et al.,
2020):

 Random Initialization of particles.
 Calculation of fitness function using PSO.
 Greedy part:

o Determines and selects the particle with the partial

Best position value to be placed as the global Best
solution.

o Selects the optimal solution from the available
candidate solutions at a particular point.

 Each particle velocity can be calculated using Eq.
22.

 According to Eq. 23 move to the next position.
 The algorithm will be stopped if the termination

criteria are satisfied; otherwise, return to Step 2.

Six different Java card applications (JCS Applets)

were used as data set to test the algorithm which
includes a Network connection tracker, HelloWorld,
PKI, RSACrypto, Calculator, OATH, Passport, CoolKey
as shown in Table 2.

The comparison was done between the GPSO
algorithm and standard genetic algorithm (GA),
which showed that GPSO exceeds the GA in various
ways. GPSO takes a fewer number of iterations and
time but gives us high coverage percentage as shown
in Table 3.

Following are the limitations found during this
study. 1) Real-time application was used to test this
approach but that includes small programs with few
hundreds of branched was used. In a real-time
program, there are thousands of branches of code
that could give a different point of view about this
approach. 2) Discussion about fault matrix is missing
in the study, whether it’s created or not. 3) Only one
comparison was done with GA, it would be better to
test this new approach with other state-of-the-art
methodologies.

3.13. Greedy algorithm (GA)

3.13.1. Additional greedy algorithm (AGA)

Yoo and Harman (2007) proposed the Additional
Greedy Algorithm. This technique uses NSGA-II and
its variant which is called vNSGA-II algorithms.

The vNSGA-II has two main modifications as
compared to NSGA-II which are as follows:

 vNSGA-II uses a separate group of sub-population

which is good because different objectives can be
assigned to each sub-group.

 vNSGA-II keeps the record of the best sub-
population.

The additional greedy algorithm only supports up
to two objects. In order to work with more than two

objects, we have to combine the objects to make one
by using the weight sum approach. That is the reason
AGA doesn’t show good results for multi-object TCP.

AGA used 4 Software-artifact Infrastructure
Repository (SIR) programs SIEMENs based
programs (printtokens, printtokens2, schedule,
schedule2), and 1 European Space Agency (ESA)
program (space) as shown in Table 2. Comparisons
were made in this study among two genetic
algorithms, NSGA-II, and its variation. It has been
seen that the greedy algorithm doesn’t work well for
multi-objective TCP it is only good for single objects
as shown in Table 3.

Following limitations were found during this
study.1) Accuracy of tools used to find the coverage
information. The author used professional software
in order to minimize the risk but it would be highly
recommended to try to use some other software to
just see the variety of results. 2) Most of the testing
data used in this study is from the SIR repository.
Only one program was used from ESA. 3) Results of
this approach also depend upon the type of
algorithm used for multi-object prioritization. The
author tried to use so far best algorithm NSGA-II but
it is highly recommended to test the approach with
some other multi-object test case prioritization
techniques like firefly etc. to test the variation in
results.

3.13.2. Enhanced additional greedy algorithm
(EAGA)

This technique is proposed by Hsu et al. (2014),
EAGA is a modified form of AGA. In this technique
control flow is used over the data flow criteria.
Experimental analysis shows that the EAGA
technique performed well in “fault severity/unit
cost”. EGA used 8 Software-artifact Infrastructure
Repository (SIR) programs SIEMENs based
programs (Tcas, Totinfo, Replace, Schedule,
Schedule2, Printtokens, Printtokens2, and Space) as
shown in Table 2. Comparisons were made in this
study with AGA which shows that EAGA with GA is
far much better than AGA for large programs only
but when we use small programs there is not a
difference between AGA and EAGA as shown in Table
3.

Following limitations were found during this
study:

1) Same as AGA, EAGA is not fit for multi-object TCP.
2) Results are not compared and checked with any

other state-of-the-art techniques to get clear
pictures of results.

Graphite TCP: One of the most popular

prioritization techniques is greedy. The greedy
technique used code coverage criteria. In this
technique test cases with higher code coverage are
considered better than the lower coverage (Do et al.,
2008; 2010). Azizi and Do (2018) proposed a novel
graph-based greedy technique that utilizes a graph
traversal algorithm to prioritized test cases. This

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

115

algorithm consists of two parts, graph generator, and
graph traversal.

𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑐𝑜𝑑𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 (24)

Proposed two algorithms:

Part-I: Graph Generation:

1) Nodes creation.
2) Node value calculation using Eq. 24.
3) Edge value calculation using Jaccard Distance Eq.

19.

Part-II: Traversal Procedure:

1) Select node with maximum value as a start point.
2) Calculate the highest gain using the traversal

algorithm.

3) Repeat this process until all connection edges will
eliminate.

In order to test this approach, the author used 4

open-source programs, among them 2 are obtained
from SIR (jmeter, jtopas) and two of them are none
SIR (nopCommerce, Umbraco-CMS) as shown in
Table 2. Experiment results showed indicated
approach is effective and efficient as compared with
the unprioritized approach only as shown in Table 3.

There are few findings of this new methodology.
1) This new technique is not compared with any
state-of-the-art TCP methodology to get a clear
picture. 2) The choice of the distance function. The
most popular method was used for it but it could
give different results with a different function. It is
highly recommended to test the new approach using
other distance functions as well so, we could get a
clear picture of this algorithm.

Table 2: Datasets used by each algorithm

S.No Algorithms Repository Datasets

1 Firefly Algorithm SIR
UNIX benchmarks Programs (flex, grep, gzip)

SIEMENs benchmarks Programs (tcas, cs-tcas, j-cas)
2 Optimal FA Non-SIR 4 small programs with set of 16-48 test cases.
3 Hybrid FA SIR UNIX Benchmarks Programs (flex, grep, gzip)

4
Hypervolume Genetic

Algorithm (HGA)
SIR UNIX Benchmarks Programs (bash, flex, grep, gzip, sed)

5 ACO Not SIR A small program with set of 8-10 test cases with 10 faults only.
6 m-ACO Not SIR Perl Program based 3 case study used to test

7 ETS based ACO SIR
3 UNIX Benchmarks Programs

(flex, space, bash)
Open-source JavaScript engine V8

8 Hybrid ACO None
9 LBS SIR 4 UNIX Benchmarks Programs (flex, grep, gzip, sed)

10 PSO Non-SIR JUnit 20-test case
11 WH-PSO SIR 3 SIEMENs Benchmarks Programs (tcas, jtcas, and cstcas)

12 Greedy PSO Non-SIR
Six Java Card Application Programs (Network connection tracker, HelloWorld, PKI,

RSACrypto, Calculator, OATH, Passport, CoolKey)

13 Additional Greedy SIR
4 SIEMENs Benchmarks Programs (printtokens, printtokens2, schedule, schedule2)

1 European Space Agency (space)

14 Enhanced Greedy SIR
8 SIEMENs Benchmarks Programs (Tcas, Totinfo, Replace, Schedule, Schedule2,

Printtokens, Printtokens2, and Space)

15 graphite greedy
SIR,

NON-SIR
4 UNIX Benchmarks Programs (jmeter, jtopas)

nopCommerce, Umbraco-CMS

4. Research methodology

This study was divided into the following stages:

1. Research question.
2. Repositories Selection and Searching Strategies

Search methodology.
3. Inclusion-Exclusion Criteria for Selection.

4.1. Research questions

Following are the research questions of this
paper:

Q1: How TCP is important in Software Testing?
Q2: What are the different classifications of test case
prioritization techniques?

Q3: What are single object and multi-object TCP
techniques?
Q4: What are the latest studies in TCP?
Q5: Which metrics are commonly used in TCP?
Q6: Which prioritization methods are used often and
what are their proportions?

4.2. Repositories selection and searching
strategies

In this study, we sued keywords like “Test Case
Prioritization”, “Test Case Selection”, “Test Case
Optimization” to search the well-known repositories
like Google Scholar, IEEE Xplore, Elsevier, ACM
Digital Library, and Springer as shown in Figs. 2, 3, 4,
5, 6, 7, and 8.

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

116

Table 3: Algorithms comparisons
S.No Algorithms Compared With Results

1
Firefly

Algorithm
PSO, LBS, Greedy, GA FF Showed better Results but LBS was almost close to FF.

2 Optimal FA ACO FF Algorithm Showed better results.
3 Hybrid FA FA, PSO, and Greedy HGA showed prominent results over FA and PSO

4
Hypervolume

GA
Additional Greedy Algo, GA(AUC metric), NSGA-II,

GDE3, MOEA/D-DE
HGA is more cost-effective and efficient in dealing with more

criteria

5 ACO PSO and Random Test Case Selection

In TCP-ACA comparisons were made with particle swarm
optimization algorithm, genetic algorithm, and random test

methods which showed better results.
On the other hand, Gao-ACO was only compared with random

test case selection non-of the other comparison algorithms
were mentioned.

6 m-ACO ACO
Prioritized with m-ACO and un-prioritized showed better

results.

7 ETS-ACO
Original ACO for MoTCP

NSGA-II algorithm for MoTCP
E-ACO algorithm has significant improvement effectiveness
and the efficiency to the state-of-the-art NSGA-II algorithm.

8 Hybrid ACO ACO better results as compared to ACO

9 LBS
Genetic, Greedy(Total and Additional), Optimal,

Hill Climbing and ART
LBS showed more efficient results than GA and Greedy but

less than ART
10 PSO Greedy Algorithm PSO has time complexity less than Greedy Algorithm

11 WH-PSO
Comparison was made among character-based,

term-based, weight-hybrid character-based, and
weight-hybrid term-based

Hybrid PSO showed impressive results

12 Greedy PSO Genetic Algorithm
GPSO outperform the GA in terms of the average number of

iterations, execution time, and coverage percentage

13
Additional

Greedy
NSGA-II Greedy algorithm is not good for multi objective TCP

14
Enhanced

Greedy
AGA

EAGA showed better results as compared to AGA but only for
a single objective.

15
Graphite
Greedy

None High Average fault detection results

Fig. 2: Search results of google scholar (TCP, TCS, TCO) Fig. 3: Total search results of google scholar

Fig. 4: Search results of IEEE (TCP, TCS, TCO) Fig. 5: Total search results of IEEE

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

117

Fig. 6: Search results of Springer (TCP, TCS, TCO) Fig. 7: Total search results of Springer

Fig. 8: Total search results of Scholar, IEEE, Springer

5. Results

In this section each research questions were
answered:

Q1: How TCP is important in Software Testing?
In Regression Testing (RT), the TCP is the most
difficult phase of the RT that allows testers to risk
management, test planning, cost-value analysis of
the testing phase. Different approaches are used to
prioritized test cases for example time, cost, effort,
code coverage, and fault coverage which increase RT
performance. By using these techniques test cases
with the highest priority are selected for RT suites
that give us the highest rate of fault detection.
Q2. What are different classifications of test case
prioritization techniques?
Fig. 2, shows the detailed classification of the test
case prioritization techniques.

Q3. What are single object and multi-object TCP
techniques?
Table 4 shows which techniques are multi-object
TCP and single-object TCP. This table also shows
which metrics were used to validate the algorithm.
Q4. What are the latest studies in TCP?
Table 5 shows the latest studies in Test Case
Prioritization techniques.
Q5. Which metrics are commonly used for TCP?
About 70% of the multi-object test case
prioritization techniques used the Average
Percentage Fault Detection (APFD) metric as shown
in Table 4.
Q6. Which prioritization methods are used often and
what are their proportions?

Table 6, shows the percentage of each algorithm
from different repositories.

Table 4: Metrics used in different algorithms
Techniques Algorithms Metrics Used

Multi-Object

Optimal Firefly Algorithm

Firefly Algorithm APFD
Hybrid FA APFD

Hypervolume GA APFD
ACO APFD

m-ACO APFD
ETS based ACO APSC, EET

Hybrid ACO

LBS APFD
PSO

WH-PSO APFD

Greedy PSO

Single Object
Additional Greedy

Enhanced Greedy

Graphite greedy

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

118

Table 5: Latest test case prioritization techniques
S.No Ref ID Algorithm Year Repository

1 Shah et al. Optimal Firefly Algorithm 2016 Elsevier
2 Khatibsyarbini et al. Firefly Algorithm 2019 IEEE
3 Su et al. Hybrid Firefly Algorithm 2020 ICCEA
4 Di Nucci et al. Hypervolume GA 2018 IEEE
5 Zhang et al. Ant Colony Optimization 2019 IEEE
6 Solanki et al. Modified ACO 2016 Springer
7 Bian et al. ETS Based ACO 2017 IEEE
8 Ahmad et al. Hybrid ACO 2018 Elsevier
9 Jiang and Chan LBS 2015

10 Tyagi and Malhotra PSO 2014 ICSPCT
11 Khatibsyarbini et al. Hybrid PSO 2017 JATIT
12 Allawi et al. G-PSO 2020 Springer
13 Yoo and Harman Additional Greedy Algorithm 2007 ACM
14 Hsu et al. Severity-weighted Greedy Algorithm 2014 IEEE
15 Azizi and Do Graphite Greedy Algorithm 2018 IEEE

Table 6: Algorithm wise TCP percentage

S.No. Algorithm Google Scholar IEEE Springer Total %
1 Firefly 15800 30 867 16697 4.5
2 GA 238000 1105 21076 260181 70.5
3 ACO 16900 111 1998 19009 5.1
4 LBS 19100 20 635 19755 5.3
5 PSO 16700 556 6396 23652 6.4
6 Greedy 16800 193 12468 29461 7.9

Total 323300 2015 43440 368755

Table 7 shows the inclusions and exclusions

criteria of this study.

Table 7: Inclusions and exclusions criteria of this study

Inclusion criteria
Exclusion
Criteria

(Regression Testing and/or Test case) and
(Prioritization or Selection) and "Name of
Algorithm" and (Journals or Conference

Paper) and (IEEE or Springer or Elsevier)

Non-Software
Testing and/or

Non-English
paper

5.1. State of the art challenges

5.1.1. Measurement

 Effectiveness: Most of the TCP techniques are
validated in terms of their effectiveness by using
APFD metrics. However, APFD is not quite suitable
and has quite constraints. For example, in APFD
metrics all test cases and faults have the same cost
(Askarunisa et al., 2010). On the other hand, APFDc
works well because it allows variable test cases
and fault costs. But it only allows two parameters.
It is recommended to uses such metrics which
allow multiple parameters. There is another metric
that could be utilized like Average Percentage
Statement Coverage (APSC), Average Percentage
Branch Coverage (APBC), Average Percentage Loop
Coverage (APLC), and Average Percentage
Condition Coverage (APCC) (Li et al., 2007).

 Efficiency: Efficiency is also an important issue and
there is no such proper matrix use to measure the
efficiency of a technique. So far only things
considered are actual prioritization time and test-
case execution time. It is not enough to consider
these two parameters because most techniques
require more information e.g., code coverage, etc.
which may add more cost. Matrix-like ANOVA and
ANCOVA (Nayak et al., 2019) and Average
Percentage of Combinatorial Coverage (APCC)
which considers combination weights and test

costs (Wang et al., 2011). It is highly recommended
to keep these things in mind before start
prioritization so we could get accurate cost and
computation time.

5.1.2. Data utilization

Study shows that effectiveness and efficiency of a
logarithm depend upon various factors for example
programming language and its framework, coverage,
types of faults, etc. (Hao et al., 2016). Other than
these factors the most important thing that could
affect the effectiveness and efficiency of an algorithm
is as follows:

 Size of data set: Most of the above describe studies

are only using a small set of SIR programs like
bash, flex, grep, gzip, sed, etc. and some of them
even used very small programs having 8-10 test
cases (Khatibsyarbini et al., 2019; 2017; Su et al.,
2020; Di Nucci et al., 2018; Jiang and Chan, 2015;
Yoo and Harman, 2007).

 Incomplete data: Second most important thing is
input data used in the algorithm. For example, the
results of the APFD matrix depend upon the
distance and weight of test cases which depends
upon input given to the system (Khatibsyarbini et
al., 2019). Test cases have a lot of other data
available in them. But it is very difficult, time-
consuming, and expensive to utilize all the
available data. The best example is system coding.
The extraction and utilization of complete data
could be a big challenge in the test case
prioritization techniques which could give us
different results.

 Parameter Tuning: The tuning of parameters is
could also affect the effectiveness and efficiency of
an approach. For example, in few studies,
parameter values were not changed and kept as it

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

119

is as in the previous work (Li et al., 2007). Tuning
to that parameter could influence the overall
results. Lu studies the influence of change in code
or its parameter. Study shows that change in code
and parameter could influence the effectiveness an
algorithm (Lu et al., 2016).

5.1.3. Execution time

The study shows that most of the techniques are
tested using the SIR program which is a small set of
programs. These programs have test cases whose
execution time is very low. It would be worth testing
the above-given prioritization techniques on a test
case where execution time is high. But testing of high
execution time test cases could increase the cost. It
would be better to consider the individual cost of
test cases instead of the total cost.

6. Conclusion and future work

In this paper, an empirical survey has been
conducted on Test case prioritization techniques. In
this study, we review 40 TCP papers published in
journals and conferences with a systematic process.
The main objective of this study is to explore and
determine which approaches have been studied in
detail and which of them are left behind and where is
more chance of improvement. We divided this study
into the following stages. In Stage-I we created six
research questions. Stage-II we selected repositories
from where we are going to get our literature. Stage-
III we created a search methodology in which we
search the most recent papers on state-of-the-art
techniques. Stage-IV we setup inclusion and
exclusion criteria which we utilized to search our
data as shown above. The following suggestion was
provided in this study:

 Latest public data set utilization: Almost 60% of

the papers selected in this study are using a public
data set which is good but data is being updated
regularly which is not satisfactory. By the
development of different programming languages
and programming techniques updated code must
be utilized for testing. It looks like becoming a
trend of using SIR data instead of actual data or
updated public datasets. Although there are
challenges of getting actual data set and re-testing
by other researchers.

 Consideration of multi-object TCP approaches:
Study shows that 35% of the approaches are well-
defined multi-object and 20% of them are purely
single object TCP techniques and the rest of them
are not properly stated as single or multi objects. It
would be highly recommended to create a multi-
object model-based approach that could set
standards.

 Consideration of cost criteria: Survey showed
that that most of the studies focus on code base
techniques and less focus is given to cost criteria.
Some studies used cost criteria as a total cost of
execution of test cases. It would be better to

consider the individual cost of test cases instead of
the total cost.

 State of the Art Techniques Comparison: Study
showed that 46% of the techniques have only
performed a comparison with the well-defined
state-of-the-art methodologies. 26% of the
approaches have not compared any state-of-the-art
technique. It would be highly recommended to set
up such models which accept the studies having
compared with the state-of-the-art techniques.
Also, it is good to conduct more studies for
comparison of TCP techniques.

 Survey study for Multi-Object TCP: Study
showed that none of the review/survey studies
were conducted on multi-object TCP techniques. It
would be highly recommended to separate
publishing the review study of multi-object TCP
techniques.

 Utilization of real-time dataset: Study showed
that none of the approaches has been tested using
any industrial or real-time dataset. It would be
highly recommended to validate the test case
prioritization techniques using some big industrial
or real-time data set to get a clear picture of the
new approach. However, only 10% of the studies
used non-SIR data set but not industrial data set.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Ahmad SF, Singh DK, and Suman P (2018). Prioritization for
regression testing using ant colony optimization based on test
factors. In: Singh R, Choudhury S, and Gehlot A (Eds.),
Intelligent communication, control and devices: 1353-1360.
Springer, Singapore, Singapore.
https://doi.org/10.1007/978-981-10-5903-2_142

Allawi HM, Al Manaseer W, and Al Shraideh M (2020). A greedy
particle swarm optimization (GPSO) algorithm for testing
real-world smart card applications. International Journal on
Software Tools for Technology Transfer, 22(2): 183-194.
https://doi.org/10.1007/s10009-018-00506-y

Askarunisa MA, Shanmugapriya ML, and Ramaraj DN (2010). Cost
and coverage metrics for measuring the effectiveness of test
case prioritization techniques. INFOCOMP Journal of
Computer Science, 9(1): 43-52.

Azizi M and Do H (2018). Graphite: A greedy graph-based
technique for regression test case prioritization. In the IEEE
International Symposium on Software Reliability Engineering
Workshops, IEEE, Memphis, USA: 245-251.
https://doi.org/10.1109/ISSREW.2018.00014
PMid:30045707 PMCid:PMC6060527

Bian Y, Li Z, Zhao R, and Gong D (2017). Epistasis based ACO for
regression test case prioritization. IEEE Transactions on
Emerging Topics in Computational Intelligence, 1(3): 213-
223. https://doi.org/10.1109/TETCI.2017.2699228

Cha SH (2007). Comprehensive survey on distance/similarity
measures between probability density functions.
International Journal of Mathematical Models and Methods in
Applied Sciences, 1(4): 300-307.

https://doi.org/10.1007/978-981-10-5903-2_142
https://doi.org/10.1007/s10009-018-00506-y
https://doi.org/10.1109/ISSREW.2018.00014
https://doi.org/10.1109/TETCI.2017.2699228

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

120

de Souza LS, Prudêncio RBC, and de Almeida Barros F (2010). A
constrained particle swarm optimization approach for test
case selection. In the 22nd International Conference on
Software Engineering and Knowledge Engineering, Redwood
City, USA: 259-264.

Deb K, Agrawal S, Pratap A, and Meyarivan T (2000). A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. In the International Conference on
Parallel Problem Solving from Nature, Springer, Paris, France:
849-858. https://doi.org/10.1007/3-540-45356-3_83

Di Nucci D, Panichella A, Zaidman A, and De Lucia A (2015).
Hypervolume-based search for test case prioritization. In:
Barros M and Labiche Y (Eds.), International symposium on
search based software engineering: 157-172. Springer, Cham,
Switzerland. https://doi.org/10.1007/978-3-319-22183-0_11

Di Nucci D, Panichella A, Zaidman A, and De Lucia A (2018). A test
case prioritization genetic algorithm guided by the
hypervolume indicator. IEEE Transactions on Software
Engineering, 46(6): 674-696.
https://doi.org/10.1109/TSE.2018.2868082

Do H, Mirarab S, Tahvildari L, and Rothermel G (2008). An
empirical study of the effect of time constraints on the cost-
benefits of regression testing. In the 16th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, Association for Computing Machinery, Atlanta,
Georgia: 71-82.
https://doi.org/10.1145/1453101.1453113 PMid:17983459

Do H, Mirarab S, Tahvildari L, and Rothermel G (2010). The effects
of time constraints on test case prioritization: A series of
controlled experiments. IEEE Transactions on Software
Engineering, 36(5): 593-617.
https://doi.org/10.1109/TSE.2010.58

Eberhart R, Shi Y, and Kennedy J (2001). Swarm Intelligence.
Morgan Kaufmann Publisher, Burlington, USA.

Elbaum S, Malishevsky AG, and Rothermel G (2002). Test case
prioritization: A family of empirical studies. IEEE Transactions
on Software Engineering, 28(2): 159-182.
https://doi.org/10.1109/32.988497

Gao D, Guo X, and Zhao L (2015). Test case prioritization for
regression testing based on ant colony optimization. In the 6th
IEEE International Conference on Software Engineering and
Service Science, IEEE, Beijing, China: 275-279.
https://doi.org/10.1109/ICSESS.2015.7339054
PMCid:PMC4411200

Gusfield D (1997). Algorithms on strings, trees, and sequences:
Computer science and computational biology. Cambridge
University Press, Cambridge, UK.
https://doi.org/10.1017/CBO9780511574931

Hao D, Zhang L, and Mei H (2016). Test-case prioritization:
Achievements and challenges. Frontiers of Computer Science,
10(5): 769-777. https://doi.org/10.1007/s11704-016-6112-3

Hashim NL and Dawood YS (2018). Test case minimization
applying firefly algorithm. International Journal on Advanced
Science, Engineering and Information Technology, 8(4-2):
1777-1783. https://doi.org/10.18517/ijaseit.8.4-2.6820

Hla KHS, Choi Y, and Park JS (2008). Applying particle swarm
optimization to prioritizing test cases for embedded real time
software retesting. In the IEEE 8th International Conference on
Computer and Information Technology Workshops, IEEE,
Sydney, QLD, Australia: 527-532.
https://doi.org/10.1109/CIT.2008.Workshops.104

Hsu YC, Peng KL, and Huang CY (2014). A study of applying
severity-weighted greedy algorithm to software test case
prioritization during testing. In the IEEE International
Conference on Industrial Engineering and Engineering
Management, IEEE, Bandar Sunway, Malaysia: 1086-1090.
https://doi.org/10.1109/IEEM.2014.7058806

Jiang B and Chan WK (2015). Input-based adaptive randomized
test case prioritization: A local beam search approach. Journal

of Systems and Software, 105: 91-106.
https://doi.org/10.1016/j.jss.2015.03.066

Khatibsyarbini M, Isa MA, and Abang Jawawi DN (2017). A hybrid
weight-based and string distances using particle swarm
optimization for prioritizing test cases. Journal of Theoretical
and Applied Information Technology, 95: 2723-2732.

Khatibsyarbini M, Isa MA, Jawawi DN, Hamed HNA, and Suffian
MDM (2019). Test case prioritization using firefly algorithm
for software testing. IEEE Access, 7: 132360-132373.
https://doi.org/10.1109/ACCESS.2019.2940620

Ledru Y, Petrenko A, Boroday S, and Mandran N (2012).
Prioritizing test cases with string distances. Automated
Software Engineering, 19(1): 65-95.
https://doi.org/10.1007/s10515-011-0093-0

Li Z, Harman M, and Hierons RM (2007). Search algorithms for
regression test case prioritization. IEEE Transactions on
Software Engineering, 33(4): 225-237.
https://doi.org/10.1109/TSE.2007.38

Lu Y, Lou Y, Cheng S, Zhang L, Hao D, Zhou Y, and Zhang L (2016).
How does regression test prioritization perform in real-world
software evolution? In the 38th International Conference on
Software Engineering, Association for Computing Machinery,
Austin, Texas: 535-546.
https://doi.org/10.1145/2884781.2884874

Márquez FPG, Papaelias M, and Zaman N (2016). Non-destructive
testing. BoD–Books on Demand, Norderstedt, Germany.

Nayak S, Kumar C, Tripathi S, and Jena L (2019). Efficiency
enhancement in regression test case prioritization technique.
International Journal of Innovative Technology and Exploring
Engineering, 8(12): 5445-5451.
https://doi.org/10.35940/ijitee.K1595.1081219

Panthi V and Mohapatra DP (2015). Generating prioritized test
sequences using firefly optimization technique. In: Jain L,
Behera H, Mandal J, and Mohapatra D (Eds.), Computational
intelligence in data mining: 627-635. Volume 2, Springer, New
Delhi, India. https://doi.org/10.1007/978-81-322-2208-8_57

Shah SAA, Bukhari SSA, Humayun M, Jhanjhi NZ, and Abbas SF
(2019). Test case generation using unified modeling language.
In the International Conference on Computer and Information
Sciences, IEEE, Sakaka, Saudi Arabia: 1-6.
https://doi.org/10.1109/ICCISci.2019.8716480

Shah SAA, Shahzad RK, Bukhari SSA, and Humayun M (2016).
Automated test case generation using UML class and sequence
diagram. Current Journal of Applied Science and Technology,
15(3): 1-12. https://doi.org/10.9734/BJAST/2016/24860

Solanki K, Singh Y, and Dalal S (2015). Test case prioritization: an
approach based on modified ant colony optimization (m-
ACO). In the International Conference on Computer,
Communication and Control, IEEE, Indore, India: 1-6.
https://doi.org/10.1109/IC4.2015.7375627
PMid:27512541 PMCid:PMC4959403

Solanki K, Singh Y, Dalal S, and Srivastava PR (2016). Test case
prioritization: An approach based on modified ant colony
optimization. In: Shetty N, Prasad N, and Nalini N (Eds.),
Emerging research in computing, information, communication
and applications: 213-223. Springer, Singapore, Singapore.
https://doi.org/10.1007/978-981-10-0287-8_19

Su W, Li Z, Wang Z, and Yang D (2020). A meta-heuristic test case
prioritization method based on hybrid model. In the
International Conference on Computer Engineering and
Application, IEEE, Guangzhou, China: 430-435.
https://doi.org/10.1109/ICCEA50009.2020.00099

Tyagi M and Malhotra S (2014). Test case prioritization using
multi objective particle swarm optimizer. In the International
Conference on Signal Propagation and Computer Technology,
IEEE, Ajmer, India: 390-395.
https://doi.org/10.1109/ICSPCT.2014.6884931

Wang Z, Chen L, Xu B, and Huang Y (2011). Cost-cognizant
combinatorial test case prioritization. International Journal of

https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/978-3-319-22183-0_11
https://doi.org/10.1109/TSE.2018.2868082
https://doi.org/10.1145/1453101.1453113
https://doi.org/10.1109/TSE.2010.58
https://doi.org/10.1109/32.988497
https://doi.org/10.1109/ICSESS.2015.7339054
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1007/s11704-016-6112-3
https://doi.org/10.18517/ijaseit.8.4-2.6820
https://doi.org/10.1109/CIT.2008.Workshops.104
https://doi.org/10.1109/IEEM.2014.7058806
https://doi.org/10.1016/j.jss.2015.03.066
https://doi.org/10.1109/ACCESS.2019.2940620
https://doi.org/10.1007/s10515-011-0093-0
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1145/2884781.2884874
https://doi.org/10.35940/ijitee.K1595.1081219
https://doi.org/10.1007/978-81-322-2208-8_57
https://doi.org/10.1109/ICCISci.2019.8716480
https://doi.org/10.9734/BJAST/2016/24860
https://doi.org/10.1109/IC4.2015.7375627
https://doi.org/10.1007/978-981-10-0287-8_19
https://doi.org/10.1109/ICCEA50009.2020.00099
https://doi.org/10.1109/ICSPCT.2014.6884931

Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121

121

Software Engineering and Knowledge Engineering, 21(06):
829-854. https://doi.org/10.1142/S0218194011005499

Yoo S and Harman M (2007). Pareto efficient multi-objective test
case selection. In the International Symposium on Software
Testing and Analysis, Association for Computing Machinery,
London, UK: 140-150.
https://doi.org/10.1145/1273463.1273483 PMid:20799183

Yuan F, Bian Y, Li Z, and Zhao R (2015). Epistatic genetic algorithm
for test case prioritization. In: Barros M and Labiche Y (Eds.),
International symposium on search based software

engineering: 109-124. Springer, Cham, Switzerland.
https://doi.org/10.1007/978-3-319-22183-0_8

Zhang W, Qi Y, Zhang X, Wei B, Zhang M, and Dou Z (2019). On test
case prioritization using ant colony optimization algorithm. In
the IEEE 21st International Conference on High Performance
Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference
on Data Science and Systems, IEEE, Zhangjiajie, China: 2767-
2773.
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00388
PMCid:PMC6469475

https://doi.org/10.1142/S0218194011005499
https://doi.org/10.1145/1273463.1273483
https://doi.org/10.1007/978-3-319-22183-0_8
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00388

	Test case prioritization techniques in software regression testing: An overview
	1. Introduction
	2. Literature review
	3. Firefly algorithm
	3.1. Optimal firefly algorithm
	3.2. Firefly algorithm
	3.3. Hybrid firefly algorithm (HFA)
	3.4. Hypervolume genetic algorithm (HGA)
	3.5. Ant colony optimization (ACO)
	3.6. Modified ant colony optimization (m-ACO)
	3.7. ETS-based ACO algorithm for TCP
	3.8. Hybrid ACO
	3.9. Local beam search algorithm (LBS) for TCP
	3.10. Particle swarm optimization (PSO)
	3.11. Weight hybrid TCP using PSO (WH-PSO)
	3.12. Greedy particle swarm optimization (G-PSO)
	3.13. Greedy algorithm (GA)
	3.13.1. Additional greedy algorithm (AGA)
	3.13.2. Enhanced additional greedy algorithm (EAGA)

	4. Research methodology
	4.1. Research questions
	4.2. Repositories selection and searching strategies

	5. Results
	5.1. State of the art challenges
	5.1.1. Measurement
	5.1.2. Data utilization
	5.1.3. Execution time

	6. Conclusion and future work
	Compliance with ethical standards
	Conflict of interest
	References

