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The importance of Software Testing (ST) in the Software Development Life 
Cycle (SDLC) can never be ignored. Smarter ST can give us more relievable 
and defect-free products which are as per our stakeholder demand. That is 
the reason it takes more time and resources. But unfortunately, the limited 
time has left when the product reached the testing stage, especially in 
Regression Testing (RT). That is the reason proper planning is required in 
each SDLC phase, especially in the testing phase. Regression testing is an 
essential part of the testing phase. It guarantees defect-free software after 
any changes made to the requirement or software product. Because of the 
limited time available, it is impossible to execute all the test cases every time 
any changes made in the code there comes the role of the test case 
prioritization. TCP chooses only test cases that are most important to 
execute. The priority of test cases could be based on code, requirement, 
defects, execution time, cost, etc. After TCP the developer and tester have a 
minimum test case suite with better coverage in all respects. TCP definitely 
improves the quality of software and brings the best product within a limited 
time and cost. In this paper, we have provided a detailed survey of the TCP 
methodologies. This survey includes 2010 to the most recent studies. In this 
study, we have select carefully the most recent and relevant study of our 
topic.  
 

Keywords: 
Software development life cycle 
Regression testing 
Software testing 
Test case prioritization 

© 2021 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction 

*Software Testing (ST) plays an important role in 
the SDLC as it guarantees defect-free software and 
customer satisfaction. Despite the complexity and 
importance of this phase when it comes to testing a 
small amount of time has been left behind which 
makes this phase costlier. ST techniques involve the 
execution of software to find if all the components 
are as per customer need. If any issue is found, it will 
be considered a defect or bug.  

There are lots of stages of ST and lots of ST 
techniques are used. Among all the ST techniques the 
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most important one is Regression Testing (RT). The 
importance of RT could never be ignored as this 
verifies that newly updated code impacting 
previously build functionality or not? It doesn’t 
matter how many times we make changes in the 
code we have to run RT to make sure software 
stability against the code change. 

Because of the limited time given for RT, it 
becomes the difficult phase in the sense of how and 
which test case to be selected for RT suits. Different 
methodologies have been used to make the best test 
suite for regression testing which is called Test Case 
Prioritization (TCP) or Test Case Selection (TCS). 
These methodologies include search, coverage, fault, 
requirement, history, risk and cost-effective based, 
etc. (Shah et al., 2019). Each of the methodologies 
has its own algorithms. Best TCP/TCS is dependent 
upon different criteria like the selection of dataset, 
incomplete data extraction (Shah et al., 2016). In this 
study, we have selected the most recent algorithms 
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used for software TCP from the most popular 
repositories like IEEE Access, Elsevier, and Springer. 

In this survey, we have studied 40 articles from 
2010 to 2020 on TCP. This study organized as 
follows. In Section 2 which is a literature review, we 
will describe all the chosen algorithms in Table 1. In 
Section 3 we will compare the results generated by 
using each algorithm. In Section 4 we will describe 
research methodologies and try to answer the 
research questions. Section 5 contains state-of-the-
art challenges and Section 6 contains conclusions 
and future research topics. 

 
Table 1: TCP algorithms 

S.No. Name of Algorithm  

1 Firefly Algorithm 
Firefly Algorithm 

Optimal FA 
Hybrid FA 

2 Genetic Algorithm (GA) Hypervolume GA 

3 
Ant Colony Optimization (ACO) 

Algorithm 

ACO 
Modified ACO 

ETS ACO 
Hybrid ACO 

4 Local Beam Search (LBS) LBS 

5 Particle Swarm Optimization (PSO) 

PSO 
Weight Hybrid 

PSO 
Greedy PSO 

6 Greedy Algorithm (GA) 
Additional GA 
Enhanced GA 
Graphite GA 

2. Literature review 

Test Case Prioritization (TCP) not only saves time 
and resources but also stakeholder confidence in us 
if we used it properly. Various methods and 
techniques have been used in this regard to obtain 
the best optimal test suite for Regression Testing. In 
this study, we will cover and summarize all those 
algorithms as shown in Fig. 1. 

3. Firefly algorithm 

Firefly Algorithm (FA) after getting inspired by 
the flashy behavior of the fireflies (Shah et al., 2019). 

 
 Fireflies are attracted to each other because all of 

them are unisexual.  
 The attraction of fireflies is depending upon their 

brightness. Both are directly proportional to each 
other 

 Fireflies only move randomly if the same/no 
brightness is found nearby. 

 
Quite a few algorithms were proposed using the 

Firefly technique. 

 

 
Fig. 1: Test case prioritization techniques 

 
3.1. Optimal firefly algorithm 

This algorithm uses a metaheuristic firefly 
algorithm to generate an optimal path. In this 
modified firefly algorithm, he used a new objective 
function/brightness function and guidance matrix to 
traverse the graph (Shah et al., 2016). 

The process starts with creating Control flow 
graphs (CFG) and Data flow diagrams (DFD) and 
generating XML files from the CFG diagram. This 
XML file goes as input into Optimal Firefly Test 
Sequence Generator (OFTSG). OFTSG perform the 
following steps (Shah et al., 2016): 
 
 Calculate nodes and edges 
 Calculate Cyclomatic Complexity 
 Create Adjacency matrix which is the edge between 

the nodes is considered as 1 everything else is 0. 

 Create Guidance matrix using Eq. 1 
 Path traversal: Algorithm generates best path 

sequences. 
 Path Prioritization 
 Calculation of brightness value at every node using 

the Eq. 2 
 Calculation of mean value of brightness. 
 

Higher the mean value of brightness will have 
higher priority. 
 

𝐺𝐹 = 10 ∗  [𝐶𝐶𝑖 ∗  ((𝑁 − 𝑖) − 0.1)]                                         (1) 

𝑓(𝑥) =  [
1000

(𝐶𝐶𝑖∗𝑟𝑎𝑛𝑑())
]                                                                     (2) 

 

The author tested this algorithm using 4 different 
programs as shown in Table 2. 

This shows that as the number of states increases 
the cyclomatic complexity increases which causes an 



Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121 

109 
 

increase in the percentage of redundancy in path 
coverage. Results of this study were compared with 
the state of the art algorithm Ant Colony 
Optimization Algorithm (ACO). This shows FA 
generates better paths with reducing or no 
redundancy as compared to ACO as shown in Table 
3. 

Following limitations were found during this 
study, first, the proposed algorithm was not tested 
on any benchmarks program with a big test case 
pool. Secondly, it’s not clear that which testing 
criteria are used for example statement coverage, 
fault coverage, etc. 

Panthi and Mohapatra (2015) used the same 
methodology to minimized test cases by exploring 
the state diagrams. Nor Hashim and Dawood (2018) 
proposed a similar approach to minimized test cases 
and the process has been analyzed using a UML 
statechart diagram. This study also shows prominent 
results in the form of minimizing the number of test 
cases. 

Both used ATM case studies to test their 
approaches which provide satisfactory results. 

3.2. Firefly algorithm 

Khatibsyarbini et al. (2019) used Firefly 
Algorithm with string metrics as a fitness function to 
find the best TCP arrangement.  

Steps of Firefly Algorithm: 
 
 Extraction of test cases from dataset 
 Calculating distance and weight of test cases 
 Perform movement update based on highest values 

of weight/distance 
 Selection of test cases based on shortest distance 

as an optimal sequence. 
 

Two variables Term Distance Inverse Document 
Frequency (TDIDF) and Term Frequency Inverse 
Document Frequency (TFIDF) were used to store 
distance among the test case and frequency (weight) 
of the test case respectively. The weight of test cases 
could be calculated as follows given in Eq. 3 
(Khatibsyarbini et al., 2019). 
 

𝑇𝐹𝐼𝐷𝐹 =
𝑡

𝑇
× log𝑁 = 𝑛𝑡                                                             (3) 

 

The next move decided by the highest value of 
weight over distance and the shortest distance 
among test cases was selected as the optimum test 
case sequence. FA uses average percentage fault 
detection rate (APFD) to calculate the rate of fault 
detection which could be calculated using the 
formula given in Eq. 4 (Khatibsyarbini et al., 2019). 
 

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝐹1 + 𝑇𝐹2 + … + 𝑇𝐹𝑛

𝑛×𝑚
+

1

2𝑛
                                           (4) 

 

Six Software-artifact Infrastructure Repository 
(SIR) programs were used for testing. Three of them 
are UNIX-based programs (flex, grep, gzip) and three 
are SIEMENs programs (tcas, cs-tcas, j-cas) as shown 
in Table 2. Comparisons were made in this approach 

with state-of-the-art algorithms PSO, LBS, Greedy, 
and GA and among all of them, FA shows prominent 
results although LBS has quite better results at some 
places as shown in Table 3. Following limitations 
were observed during this study. The first one is a 
selection of datasets. The dataset used for testing 
this approach is very small SIR benchmark 
programs. This approach may give different results 
when applied to a bigger size of test case spools. 

The second is less data utilization. For example, 
only distance and weight of test cases were used as 
input while we have a lot of other data available like 
system coding, etc. that could give totally different 
results. The third and final one is that the only TCP 
techniques were considered on the other hand we 
have a lot of other similar techniques available which 
was not included in validation. 

3.3. Hybrid firefly algorithm (HFA) 

Su et al. (2020) proposed this hybrid model of the 
firefly algorithm, main purpose is to prioritize test 
cases and reduce the test cost. HFA adopted a hybrid 
model in which first it correlates all the available test 
data and test cases and secondly applies enhanced 
FA on this hybrid model. The new fitness function of 
this HFA is shown in Eq. 5. 
 

𝑓(𝑥𝑖,𝑗) = 𝑚𝑎𝑥𝑘 {
𝑊𝑖−1

𝑅𝑎𝑛𝑑𝑜𝑚(.)
∗ 𝐵𝑟𝑖𝑔𝑛𝑡𝑛𝑒𝑠𝑠𝑖,𝑗| 𝑗 − 1 ∈

𝑂𝑟𝑑𝑒𝑟, 𝑖 𝑢𝑛𝑂𝑟𝑑𝑒𝑟}                                                                      (5) 
 

where, Wi-1 shows the test cases weight i-1, a label 
“Order” is used for the test cases where the priority 
is known, “un-order” is for test cases where the 
priority is unknown, Random (·)={N-2<[[Ni-i]-
0.1]<N}, where N is the total number of test cases. 

The steps of this algorithm are as follows (Su et 
al., 2020): 

 
 Define the new fitness function as shown in Eq. 5. 
 Calculate brightness of firefly using Eq. 6. 
 Calculate the degree of attraction by creating a 

distance matrix as shown in Eq. 7. 
 The movements of the fireflies are based on 

brightness only. Once all nodes have been visited, 
the firefly stop moving and their path is recorded.  

 In the end, the smallest path will be an optimal 
sequence. 

 

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖,𝑗 = 𝑊𝑖/ (
𝑛𝑖,𝑗

Σ𝑘𝑛𝑘,𝑗
∗ log

|𝐷|

|{𝑑:𝑑∋𝑡𝑖}|
)                         (6) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛽𝑒−𝛾𝑆𝑖,𝑗
2

(𝑋𝑖
𝑡 − 𝑋𝑗

𝑡) + 𝛼𝜀𝑡                                  (7) 

 

where, β and α are constants, β is the light 
absorption rate, Є is a random factor of a uniform 
distribution, ɣ is attraction coefficient, HFA used 
three Software-artifact Infrastructure Repository 
(SIR) programs for testing. Which are flex, grep and 
gzip as shown in Table 2. Comparisons were made in 
this approach with state-of-the-art algorithms FA, 
PSO, and Greedy and among all of them, HFA gave 
the better execution time and best performance as 
shown in Table 3. 
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The following limitation was observed during this 
study is the selection of the dataset. The dataset used 
in this approach is three very small SIR benchmark 
programs. This approach may give different results 
when applied to a bigger size of test case spools. 

3.4. Hypervolume genetic algorithm (HGA) 

The method uses GA with Hypervolume Indicator 
to prioritized test cases with more than three testing 
criteria. He proposed an enhanced genetic algorithm 
which is called HGA (Hypervolume-based Genetic 
Algorithm). Earlier GAs was used to solve only 
single-objective optimization problems. But 
hypervolume allows us to combine multiple-objects 
to teat as a single object. HGA consist of two parts (Di 
Nucci et al., 2018; 2015). 
 
Part-I 
1. Initialization of cumulative coverage scores. 
2. Computation of cumulative coverage scores (cost, 

branch, and statements) for each testing case. 
3. Computation of actual IH using equation8. 
4. Normalized IHP using Eq. 9. 
 
𝐼𝐻(𝜏) =  ∑ [𝑐𝑜𝑠𝑡(𝑝𝑖+1) − 𝑐𝑜𝑠𝑡(𝑝𝑖) × |𝐶𝑜𝑣𝑖(𝑝𝑖)| × …×

𝑛−1
𝑖=1

|𝐶𝑜𝑣𝑚(𝑝𝑖)|]  

𝐼𝐻𝑃(𝜏) =  
∑ [𝑐𝑜𝑠𝑡(𝑝𝑖+1)−𝑐𝑜𝑠𝑡(𝑝𝑖)×|𝐶𝑜𝑣𝑖(𝑝𝑖)|×…×|𝐶𝑜𝑣𝑚(𝑝𝑖)|]
𝑛−1
𝑖=1

𝑐𝑜𝑠𝑡(𝑝𝑛)× |𝐶𝑜𝑣1
𝑚𝑎𝑥|×… ×|𝐶𝑜𝑣𝑚

𝑚𝑎𝑥|
  

 

Eq. 8, 9 
 
Part-2 
1. Test cases order generation. 
2. Permutations evaluation by IHP (t) metric. 
3. GA evolution derivation. 
 

HGA used five Software-artifact Infrastructure 
Repository (SIR) programs for testing. Which are 
bash, flex, grep, gzip and sed as shown in Table 2. 

Comparisons were made in HGA with state-of-
the-art algorithms Additional Greedy Algorithm, GA 
(AUC metrics), NSGA-II, GDE3, MOEA/D-DE, and 
among all of them HGA shows the prominent results 
as shown in Table 3. 

Following limitations were observed during the 
study of this algorithm. The first one is the type of 
construction used to validate the algorithm depends 
upon the results obtained. In order to validate the 
results APFDc matrix was used and only three 
testing criteria were used which include statement 
coverage, fault coverage, and execution cost. On the 
other hand, if we include the time parameter the 
results could be different. The second one is internal 
validity. a) Only different types of GA were used to 
compare the results of this algorithm. It would be 
highly appropriate to choose some other algorithm 
as well. b) Tuning of the parameter could really 
affect the validity of results Study shows that the 
value of parameters was kept the same as used in 
basic GA. Results should be tested by changing the 
values of parameters. The third which could affect 
the results is the dataset used in this approach which 

are six trademark programs from SIR only. The 
algorithm should be validated against real-time 
industry programs to test results. 

3.5. Ant colony optimization (ACO) 

ACO is another prominent approach used for test 
case prioritization. Following different types of the 
algorithm has been proposed based on ACO. 

Ant colony optimization is a metaheuristic 
optimization methodology that was first introduced 
by Márquez et al. (2016). Zhang et al. (2019) used 
requirement-based criteria in his proposed ACO 
technique to solve the prioritization problem. He 
divided it into two ways TCP-ACA-1 in which he 
calculated the distance between two test cases and 
TCP-ACA-2 which is used to update the value of 
pheromone continuously (Zhang et al., 2019). 

This method was successfully used in solving 
various optimization problems and the Test case 
prioritization problem is one of the combinatorial 
optimization problems where ACO showed 
impressive results. As per the technique used by Gao 
et al. (2015) during the test case prioritization 
problem, there are two rules that must be followed 
while using ACO methodology. 

ACO algorithm works as follows as at the start 
ants are placed on the initial Test case list from 
where they randomly select the next node until all 
the faults are identified. It updates the pheromone 
value once each iteration is finished. The two most 
important steps in this algorithm are given below 
(Gao et al., 2015): 
 
 Pheromone updating rule: Pheromone is a kind of 

variable used in ACO which is representing the 
Ants pheromone. Which they deposit on their path 
during food search when the next ant comes in 
contact with pheromone they know that they are 
on right track and add more pheromone for the 
next group and so on (Márquez et al., 2016). 

 
This Algorithm updates the pheromone values 

after each iteration by using this Eq. 10 (Gao et al., 
2015).  
 
𝜏𝑖𝑑(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑑(𝑡) + ∆𝜏𝑖𝑑                                        (10) 
 

where, 𝜌 is evaporation rate; 𝜏𝑖𝑑(𝑡 + 1) is updated 
value; 𝜏𝑖𝑑(𝑡) is last value of pheromone; ∆𝜏𝑖𝑑  is 
increse in pheromone. 
 
 Test case selection rule: As per Ants' behaviors, the 

movement of ants is irrelevant to all other ants. 
Similarly, an ACO algorithm selecting the next node 
is the most important step which uses pheromone 
quantity and then decided which node to move. So, 
the next test case selection is calculated using Eq. 
11 (Gao et al., 2015). 

 

𝑝𝑖𝑑
𝑘 (𝑡) =  

[𝜏𝑖𝑑(𝑡)]
𝛼.[𝜂𝑖𝑑(𝑡)]

𝛽

∑𝑠𝜖𝐿𝑗+1
𝑘 [𝜏𝑖𝑑(𝑡)]

𝛼.[𝜂𝑖𝑑(𝑡)]
𝛽                                               (11) 

 



Qasim et al/International Journal of Advanced and Applied Sciences, 8(5) 2021, Pages: 107-121 

111 
 

where, 𝜂𝑖𝑑(𝑡) is visibility function; 𝐿𝑗+1
𝑘  is a list of 

alternative test cases. Where α and β are the 
parameters to regulates the influence of pheromone 
and visibility respectively. Both ACOs techniques 
used really small programs with a set of 8-10 test 
cases having 10 faults only as shown in Table 2. 

In TCP-ACA comparisons were made with particle 
swarm optimization (PSO) algorithm, genetic 
algorithm (GA), and random test methods which 
showed better results. On the other hand, Gao-ACO 
was only compared with random test case selection 
none of the other comparison algorithms were 
mentioned as shown in Table 3. 

Following limitations were observed during the 
study of this algorithm. The first one is the type of 
construction used to validate the algorithm depends 
upon the results obtained. In order to validate the 
results, the APFDc matrix was used. Secondly, a new 
technique was not compared with any of the state-
of-the-art methodologies and the third but most 
important one is that the technique is tested with a 
very small program with eight test cases having 10 
faults only. 

3.6. Modified ant colony optimization (m-ACO) 

Solanki et al. (2015; 2016) proposed a modified 
ant colony optimization technique (m-ACO). In this 
algorithm when an ant finds food, it brings food back 
home and goes again to collect and this process 
repeats until all food sources are finished. Moreover, 
if the path is short all ants follow the same path until 
food finishes. This technique used the following test 
criteria code coverage, fault detected, and execution 
time. In order to achieve the maximum fault 
coverage, the APFD metric was used proposed by 
Elbaum et al. (2002). Algorithm proceeds as follows: 
 
 Initialization of Ant variable 
 Randomly search food source 
 Calculate food fitness 
 Calculate the probability of selection 
 Calculate the reduction in pheromone 
 

In order to validate m-ACO author used 3 small 
case studies were used. 1) 10 test cases with 10 
faults 2) 9 test cases with 5 faults 3) 5 test cases with 
5 faults. All the test case was executed on a Perl 
program as shown in Table 2. In m-ACO none of the 
comparisons were made with any state-of-the-art 
methodologies to verify the correctness of this 
algorithm. Instead of that only APFD was calculated 
with prioritized and un-prioritized test cases with 
showed comparatively better results than un-
prioritized test cases as shown in Table 3. 

This technique has the following limitations. First 
is only 3 small case studies with a limited number of 
test cases were used and it is highly recommended 
that this methodology should be validated with real-
time and big data sets. By doing this we can get a real 
picture of results. The second is external validity. 
This approach is not compared with any of the state-

of-the-art methodologies. It would be good to 
perform a comparison with some state-of-the-art 
prioritization methodologies. The third is the type of 
construction used to validate the algorithm depends 
upon the results obtained. In order to validate the 
results only the APFDc matrix was used, in which the 
APFD value of prioritized and un-prioritized results 
was compared.  

3.7. ETS-based ACO algorithm for TCP 

Epistasis-based Ant Colony Optimization 
technique is Multiobjective search-based regression 
Test Case Prioritization (MoTCP). This technique is a 
Metaheuristics that is inspired by nature (movement 
of ants to find food) (Gao et al., 2015). Study shows 
that epistasis theory also improved the effectiveness 
and efficiency in a single-objective GA (Deb et al., 
2000). The use of epistasis theory in the 
multiobjective problem also showed promising 
results. ETS-Based ACO Algorithm for TCP is given 
below (Yuan et al., 2015). 
 
Algorithm 

Steps of ETS-Based ACO Algorithm for TCP. 
 

 Setting of parameters of ACO  
 Initialization of all the new sequences. 
 Initialization of pheromone (weights of 

transitions). 
 New test case sequence creation based on ant 

method equation 12. 
 Test sequence evaluation using a fitness function. 
 Ranking of test sequences as per NSGA-II method 

(Deb et al., 2000). 
 Comparisons and Updation of the test sequence. 
 Updating pheromone. 
 

𝑃𝑖𝑗
𝑘 = {

[𝜏𝑖𝑗]
𝛼
∏ [𝜂𝑖𝑗

𝑑 ]
𝜆𝑑𝛽2

𝑑=1

∑ 𝑙𝜖𝑁𝑡
𝑘[𝜏𝑡𝑙]

𝛼 ∏ [𝜂𝑡𝑙
𝑑 ]
𝜆𝑑𝛽2

𝑑−1

0

                                                    (12) 

 

where, 𝜏𝑖𝑗=pheromone (weight of the transitions); 

𝑑=number of objectives; 𝜂𝑖𝑗=heuristic information of 

an object; 𝛼=heuristic factor; 𝛽=relative weight of 
heuristic value; 𝑁𝑖

𝑘=is the set of candidate test cases; 
𝑘=ant. 

In order to validate E-ACO author used the SIR 
program for unit test and the V8 program for the 
smoke test. The size of the V8 program is quite large 
which is good but it’s still not that large enough for 
big experiments as shown in Table 2. 

E-ACO showed very impressive results as 
compared with the above-explained ACO algorithms. 
This new methodology was also compared with the 
state-of-the-art algorithms NSGA-II for MoTCP and 
ACO which shows the prominent results as shown in 
Table 3. E-ACO showed very prominent results still it 
has some limitations that must need to address to 
make it a standard algorithm. The first one is 
instrumentation accuracy, which could yield 
different results. It would be better if we test this 
using different software instead of using only gcov 
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(A GCC tool). Secondly, since the real-time program 
was not used in testing, in compensation to this test 
was run 10 times. It would be much better to use the 
real-time big program to get accurate analysis 
results. Third swarm sizes of different scales should 
be used. So we could easily compare the efficiency of 
ACO and E-ACO. The fourth and last one is the 
parameters configuration used in E-ACO which is the 
same used by NSGA-II. It would be rather good to 
change the parameters to verify the conclusion. 

3.8. Hybrid ACO 

This approach is proposed by Ahmad et al. (2018) 
which is the combination of two different 
approaches. 

Step-I: In the first section by using test factors 
priorities are assigned to the test cases. 

Step-II: Once we have priorities assigned to test 
cases we apply ACO to calculate the optimal 
sequence which has the lowest execution time but 
the highest fault rate. 

The approach seems interesting but the study 
doesn’t show anything about testing or if any 
comparisons were made with any state of art 
techniques.  

3.9. Local beam search algorithm (LBS) for TCP 

Jiang and Chan (2015) proposed a novel Local 
Beam Search Algorithm (LBS) which is an input-
based search technique. LBS technique uses 
lightweight input as compared to other techniques 
like code-coverage. In each iteration of this 
algorithm width of the beam is kept constant that’s 
the reason this approach is much more efficient than 
the other. For example, the greedy algorithm doesn’t 
select the new test cases from uncovered test cases 
only directly increases cost and time (Elbaum et al., 
2002). This input-based LBS algorithm takes 
randomly selected test case set as input, and 
processes it, and generates the set prioritized set of 
test cases.  

This approach uses distance matric f to calculate 
the distance between prioritized and un-prioritized 
test cases (Gusfield, 1997). The steps of the 
algorithm are given below (Jiang and Chan, 2015). 
 
Algorithm 
 Selection of candidate set which is not yet selected 
 Calculation of distance matrix between the 

candidate and already prioritized ones 
 Test cases are sorted in descending order. 
 Appending the top test case in the successor pool. 
 Repeating the process until all the test case has 

been prioritized. 
 

LBS used 4 Software-artifact Infrastructure 
Repository (SIR) programs for testing. Three of them 
are UNIX-based programs (flex, grep, gzip, and sed) 
as shown in Table 2. Comparisons were made in LBS 
with state-of-the-art algorithms ART, Greedy, and 
Genetic Algorithm (GA). LBS showed more 

impressive results than GA and Greedy but less than 
the Adaptive Random Test case (ART) as shown in 
Table 3. 

Results shown by LBS are very impressive but 
this algorithm has some limitations. 1) Platform 
used, during the testing of this approach only a C 
program was used. In order to cross-validate the 
finding other programming languages should be 
considered. 2) Testing Suites, during the analysis of 
this approach only branch-adequate test suites were 
used. The use of different test case suites could 
improve the results. 3) Use of distance metric, there 
are a lot of other metrics available like Hamming 
distance matric could also be tried to analyze results. 
4) Since the LBS follows a randomized procedure so, 
the author repeats the testing 50 to get better 
results. It would be much more appropriate to use a 
big population of the test case to avoid such issues. 
50 study shows that search-based TCP techniques 
don’t use fault rate detections. While this research 
used APFD which make it difficult to access that 
whether the results produced by this research are 
consistent with previous studies or not. 

3.10. Particle swarm optimization (PSO) 

Particle Swarm Optimization (PSO) is a multi-
object TCP technique which prioritizes test case 
based on changes in the code. PSO is an optimization 
methodology that was first introduced by Eberhart 
et al. (2001). Souza used the Binary Constrained PSO 
approach to prioritize test cases using the following 
three steps (Tyagi and Malhotra 2014; de Souza et 
al., 2010): 
 
 Removal of extra test cases. 
 Selection of test cases with the highest coverage 

but lowest execution time. 
 Prioritizing test cases. 
 

Hla et al. (2008) proposed an algorithm that 
performed test case prioritization based on changes 
in software sections by the PSO algorithm. This 
algorithm has been used a lot in various functional 
optimization problems because of its fast 
convergence property. This algorithm uses multi-
objects to calculate fitness values using statement, 
branch, function, and code coverage as shown in Eq. 
13. Also, it uses the velocity and position of the test 
cases for the next fitness evaluation which can be 
calculated using Eqs. 14 and 15. PSO algorithm has 
two parts (Hla et al., 2008). 
 
Part-I: Tokenizer 
 
 Take code as input 
 Converts into token line by line 
 Save into database 
 
Part-II: Prioritizer 
 
 Initialize priorities and fitness values 
 Fitness value calculation using Eq. 13 
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 Position value calculation using Eq. 14, 15 
 

𝐹(𝑓) = 𝐸(𝑓𝑠⋀ 𝑓𝑏⋀𝑓𝑝 ⋀𝑓𝑢)                                                         (13) 

 

where, 𝑓𝑠 maximum statement coverage out of set of 
statements {𝑠1, 𝑠2, … , 𝑠𝑛}= arg𝑚𝑎𝑥 𝑓𝑠(𝑢𝑖, 𝑇, 𝑆,𝑚); 𝑓𝑏 
total branch coverage out of set of compound 
conditions {𝑐1, 𝑐2, … , 𝑐𝑛}= arg𝑚𝑎𝑥 𝑓𝑏(𝑢𝑖, 𝑇, 𝐶,𝑚); 
𝑓𝑝total function coverage out of set of procedures 

{𝑝1, 𝑝2, … , 𝑝𝑛}= arg𝑚𝑎𝑥 𝑓𝑝 (𝑢𝑖, 𝑇, 𝑃,𝑚); 𝑓𝑢total code 

coverage out of set of software units 
{𝑢1, 𝑢2, … , 𝑢𝑛}= arg𝑚𝑎𝑥 𝑓𝑢(𝑢𝑖, 𝑇, 𝑈,𝑚). 
 

𝑉𝑖𝑘+1 = 𝑐0. 𝑉𝑖𝑘 + 𝑐1. 𝑟𝑎𝑛𝑑. (𝑓𝑖𝑘 − 𝑥𝑖𝑘) + 𝑐2. 𝑟𝑎𝑛𝑑. (𝑓𝑔𝑘 −

𝑥𝑖𝑘)                                                                                                  (14) 

𝑋𝑖𝑘+1 = 𝑋𝑖𝑘 + 𝑉𝑖𝑘+1                                                                    (15) 
 

where xi is the position vector and vi is rate of 
change of position vector. c0, c1, and c2 are weight 
factors. 

PSO used 20 test cases from JUnit as shown in 
Table 2. A JUnit test suite provides automatic test 
case creation and execution as shown in Table 2. 

Comparisons were made in PSO with the state-of-
the-art Greedy algorithm. PSO showed less run time 
complexity as shown in Table 3. Following 
limitations were observed during this study. 1) In 
order to keep internal validity in mind. This 
approach was tested using 20 test cases from JUnit 
which is really less. 2) Second is external validity, 
this new approach is only compared with the Greedy 
algorithm. It is highly recommended to validate the 
procedure using some real-time application and 
make a comparison with some other state-of-the-art 
techniques to get a better picture of results. 

3.11. Weight hybrid TCP using PSO (WH-PSO) 

Khatibsyarbini et al. (2017) proposed this 
weight-hybrid string distance technique. The main 
purpose of this technique was to get a higher APFD 
rate and efficiency in execution. A hybrid string 
distance was created using weight and distance 
between test cases. String distance is of two types; 
character-based and term-based. Two character-
based string metrics used in this study are 
Manhattan Distance by Ledru et al. (2012) Eq. 16 
and Levenshtein Distance by Jiang and Chan (2015) 
Eq. 17.  
 
∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1                                                                                  (16) 

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =  

{
 
 

 
 max

(𝑖, 𝑗)                                                  

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1)                 

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1                    

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

        (17) 

 

Two term-based string metrics used are Cosine 
Similarity distance (Jiang and Chan, 2015) Eq. 18 and 
Jaccard Coefficient distance (Cha, 2007) Eq. 19. 
 

𝑆𝐶𝑜𝑠 =  
∑ 𝑃𝑖𝑄𝑖
𝑑
𝑖=1

√∑ 𝑃𝑖
2𝑑

𝑖=1 √∑ 𝑄𝑖
2𝑑

𝑖=1

                                                               (18) 

𝑆𝐽𝑎𝑐 = 
∑ 𝑃𝑖𝑄𝑖
𝑑
𝑖=1

∑ 𝑃𝑖
2𝑑

𝑖=1 + ∑ 𝑄𝑖
2𝑑

𝑖=1 − ∑ 𝑃𝑖𝑄𝑖
𝑑
𝑖=1

                                                 (19) 

 

Hybrid string distance is calculated by 
multiplying the distance with the next test case 
weight.  

“Term frequency-inverse document frequency” 
(TFIDF) shows the importance of a word in the 
whole document. 
 

𝑡𝑓𝑖𝑘 =  
𝑓𝑖𝑘

∑ 𝑡𝑓𝑖𝑘
𝑡
𝑗=1

. log(𝑓𝑖𝑘)                                                             (20) 

𝑖𝑑𝑓𝑘 = log
𝑁

𝑛𝑘
                                                                                 (21) 

 

The whole process is divided into three phases: 
 

A. Information Extraction phase: In this phase test 
cases and their inputs are extracted. The extracted 
inputs are saved into a separate document which 
will be used so, that they could be utilized in the next 
phase. After that, the test cases from both programs 
(original and version) are executed and a fault 
matrix sheet is prepared to compare both results. 
B. String Distance Calculation: The extracted in the 
previous phase is used to calculate the string 
distances using Eqs. 16 and 17. The weight of test 
cases is also calculated using Eqs. 18 and 19 and the 
results of both calculations are populated into the 
test case distance matrix. Then hybrid string 
distance is calculated. After the completion of 
calculations, PSO is used to prioritize the distance 
matrix. 
C. Evaluation phase: In this phase, a matrix sheet is 
created using results obtained in an earlier phase. 
WH-PSO used 3 Software-artifact Infrastructure 
Repository (SIR) programs for testing. Three of them 
are SIEMENs benchmark programs (tcas, jtcas, and 
cs-tcas) as shown in Table 2. This new approach was 
not compared with any state-of-the-art algorithms 
only comparison was made among character-based, 
term-based, weight-hybrid character-based, and 
weight-hybrid term-based results as shown in Table 
3. Results shown by weight hybrid PSO are very 
impressive but it would be really good to test this 
approach with other states of the art methodologies.  

3.12. Greedy particle swarm optimization (G-
PSO) 

Allawi et al. (2020) proposed this novel hybrid 
greedy and PSO algorithm (GPSO) which is the 
combination of both greedy and PSO algorithms. 

In this approach, the author creates the fitness 
function using Particle Swarm Optimization (PSO) 
and then applies the Greedy approach to find the 
partial best and makes them as global best and select 
the optimal solution from there. After this step new 
algorithm moves back to the PSO approach where it 
finds the velocity of each particle is calculated using 
Eq. 22 and the location of the next partial using Eq. 
23. This process repeats until the termination 
condition occurs. 
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𝑣𝑖(𝑡) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑝𝑏𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔𝑏𝑖(𝑡) −
𝑥𝑖(𝑡)]                                                                                              (22) 
𝑥𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)                                                                  (23) 
 

Algorithm proceeds as follows (Allawi et al., 
2020): 

 
 Random Initialization of particles. 
 Calculation of fitness function using PSO. 
 Greedy part: 

 
o Determines and selects the particle with the partial 

Best position value to be placed as the global Best 
solution. 

o Selects the optimal solution from the available 
candidate solutions at a particular point. 
 

 Each particle velocity can be calculated using Eq. 
22. 

 According to Eq. 23 move to the next position.  
 The algorithm will be stopped if the termination 

criteria are satisfied; otherwise, return to Step 2. 
 
Six different Java card applications (JCS Applets) 

were used as data set to test the algorithm which 
includes a Network connection tracker, HelloWorld, 
PKI, RSACrypto, Calculator, OATH, Passport, CoolKey 
as shown in Table 2. 

The comparison was done between the GPSO 
algorithm and standard genetic algorithm (GA), 
which showed that GPSO exceeds the GA in various 
ways. GPSO takes a fewer number of iterations and 
time but gives us high coverage percentage as shown 
in Table 3. 

Following are the limitations found during this 
study. 1) Real-time application was used to test this 
approach but that includes small programs with few 
hundreds of branched was used. In a real-time 
program, there are thousands of branches of code 
that could give a different point of view about this 
approach. 2) Discussion about fault matrix is missing 
in the study, whether it’s created or not. 3) Only one 
comparison was done with GA, it would be better to 
test this new approach with other state-of-the-art 
methodologies. 

3.13. Greedy algorithm (GA) 

3.13.1. Additional greedy algorithm (AGA) 

Yoo and Harman (2007) proposed the Additional 
Greedy Algorithm. This technique uses NSGA-II and 
its variant which is called vNSGA-II algorithms. 

The vNSGA-II has two main modifications as 
compared to NSGA-II which are as follows: 

 
 vNSGA-II uses a separate group of sub-population 

which is good because different objectives can be 
assigned to each sub-group. 

 vNSGA-II keeps the record of the best sub-
population. 

The additional greedy algorithm only supports up 
to two objects. In order to work with more than two 

objects, we have to combine the objects to make one 
by using the weight sum approach. That is the reason 
AGA doesn’t show good results for multi-object TCP. 

AGA used 4 Software-artifact Infrastructure 
Repository (SIR) programs SIEMENs based 
programs (printtokens, printtokens2, schedule, 
schedule2), and 1 European Space Agency (ESA) 
program (space) as shown in Table 2. Comparisons 
were made in this study among two genetic 
algorithms, NSGA-II, and its variation. It has been 
seen that the greedy algorithm doesn’t work well for 
multi-objective TCP it is only good for single objects 
as shown in Table 3. 

Following limitations were found during this 
study.1) Accuracy of tools used to find the coverage 
information. The author used professional software 
in order to minimize the risk but it would be highly 
recommended to try to use some other software to 
just see the variety of results. 2) Most of the testing 
data used in this study is from the SIR repository. 
Only one program was used from ESA. 3) Results of 
this approach also depend upon the type of 
algorithm used for multi-object prioritization. The 
author tried to use so far best algorithm NSGA-II but 
it is highly recommended to test the approach with 
some other multi-object test case prioritization 
techniques like firefly etc. to test the variation in 
results. 

3.13.2. Enhanced additional greedy algorithm 
(EAGA) 

This technique is proposed by Hsu et al. (2014), 
EAGA is a modified form of AGA. In this technique 
control flow is used over the data flow criteria. 
Experimental analysis shows that the EAGA 
technique performed well in “fault severity/unit 
cost”. EGA used 8 Software-artifact Infrastructure 
Repository (SIR) programs SIEMENs based 
programs (Tcas, Totinfo, Replace, Schedule, 
Schedule2, Printtokens, Printtokens2, and Space) as 
shown in Table 2. Comparisons were made in this 
study with AGA which shows that EAGA with GA is 
far much better than AGA for large programs only 
but when we use small programs there is not a 
difference between AGA and EAGA as shown in Table 
3. 

Following limitations were found during this 
study: 

 
1) Same as AGA, EAGA is not fit for multi-object TCP.  
2) Results are not compared and checked with any 

other state-of-the-art techniques to get clear 
pictures of results. 
 
Graphite TCP: One of the most popular 

prioritization techniques is greedy. The greedy 
technique used code coverage criteria. In this 
technique test cases with higher code coverage are 
considered better than the lower coverage (Do et al., 
2008; 2010). Azizi and Do (2018) proposed a novel 
graph-based greedy technique that utilizes a graph 
traversal algorithm to prioritized test cases. This 
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algorithm consists of two parts, graph generator, and 
graph traversal. 
 

𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑐𝑜𝑑𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
                                                   (24) 

 

Proposed two algorithms: 
 
Part-I: Graph Generation: 
 
1) Nodes creation. 
2) Node value calculation using Eq. 24. 
3) Edge value calculation using Jaccard Distance Eq. 

19. 
 
Part-II: Traversal Procedure: 
 

1) Select node with maximum value as a start point. 
2) Calculate the highest gain using the traversal 

algorithm. 

3) Repeat this process until all connection edges will 
eliminate. 
 
In order to test this approach, the author used 4 

open-source programs, among them 2 are obtained 
from SIR (jmeter, jtopas) and two of them are none 
SIR (nopCommerce, Umbraco-CMS) as shown in 
Table 2. Experiment results showed indicated 
approach is effective and efficient as compared with 
the unprioritized approach only as shown in Table 3. 

There are few findings of this new methodology. 
1) This new technique is not compared with any 
state-of-the-art TCP methodology to get a clear 
picture. 2) The choice of the distance function. The 
most popular method was used for it but it could 
give different results with a different function. It is 
highly recommended to test the new approach using 
other distance functions as well so, we could get a 
clear picture of this algorithm.  

 
Table 2: Datasets used by each algorithm 

S.No Algorithms Repository Datasets 

1 Firefly Algorithm SIR 
UNIX benchmarks Programs (flex, grep, gzip) 

SIEMENs benchmarks Programs (tcas, cs-tcas, j-cas) 
2 Optimal FA Non-SIR 4 small programs with set of 16-48 test cases. 
3 Hybrid FA SIR UNIX Benchmarks Programs (flex, grep, gzip) 

4 
Hypervolume Genetic 

Algorithm (HGA) 
SIR UNIX Benchmarks Programs (bash, flex, grep, gzip, sed) 

5 ACO Not SIR A small program with set of 8-10 test cases with 10 faults only. 
6 m-ACO Not SIR Perl Program based 3 case study used to test 

7 ETS based ACO SIR 
3 UNIX Benchmarks Programs 

(flex, space, bash) 
Open-source JavaScript engine V8 

8 Hybrid ACO None  
9 LBS SIR 4 UNIX Benchmarks Programs (flex, grep, gzip, sed) 

10 PSO Non-SIR JUnit 20-test case 
11 WH-PSO SIR 3 SIEMENs Benchmarks Programs (tcas, jtcas, and cstcas) 

12 Greedy PSO Non-SIR 
Six Java Card Application Programs (Network connection tracker, HelloWorld, PKI, 

RSACrypto, Calculator, OATH, Passport, CoolKey ) 

13 Additional Greedy SIR 
4 SIEMENs Benchmarks Programs (printtokens, printtokens2, schedule, schedule2) 

1 European Space Agency (space) 

14 Enhanced Greedy SIR 
8 SIEMENs Benchmarks Programs (Tcas, Totinfo, Replace, Schedule, Schedule2, 

Printtokens, Printtokens2, and Space) 

15 graphite greedy 
SIR,  

NON-SIR 
4 UNIX Benchmarks Programs (jmeter, jtopas) 

nopCommerce, Umbraco-CMS 

 

4. Research methodology 

This study was divided into the following stages: 
 

1. Research question. 
2. Repositories Selection and Searching Strategies 

Search methodology. 
3. Inclusion-Exclusion Criteria for Selection. 

4.1. Research questions  

Following are the research questions of this 
paper: 

 
Q1: How TCP is important in Software Testing?  
Q2: What are the different classifications of test case 
prioritization techniques? 

Q3: What are single object and multi-object TCP 
techniques?  
Q4: What are the latest studies in TCP? 
Q5: Which metrics are commonly used in TCP?  
Q6: Which prioritization methods are used often and 
what are their proportions? 

4.2. Repositories selection and searching 
strategies  

In this study, we sued keywords like “Test Case 
Prioritization”, “Test Case Selection”, “Test Case 
Optimization” to search the well-known repositories 
like Google Scholar, IEEE Xplore, Elsevier, ACM 
Digital Library, and Springer as shown in Figs. 2, 3, 4, 
5, 6, 7, and 8. 
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Table 3: Algorithms comparisons 
S.No Algorithms Compared With Results 

1 
Firefly 

Algorithm 
PSO, LBS, Greedy, GA FF Showed better Results but LBS was almost close to FF. 

2 Optimal FA ACO FF Algorithm Showed better results. 
3 Hybrid FA FA, PSO, and Greedy HGA showed prominent results over FA and PSO 

4 
Hypervolume 

GA 
Additional Greedy Algo, GA(AUC metric), NSGA-II, 

GDE3, MOEA/D-DE 
HGA is more cost-effective and efficient in dealing with more 

criteria 

5 ACO PSO and Random Test Case Selection 

In TCP-ACA comparisons were made with particle swarm 
optimization algorithm, genetic algorithm, and random test 

methods which showed better results. 
On the other hand, Gao-ACO was only compared with random 

test case selection non-of the other comparison algorithms 
were mentioned. 

6 m-ACO ACO 
Prioritized with m-ACO and un-prioritized showed better 

results. 

7 ETS-ACO 
Original ACO for MoTCP 

NSGA-II algorithm for MoTCP 
E-ACO algorithm has significant improvement effectiveness 
and the efficiency to the state-of-the-art NSGA-II algorithm. 

8 Hybrid ACO ACO better results as compared to ACO 

9 LBS 
Genetic, Greedy(Total and Additional), Optimal, 

Hill Climbing and ART 
LBS showed more efficient results than GA and Greedy but 

less than ART 
10 PSO Greedy Algorithm PSO has time complexity less than Greedy Algorithm 

11 WH-PSO 
Comparison was made among character-based, 

term-based, weight-hybrid character-based, and 
weight-hybrid term-based 

Hybrid PSO showed impressive results 

12 Greedy PSO Genetic Algorithm 
GPSO outperform the GA in terms of the average number of 

iterations, execution time, and coverage percentage 

13 
Additional 

Greedy 
NSGA-II Greedy algorithm is not good for multi objective TCP 

14 
Enhanced 

Greedy 
AGA 

EAGA showed better results as compared to AGA but only for 
a single objective. 

15 
Graphite 
Greedy 

None High Average fault detection results 

 

  
Fig. 2: Search results of google scholar (TCP, TCS, TCO) Fig. 3: Total search results of google scholar 

 

  
Fig. 4: Search results of IEEE (TCP, TCS, TCO) Fig. 5: Total search results of IEEE 
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Fig. 6: Search results of Springer (TCP, TCS, TCO) Fig. 7: Total search results of Springer 

 

 
Fig. 8: Total search results of Scholar, IEEE, Springer 

 
5. Results 

In this section each research questions were 
answered: 
 
Q1: How TCP is important in Software Testing?  
In Regression Testing (RT), the TCP is the most 
difficult phase of the RT that allows testers to risk 
management, test planning, cost-value analysis of 
the testing phase. Different approaches are used to 
prioritized test cases for example time, cost, effort, 
code coverage, and fault coverage which increase RT 
performance. By using these techniques test cases 
with the highest priority are selected for RT suites 
that give us the highest rate of fault detection. 
Q2. What are different classifications of test case 
prioritization techniques? 
Fig. 2, shows the detailed classification of the test 
case prioritization techniques. 

Q3. What are single object and multi-object TCP 
techniques? 
Table 4 shows which techniques are multi-object 
TCP and single-object TCP. This table also shows 
which metrics were used to validate the algorithm. 
Q4. What are the latest studies in TCP? 
Table 5 shows the latest studies in Test Case 
Prioritization techniques. 
Q5. Which metrics are commonly used for TCP?  
About 70% of the multi-object test case 
prioritization techniques used the Average 
Percentage Fault Detection (APFD) metric as shown 
in Table 4. 
Q6. Which prioritization methods are used often and 
what are their proportions? 
 

Table 6, shows the percentage of each algorithm 
from different repositories. 

  
 

Table 4: Metrics used in different algorithms 
Techniques Algorithms Metrics Used 

Multi-Object 

Optimal Firefly Algorithm 
 

Firefly Algorithm APFD 
Hybrid FA APFD 

Hypervolume GA APFD 
ACO APFD 

m-ACO APFD 
ETS based ACO APSC, EET 

Hybrid ACO 
 

LBS APFD 
PSO 

 
WH-PSO APFD 

Greedy PSO 
 

Single Object 
Additional Greedy 

 
Enhanced Greedy 

 
Graphite greedy 
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Table 5: Latest test case prioritization techniques 
S.No Ref ID Algorithm Year Repository 

1 Shah et al.  Optimal Firefly Algorithm 2016 Elsevier 
2 Khatibsyarbini et al.  Firefly Algorithm 2019 IEEE 
3 Su et al.  Hybrid Firefly Algorithm 2020 ICCEA 
4 Di Nucci et al.  Hypervolume GA 2018 IEEE 
5 Zhang et al.  Ant Colony Optimization 2019 IEEE 
6 Solanki et al.  Modified ACO 2016 Springer 
7 Bian et al.  ETS Based ACO 2017 IEEE 
8 Ahmad et al.  Hybrid ACO 2018 Elsevier 
9 Jiang and Chan  LBS 2015 

 
10 Tyagi and Malhotra  PSO 2014 ICSPCT 
11 Khatibsyarbini et al.  Hybrid PSO 2017 JATIT 
12 Allawi et al.  G-PSO 2020 Springer 
13 Yoo and Harman  Additional Greedy Algorithm 2007 ACM 
14 Hsu et al.  Severity-weighted Greedy Algorithm 2014 IEEE 
15 Azizi and Do  Graphite Greedy Algorithm 2018 IEEE 

 
Table 6: Algorithm wise TCP percentage 

S.No. Algorithm Google Scholar IEEE Springer Total % 
1 Firefly 15800 30 867 16697 4.5 
2 GA 238000 1105 21076 260181 70.5 
3 ACO 16900 111 1998 19009 5.1 
4 LBS 19100 20 635 19755 5.3 
5 PSO 16700 556 6396 23652 6.4 
6 Greedy 16800 193 12468 29461 7.9 

Total 323300 2015 43440 368755 
 

 
Table 7 shows the inclusions and exclusions 

criteria of this study. 
 

Table 7: Inclusions and exclusions criteria of this study 

Inclusion criteria 
Exclusion 
Criteria 

(Regression Testing and/or Test case) and 
(Prioritization or Selection) and "Name of 
Algorithm" and (Journals or Conference 

Paper) and (IEEE or Springer or Elsevier) 

Non-Software 
Testing and/or 

Non-English 
paper 

5.1. State of the art challenges 

5.1.1. Measurement  

 Effectiveness: Most of the TCP techniques are 
validated in terms of their effectiveness by using 
APFD metrics. However, APFD is not quite suitable 
and has quite constraints. For example, in APFD 
metrics all test cases and faults have the same cost 
(Askarunisa et al., 2010). On the other hand, APFDc 
works well because it allows variable test cases 
and fault costs. But it only allows two parameters. 
It is recommended to uses such metrics which 
allow multiple parameters. There is another metric 
that could be utilized like Average Percentage 
Statement Coverage (APSC), Average Percentage 
Branch Coverage (APBC), Average Percentage Loop 
Coverage (APLC), and Average Percentage 
Condition Coverage (APCC) (Li et al., 2007). 

 Efficiency: Efficiency is also an important issue and 
there is no such proper matrix use to measure the 
efficiency of a technique. So far only things 
considered are actual prioritization time and test-
case execution time. It is not enough to consider 
these two parameters because most techniques 
require more information e.g., code coverage, etc. 
which may add more cost. Matrix-like ANOVA and 
ANCOVA (Nayak et al., 2019) and Average 
Percentage of Combinatorial Coverage (APCC) 
which considers combination weights and test 

costs (Wang et al., 2011). It is highly recommended 
to keep these things in mind before start 
prioritization so we could get accurate cost and 
computation time. 

5.1.2. Data utilization  

Study shows that effectiveness and efficiency of a 
logarithm depend upon various factors for example 
programming language and its framework, coverage, 
types of faults, etc. (Hao et al., 2016). Other than 
these factors the most important thing that could 
affect the effectiveness and efficiency of an algorithm 
is as follows: 
 
 Size of data set: Most of the above describe studies 

are only using a small set of SIR programs like 
bash, flex, grep, gzip, sed, etc. and some of them 
even used very small programs having 8-10 test 
cases (Khatibsyarbini et al., 2019; 2017; Su et al., 
2020; Di Nucci et al., 2018; Jiang and Chan, 2015; 
Yoo and Harman, 2007). 

 Incomplete data: Second most important thing is 
input data used in the algorithm. For example, the 
results of the APFD matrix depend upon the 
distance and weight of test cases which depends 
upon input given to the system (Khatibsyarbini et 
al., 2019). Test cases have a lot of other data 
available in them. But it is very difficult, time-
consuming, and expensive to utilize all the 
available data. The best example is system coding. 
The extraction and utilization of complete data 
could be a big challenge in the test case 
prioritization techniques which could give us 
different results.  

 Parameter Tuning: The tuning of parameters is 
could also affect the effectiveness and efficiency of 
an approach. For example, in few studies, 
parameter values were not changed and kept as it 
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is as in the previous work (Li et al., 2007). Tuning 
to that parameter could influence the overall 
results. Lu studies the influence of change in code 
or its parameter. Study shows that change in code 
and parameter could influence the effectiveness an 
algorithm (Lu et al., 2016).  

5.1.3. Execution time  

The study shows that most of the techniques are 
tested using the SIR program which is a small set of 
programs. These programs have test cases whose 
execution time is very low. It would be worth testing 
the above-given prioritization techniques on a test 
case where execution time is high. But testing of high 
execution time test cases could increase the cost. It 
would be better to consider the individual cost of 
test cases instead of the total cost. 

6. Conclusion and future work 

In this paper, an empirical survey has been 
conducted on Test case prioritization techniques. In 
this study, we review 40 TCP papers published in 
journals and conferences with a systematic process. 
The main objective of this study is to explore and 
determine which approaches have been studied in 
detail and which of them are left behind and where is 
more chance of improvement. We divided this study 
into the following stages. In Stage-I we created six 
research questions. Stage-II we selected repositories 
from where we are going to get our literature. Stage-
III we created a search methodology in which we 
search the most recent papers on state-of-the-art 
techniques. Stage-IV we setup inclusion and 
exclusion criteria which we utilized to search our 
data as shown above. The following suggestion was 
provided in this study: 

 
 Latest public data set utilization: Almost 60% of 

the papers selected in this study are using a public 
data set which is good but data is being updated 
regularly which is not satisfactory. By the 
development of different programming languages 
and programming techniques updated code must 
be utilized for testing. It looks like becoming a 
trend of using SIR data instead of actual data or 
updated public datasets. Although there are 
challenges of getting actual data set and re-testing 
by other researchers. 

 Consideration of multi-object TCP approaches: 
Study shows that 35% of the approaches are well-
defined multi-object and 20% of them are purely 
single object TCP techniques and the rest of them 
are not properly stated as single or multi objects. It 
would be highly recommended to create a multi-
object model-based approach that could set 
standards. 

 Consideration of cost criteria: Survey showed 
that that most of the studies focus on code base 
techniques and less focus is given to cost criteria. 
Some studies used cost criteria as a total cost of 
execution of test cases.  It would be better to 

consider the individual cost of test cases instead of 
the total cost. 

 State of the Art Techniques Comparison: Study 
showed that 46% of the techniques have only 
performed a comparison with the well-defined 
state-of-the-art methodologies. 26% of the 
approaches have not compared any state-of-the-art 
technique. It would be highly recommended to set 
up such models which accept the studies having 
compared with the state-of-the-art techniques. 
Also, it is good to conduct more studies for 
comparison of TCP techniques. 

 Survey study for Multi-Object TCP: Study 
showed that none of the review/survey studies 
were conducted on multi-object TCP techniques. It 
would be highly recommended to separate 
publishing the review study of multi-object TCP 
techniques.  

 Utilization of real-time dataset: Study showed 
that none of the approaches has been tested using 
any industrial or real-time dataset. It would be 
highly recommended to validate the test case 
prioritization techniques using some big industrial 
or real-time data set to get a clear picture of the 
new approach. However, only 10% of the studies 
used non-SIR data set but not industrial data set. 
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