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In real-time systems, a task or a set of tasks needs to be executed and 
completed successfully within a predefined time. Those systems require a 
scheduling technique or a set of scheduling methods to distribute the given 
task or the set of tasks among different processors or on a processor. In this 
paper, a new novel scheduling approach to minimize the overhead from 
context switching between several periodic tasks is presented. This method 
speeds up a required response time while ensuring that all tasks meet their 
deadline times and there is no deadline miss occurred. It is a dynamic-
priority technique that works either on a uniprocessor or several processors. 
In particular, it is proposed to be applied on multiprocessor environments 
since many applications run on several processors. Various examples are 
presented within this paper to demonstrate its optimality and efficiency. In 
addition, several comparison experiments with an earlier version of this 
approach were performed to demonstrate its efficiency and effectiveness too. 
Those experiments showed that this novel approach sped up the execution 
time from 15% to nearly around 46%. In addition, it proved that it reduced 
the number of a context switch between tasks from 12% to around 50% as 
shown from simulation tests. Furthermore, this approach delivered all 
tasks/jobs successfully and ensured there was no deadline miss happened. 
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1. Introduction 

*Real-time applications can be found in many 
systems such as mobile phones, medicine, aircraft, 
and satellites. Those systems depend on a temporal 
aspect along with a functional aspect to determine 
their correctness (Alsheikhy et al., 2016; Guo and 
Baruah, 2015). Their consistency is considered a 
major characteristic key factor (Guo and Baruah, 
2015). Consistency is defined as the amount of time 
taken to complete the desired task or a set of tasks 
before its or their timing requirements which are 
modeled as deadline times (Guo and Baruah, 2015). 
Hard real-time and soft real-time systems are the 
main two types of real-time systems. In hard real-
time systems, any deadline miss is considered a 
catastrophic failure (Alsheikhy et al., 2016; Guo and 
Baruah, 2015). In contrast, any deadline miss that 
occurs in soft real-time systems affects only a 
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system’s functioning which can be seen as the 
Quality of Service (QoS) (Guo and Baruah, 2015). A 
basic definition for the scheduling method is to 
determine which task or the set of tasks must be 
picked up first and assigned to the system resources 
such as CPU. Deciding which task must be selected 
first from several existing tasks in the ready queue 
and ensuring that no task misses its deadline time 
are considered the key purposes of any scheduling 
technique (Alsheikhy et al., 2016). The CPU and 
resource utilization in any hard real-time systems 
can be affected by a scheduling method. In addition, 
the scheduling policies determine a system 
performance which can be defined as the time taken 
to accept and complete the task before or on its 
deadline time (Alsheikhy et al., 2016). Furthermore, 
the ability to deliver all tasks without any deadline 
miss is also considered as the system performance. 
Image processing, satellite communication systems, 
monitoring activities in chemical plants, controlling 
commands in aircraft, and periodic activities in 
manufacturing are examples of real-time systems 
and applications (Alsheikhy et al., 2016; Guo and 
Baruah, 2015; Ren and Phan, 2015; Harkut and 
Agrawal, 2014; Kim et al., 2013). The objectives of 
scheduling approaches are summarized as follows: 1. 
Increasing the throughput, 2. Ensuring all tasks meet 
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their deadline times and no deadline miss occurs, 3. 
Maximizing CPU utilization “U”, where U is defined as 
the ratio of the summation between the execution 
time “Ct” and the deadline time (dt), and 4. Providing 
a good timely response time (Alsheikhy et al., 2016). 
The periodic tasks represent the most computational 
aspects in many real-time systems (Alsheikhy et al., 
2016). 

Real-time systems perform several tasks with 
different priorities. These tasks can be run on a 
uniprocessor environment or on multiprocessor 
environments (Guo and Baruah, 2015; Ren and Phan, 
2015; Harkut and Agrawal, 2014). Deploying real-
time systems on multiple processor platforms 
reduces the cost, weight, space, power consumption, 
and response time (Ren and Phan, 2015). In hard 
systems, multiple tasks with different functionalities 
compete for the system resources. Thus, providing 
an efficient CPU slot for timing guaranteed is 
required and needed (Ren and Phan, 2015; Harkut 
and Agrawal, 2014; Kim et al., 2013). Running 
several tasks with different priorities on real-time 
systems makes them more complex and even 
unpredictable than other systems (Ren and Phan, 
2015; Kim et al., 2013; Vora and Somkuwar, 2012). 
Typically, any task is assumed to be executed within 
its deadline time, here the execution time is defined 
as the Worst-Case Execution Time “WCET”. In some 
conditions or circumstances, a task may exceed its 
execution time before completing its cycle. 
Therefore, a deadline miss occurs and causes a 
disaster. So it is crucial to schedule several tasks on 
different processors by using a sufficient algorithm 
(Ren and Phan, 2015).  

Nowadays, two categories to schedule several 
tasks with different priorities exist (Alsheikhy et al., 
2016). These two categories are static and dynamic 
methods (Alsheikhy et al., 2016). Two types of 
scheduling schemes take place in each category, are 
the preemptive approach and the non-preemptive 
approach (Alsheikhy et al., 2016). In a preemptive 
algorithm, any process is blocked “jammed” by 
another process with a higher priority where any 
process finishes its execution time even if a higher 
priority process has arrived in a non-preemptive 
scheme (Alsheikhy et al., 2016; Guo and Baruah, 
2015; Ren and Phan, 2015; Harkut and Agrawal, 
2014). Several keys, points, characterize any 
scheduling policy and they are summarized as 
follows: 1. Consistency, 2. Resources utilization, 3. 
Fairness and 4. The time needed to execute any 
process or several processes (Alsheikhy et al., 2016). 
The interested readers are referred to Alsheikhy et 
al. (2016) for more information.  

In particular, several algorithms to schedule 
multiple periodic tasks to exist which are A) Rate 
Monotonic (RM), B) Deadline Monotonic (DM), C) 
Earliest Deadline First (EDF) and D) Least Slack 
Time first (LST) (Alsheikhy et al., 2016). RM scheme 
is constructed and designed as a static type since a 
fixed priority is assigned to any process according to 
its request rate. Any task with the highest request 
rate gets the highest priority and assigned first to the 

CPU or resources (Alsheikhy et al., 2016). That 
priority is also fixed during the run-time stage and 
never changes. DM can be seen as a general version 
of the RM method. They have almost the same 
principle of working, however, in DM, a priority 
assigned to any process is inversely proportional to 
its deadline time (Alsheikhy et al., 2016). Therefore, 
a task with the shortest deadline gets the highest 
priority and assigned first. The EDF technique is a 
dynamic one since any task with the shortest 
deadline time becomes the first task in the ready 
queue among all other tasks. This scheme can be 
seen as the optimal method in uniprocessor and 
multiple processor environments for both types of 
tasks “periodic and aperiodic (Alsheikhy et al., 
2016). In the LST approach, any task or set of tasks 
with the smallest slack, which is defined as a value of 
the difference between its/their deadline time(s) (dt) 
with its/their current remaining execution time(s) 
(crt) and a current time (t), is selected first and then 
allocated to the available resources such CPU(s) for 
execution. On the other hand, the slack can be 
defined as the remaining spare time. Fig. 1 depicts 
the characteristics, which are known as the timing 
constraints, of periodic tasks in real-time systems. 

In Fig. 1, “r” is a release time and it is the time 
when any task or a set of tasks appears at the ready 
queue, “c” is the execution time, also known as the 
remaining execution time, “P” is a period which is a 
time taken for any task to repeat its cycle, “D” is an 
absolute deadline time which is defined as a time 
interval between the release time “r” and the period 
“P” of the process.  

In particular, D=d–r, “t” represents the current 
time as stated earlier, and lastly “d” is a relative 
deadline time which is an interval time between the 
first appearing of any task at the ready queue and its 
deadline time; mathematically, d=D+r.  

In this paper, the relative deadline time “r” and 
the period “p” are considered equal so d=p 
(Alsheikhy et al., 2016). 

 

 
Fig. 1: Timing constraints of periodic tasks 

 

This paper makes the following contributions as 
follows: 

 
 Minimizing the overhead occurs from context 

switching between several processes on different 
processors. 

 Minimizing the response time for any task to be 
executed and successfully completed. 

 Delivering all tasks without any deadline miss for 
safety and/or severity sake by using an efficient 
hybrid approach that works either on the 
uniprocessor or on multiple processors. 
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The hybrid approach refers to cooperating with 
the EDF scheme to decide which process must be 
selected first and gains the system resource such as 
CPU when needed. The proposed technique is 
applied during run-time to select a process from 
several ones in the ready queue which makes it a 
dynamic feasible approach. Feasible means no 
deadline miss occurs under any condition(s) or 
circumstances. 

The rest of the paper is organized as follows, we 
present the related work on scheduling schemes in 
Section 2, followed by a detailed discussion of the 
proposed approach in section 3. Section 4 includes 
simulation results to show the validation of the 
proposed approach on a multiprocessor 
environment. Section 5 concludes the paper. 

2. Related works 

Working on scheduling problems is no easy task, 
they are considered NP problems (Guo and Baruah, 
2015). Several operating systems execute 
multitasking operations on different processors. 
Hence, performing multiple tasking requires an 
efficient scheduling scheme in order to guarantee 
that all tasks meet their deadline times and also be 
executed fairly. Several attempts to solve real-time 
scheduling problems have been performed and 
developed. However, they still exist with some 
limitations such as insufficient to exploit maximum 
CPU utilization, some CPUs might be in idling mode 
“state” which causes a catastrophic failure to a 
system and suffering from high overhead from 
context switching between several processes on the 
uniprocessor or on multiple ones. 

Alsheikhy et al. (2016) proposed an effective 
dynamic algorithm for scheduling periodic tasks in 
real-time systems. That technique uses a rate “R” 
value to determine which task must be selected first 
and then allocated to the CPU. The rate is computed 
using the available information about three factors 
which are: The slack “sl”, the deadline time “dt” and 
the current time “t”. Any task with the smallest rate 
is chosen first and then assigned to the CPU, if 
multiple tasks exist with the same rate R then a task 
with the shortest deadline time “dt” is selected first. 
It is a very effective method and delivers all tasks 
with no deadline miss. However, it suffers from too 
high overhead from context switching. The new 
proposed scheme in this paper minimizes that 
overhead around 12% to 50% as observed from the 
experiments.  

Guo and Baruah (2015) proposed a 
Neurodynamic method for scheduling real-time 
tasks by maximizing piecewise linear utility. Initially, 
they performed several literature reviews on a set of 
real-time scheduling issues when using a piecewise 
linear utility. A Neural Network-based analysis and 
optimization is used to solve those problems. A ratio 
bound of 0.5 was achieved and they considered their 
method as optimal when there is no overload. 
Nevertheless, the method works only in the 
uniprocessor environment. The presented algorithm 

herein works either on the uniprocessor or 
multiprocessor environments as it can be applied in 
any environment without any issue. It is very 
efficient and effective since it is capable of delivering 
all tasks to meet their requirement deadline times.  

Ren and Phan (2015) proposed an approach to 
schedule mixed-criticality tasks on multiprocessors 
using a Task Grouping technique. Their method was 
developed to provide mixed-criticality timing 
guarantees for mixed-criticality tasks. The algorithm 
works by partitioning a high-priority task with a 
subset of low priority tasks into multiple processors. 
It encapsulates them using the task grouping method 
based on the EDF policy. Mixed-integer nonlinear 
programming was used to provide the Schedulability 
analysis for the developed approach. However, it is 
unable to exploit the maximum CPU utilization since 
there is an idling state in some CPUs during the run 
time. The method presented in this paper provides 
the maximum utilization for all CPUs since no one is 
in idling mode.  

Harkut and Agrawal (2014) performed a survey 
on some of the classic real-time scheduling schemes. 
The purpose of their survey was to show the impact 
of choosing a scheduling algorithm in designing and 
developing a real-time system. The survey was 
applied mainly to the RM and the EDF algorithms. 
More information about the survey can be found in 
(Harkut and Agrawal, 2014).  

Kim et al. (2013) proposed an effective task 
scheduling method for real-time systems using an 
iterative clustering slack optimization scheme. It 
uses the Branch and Bound technique to capitalize 
the slack distribution to optimize it. However, it is a 
static one while herein algorithm is dynamic and 
works in the online mode. The interested readers are 
referred to Kim et al. (2013) for more information. 

3. The proposed algorithm 

The algorithm developed in Alsheikhy et al. 
(2016) is very efficient and reliable in terms of 
delivering all tasks and maintaining system stability. 
However, that scheme suffers from high overhead 
from context switching between several tasks on 
different processors. In addition, checking each time 
unit to decide which task should be selected is also 
considered very costly in terms of computations 
needed and the memory space required for it. In this 
paper, the algorithm in Alsheikhy et al. (2016) was 
modified and enhanced in order to: 
 
 Maintain system stability by meeting all timing 

constraints for any system. 
 Maintain maximum CPU utilization. 
 Minimize the response time needed to complete 

the tasks in the ready queue along with reducing 
the overhead from context switching. 

 
Keep in mind that the proposed scheme acts 

exactly like the method in Alsheikhy et al. (2016) 
when min (dt–cirt)=1. In many scenarios, min (dt–cirt) 
≠1, “min” stands for a minimum value. From 
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previous mentioned three points, the motivations for 
the developed scheme can be summarized as 
follows: 

 
 Maintaining Maximum CPUs utilization “U”, where 

U can be defined as U = ∑
𝐶𝑘

𝑑𝑘

𝑛

𝑘=1
, n represents the 

total number of tasks in the ready queue where k is 
the task index and keeping all other resources 
utilized. 

 Feasible method where no deadline miss occurs 
under any circumstances. 

 Efficient method on both platforms (uniprocessor 
and multiple processors. 

 A dynamic mechanism is applied in online mode to 
deliver all tasks in order to satisfy their timing 
constraints.  

 
In the proposed method, several assumptions are 

made to guarantee the satisfaction of all timing 
constraints and they are summarized as follows: 

 
1. Task migration is allowed for all processes. Thus, 

any task can complete its execution on any 
available processor upon selection. 

2. It is a preemptive scheme, so any task or set of 
tasks is jammed by another task with a higher 
priority. 

3. All tasks are independent and available in the 
ready queue. Appearing on multiple processors at 
the same time is strictly banned. 

4. Combining with the EDF algorithm when and if 
needed. 

5. Any task or set of tasks that have multiple 
consecutive selections is forced to be executed on 
the same processor if available and possible to 
reduce the number of contexts switching. This 
assumption will help to minimize the overhead; 
however, it is not the only solution to achieve it.  
 
The following steps illustrate the working 

mechanism for the proposed algorithm. 
 

 Determine a minimum value ∆δ for all processes in 
the ready queue where: 

 

∆𝛿 =  𝑑i –  𝑐irt                                                                                 (1) 
 

Initially, all the current remaining execution times crt 
are equal to the execution times c assigned by the 
system. ∆δ represents the maximum time slot 
allocated by the CPU to each task in the ready list. 

 

 Examine each process to compute its rate Ʀ, also 

known as the ratio, using the following equation: 
 

Ʀi = 
𝑠𝑙𝑖

𝑑𝑖−𝑡
                                                                                            (2) 

 

where, “sl” refers to the slack value as stated earlier 
and i is the process index. sl is determined as 
follows: 

 

𝑠𝑙i =  𝑑ti –  𝑐irt –  𝑡                                                                          (3) 

 
The purpose of finding the ratio is to know which 

process or task is far from its deadline time, hence, 
there is enough time to execute another process that 
is close to its deadline time. 
 
 Any task with the smallest rate is chosen first and 

then allocated to the CPU if it is only the 
uniprocessor environment or several tasks with 
the smallest rate are assigned to multiple 
processors. If several tasks have a common rate, 
then the task with the shortest deadline time is 
selected first and assigned to the CPU. 

 Every assigned task or set of tasks is executed in 
the CPU(s) for a time unit equal to the ∆δ only if 
needed. If the execution time is less, then it will be 
executed for that amount of time.  

 If a new process is added to the ready queue or an 
existing one is removed due to its completion, then 
determining a new value for the minimum ∆δ is 
performed again. 

 All previous procedures are repeated until there 
are no more tasks in the ready queue. 

 
Two examples in the uniprocessor environment 

are given to demonstrate how the proposed 
algorithm works in order to show its efficiency and 
validation. Working on the uniprocessor 
environment implies that it works perfectly on 
multiple processor environments. Furthermore, a 
simulation in Matlab was developed to apply the 
proposed scheme in many scenarios for a different 
number of sets and multiple tasks in each set. 
Uniprocessor and multiple processor environments 
are included in the simulation experiments. In 
applications such as air traffic control, medical, 
manufacturing, and monitoring, the proposed 
scheme can be applied to deliver all periodic tasks 
successfully to meet their timing constraints. 
Example 1 is taken from Alsheikhy et al. (2016) as 
Table 1 depicts three tasks with their timing 
constraints which are the execution time and the 
deadline time. 

 
Example 1: Table 1 illustrates the number of tasks 
in the ready queue with their deadline and execution 
times in the uniprocessor environment. 

 
Table 1: Available tasks in single CPU 

Tasks Release Time Deadline Time Execution Time 
T1 0 4 1 
T2 0 5 2 
T3 0 7 2 

 

By using the algorithm in Alsheikhy et al. (2016), 
the Gantt chart for scheduling all three tasks is 
shown as Fig. 2, due to the space limitation and 
quality purpose, a part of the Gantt chart is 
illustrated. 
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Fig. 2: Gantt chart for scheduling all three tasks 

 

For the proposed method: 
 

1- Initially, current time t=0, which is the starting 
time, ∆δ1=4-1=3, ∆δ2=5-2=3, ∆δ3=7-2=5, so 
min(∆δ={3,3,5})=3. 

2- Ʀ1=
[4−1−0]

[4−0]
= 0.75  

Ʀ2= 
[5−2−0]

[5−0]
= 0.60  

Ʀ3= 
[7−2−0]

[7−0]
= 0.714  

 
So T2 has the smallest rate, then it is allocated for 

the CPU and is executed for two-time units. T2 will be 
removed from the ready list. 

 

3- Ʀ1= 
[4−1−2]

[4−2]
= 0.50 

Ʀ3= 
[7−2−2]

[7−2]
= 0.60  

 
T1 is chosen since it has the smallest rate. It will 

be executed for a one-time unit and then removed 
from the ready list. 

 
4- T3 is the only task left on the list, so it will be 

executed without needing to determine its rate. 
Now during the processing of executing T3, T1 has 
returned to the list. And T3 is removed. T2 is on 
the ready list after finishing executing T3 since its 
new period. Repeating the previous procedures 
for a period will provide the following Gantt chart 
(Fig. 3), each orange and the yellow square 
represents two-time units while the blue square 
takes a one-time unit. 

 

 
Fig. 3: Repeating the previous procedures for a period 

 
By doing a comparison study for both schemes in 

terms of the Number of Context Switching “NCS” 
until time=14, we obtain the following results: 
NCS1=14 and NCS2=10. Thus, the proposed algorithm 
within this paper provides a smaller number of 
context switching which is around a 28.5% reduction 
in the overhead to deliver all processes successfully 
without making any deadline miss. Table 2 
illustrates a set of three jobs/tasks with their 
execution and deadline times as it was taken from 
(Hwang et al., 2011).  

 
Example 2: three tasks with their timing constraints 
as in Hwang et al. (2011) are illustrated in Table 2. 

The Gantt chart for example 2 after applying the 
algorithm developed in Alsheikhy et al. (2016) is 
demonstrated as follows (Fig. 4), only part of it is 
shown due to the space limitation as mentioned in 

the previous example. Each yellow square 
represents the execution process of T3, the orange 
squares represent the execution process of T2 while 
the blue ones refer to the execution process of T1. 

 
Table 2: Available tasks in single CPU 

Tasks Release Time Deadline Time Execution Time 
T1 0 12 3 
T2 0 6 3 
T3 0 4 1 

 

 
Fig. 4: Gantt chart for example 2 after applying the 

algorithm 
 

The developed algorithm in Alsheikhy et al. 
(2016) was able to guarantee the timing constraints 
for all tasks by delivering their execution 
successfully. However, it suffers from high overhead 
in context switching. NCS1=10. The Gantt chart from 
using the proposed technique within this paper is 
illustrated as follows (Fig. 5), min ∆δ {9, 3, 3}=3. 

 

 
Fig. 5: The Gantt chart from using the proposed technique 

within this paper 
 

The value for NCS2, which refers to the proposed 
method, is found to be 5 which is 50% less than the 
overhead obtained from the developed scheme in 
Alsheikhy et al. (2016). So the reduction achieved is 
50% which is very acceptable and desirable. 

4. Simulation experiments 

The developed simulation in MATLAB helped to 
test the proposed algorithm by performing multiple 
experiments with different scenarios and 
circumstances. More than 100,000 tasks were 
created randomly with different deadlines and 
execution times. Furthermore, around 300 sets were 
randomly generated and a different number of tasks 
were created in each set. The maximum time taken 
to complete 300 sets with 2000 tasks in each set was 
about 17 hours since the simulation was testing both 
methods. The proposed approach delivered all tasks 
successfully without allowing any deadline miss to 
occur. The simulation was run more than 10,000 
times with several conditions and circumstances 
each time for both types of environments. During the 
simulation test, the number of used processors “M” 
varied from 1 to 10 as maximum. The simulation was 
developed to tell and show how many tasks met 
their timing constraints, how many tasks were 
unable to be executed successfully, the time needed 
to finish all tasks and the Number of Context 
Switching that occurred during the experiment. 

The simulation tests both schemes, the one 
developed in Alsheikhy et al. (2016) and the 
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proposed method within this paper. Both the 
deadline and the execution times were randomly 
generated with condition that c≤d, the arrival time 
(r) was also generated randomly by the simulation 
under a constraint that r<c and d. Information about 
the used platform to perform the experiments is 
shown in Table 3. 

 
Table 3: Characteristics of used platform 

Platform Name 
System 

Type 
CPU Speed RAM 

Windows 10 
Pro 

64 bit 
I5 core 2 

Due 
2.67 
GHz 

4 GB 

 

Several scenarios are illustrated in the following 
tables with the results for both techniques. We will 
refer to the algorithm developed in Alsheikhy et al. 
(2016) as 1 and the proposed algorithm as 2 for the 
simple reason. 

The following abbreviations are used in the table: 
NoI is the Number of Iterations, NST is the number of 
sets and tasks in each set, NCT is the number of 
completed tasks, NDM is the number of deadlines 
miss occurred, TET is the total execution time 
needed to complete all tasks in the list in (second 
“s”) and NCS is stated earlier. Sp represents the 
speed up achieved in the proposed algorithm 
whereas Rd stands for the obtained reduction in 
NCS. 

 
Scenario 1: Uniprocessor with the same arrive time 
(r=0), Table 4 shows that there are different sets and 
all sets hold the same number of tasks. All sets run 
for the same number of iterations too. 

 
Table 4: Results of uniprocessor for NCT and NDM when 

r=0 

NoI NST 
NCT NDM 

1 2 1 2 
1000 3/16 598 536 0 0 
3500 6/10 1001 893 0 0 
7600 5/35 1691 1386 0 0 
9000 11/60 1172 935 0 0 

 

Table 4 shows that both algorithms were 
delivering all tasks successfully to meet their 
deadline times without allowing deadline miss to 
occur. Table 5 illustrates the results of the previous 
scenario for TET, NCS, Sp, and Rd. in each run. 

 
Table 5: Results for TET, NCS, Sp, and Rd 

NoI NST 
TET NCS 

1 2 Sp % 1 2 Rd % 
1000 3/16 852 556 34 948 781 17 
3500 6/10 335 198 41 1324 989 25 
7600 5/35 647 412 36 2251 1906 15 
9000 11/60 907 629 30 3591 3162 12 

 

Table 5 illustrates that the proposed algorithm 
yielded better results in terms of improvement in the 
speed up for the response time and the reduction 
achieved in the overhead.  

 
Scenario 2: Uniprocessor with different arrival 
times. Table 6 indicates the number of sets and the 
number of jobs in each set. In addition, all sets have 

the same number of iterations during the simulation 
tests. Furthermore, this table shows that both 
approaches perform perfectly in terms of finishing 
all tasks without allowing any deadline miss during 
the tests.  

 
Table 6: Results of uniprocessor for NCT and NDM when 

r≥0 

NoI NST 
NCT NDM 

1 2 1 2 
770 4/20 413 327 0 0 

3000 8/40 894 691 0 0 
6830 7/120 820 773 0 0 
9000 10/25 2406 2108 0 0 

 

Both approaches delivered all tasks successfully. 
Nevertheless, the proposed algorithm provided 
better results in terms of NCT. 

Table 7 illustrates the results of the previous 
scenario for TET, NCS, Sp, and Rd. in each run. 

 
Table 7: Results for TET, NCS, Sp, and Rd 

NoI NST 
TET NCS 

1 2 Sp % 1 2 Rd % 
770 4/20 102 76 25 332 271 18 

3000 8/40 297 201 32 591 484 18 
6830 7/120 839 709 15 2792 2456 12 
9000 10/25 245 179 27 319 248 22 

 

The proposed method provided better 
achievement for the speed up improvement and in 
the overhead reduction. Using more CPUs will 
produce more enhancement for the speed up and 
more minimization in the overhead. 

 
Scenario 3: Different arrival time with M=7. Table 8 
depicts that 7 processors were used in order to allow 
task migration between different processors. 

 
Table 8: Results of 7 processors for NCT and NDM when 

r≥0 

NoI NST 
NCT NDM 

1 2 1 2 
500 6/60 1302 974 0 0 

8000 11/300 2054 1659 0 0 
10000 20/150 2992 2698 0 0 

 

Table 9 illustrates the results of the previous 
scenario for TET, NCS, Sp, and Rd. in each run. 

 
Table 9: Results for TET, NCS, Sp, and Rd 

NoI NST 
TET NCS 

1 2 Sp % 1 2 Rd % 
500 6/60 35 19 46 109 62 43 
800 11/89 208 128 38 287 139 51 

1000 20/150 326 211 35 752 578 23 

 

The more processors are used, the more 
improvement is achieved for both performance 
metrics which are the speed up for the response time 
and reduction in the overhead. 

5. Conclusion 

A dynamic algorithm to schedule periodic tasks in 
real-time systems is presented in this paper. That 
scheme is capable of delivering all tasks in the ready 
queue to meet their timing constraints without 
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missing any deadline. It provides full CPU(s) 
utilization and maintains stability for the system. 
Furthermore, it provides a good timely response 
time as observed in the experiments that were 
conducted and produces a better reduction in the 
overhead. Several examples were given by the 
simulation to demonstrate how the proposed 
scheme worked. 
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