
 International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 75-81

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

75

Dynamic approach to minimize overhead and response time in scheduling
periodic real-time tasks

Ahmed A. Alsheikhy *

Department of Electrical Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 19 August 2020
Received in revised form
19 December 2020
Accepted 20 December 2020

In real-time systems, a task or a set of tasks needs to be executed and
completed successfully within a predefined time. Those systems require a
scheduling technique or a set of scheduling methods to distribute the given
task or the set of tasks among different processors or on a processor. In this
paper, a new novel scheduling approach to minimize the overhead from
context switching between several periodic tasks is presented. This method
speeds up a required response time while ensuring that all tasks meet their
deadline times and there is no deadline miss occurred. It is a dynamic-
priority technique that works either on a uniprocessor or several processors.
In particular, it is proposed to be applied on multiprocessor environments
since many applications run on several processors. Various examples are
presented within this paper to demonstrate its optimality and efficiency. In
addition, several comparison experiments with an earlier version of this
approach were performed to demonstrate its efficiency and effectiveness too.
Those experiments showed that this novel approach sped up the execution
time from 15% to nearly around 46%. In addition, it proved that it reduced
the number of a context switch between tasks from 12% to around 50% as
shown from simulation tests. Furthermore, this approach delivered all
tasks/jobs successfully and ensured there was no deadline miss happened.

Keywords:
Scheduling
Hard real-time systems
Overhead
Response time
Dynamic-priority algorithm

© 2021 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Real-time applications can be found in many
systems such as mobile phones, medicine, aircraft,
and satellites. Those systems depend on a temporal
aspect along with a functional aspect to determine
their correctness (Alsheikhy et al., 2016; Guo and
Baruah, 2015). Their consistency is considered a
major characteristic key factor (Guo and Baruah,
2015). Consistency is defined as the amount of time
taken to complete the desired task or a set of tasks
before its or their timing requirements which are
modeled as deadline times (Guo and Baruah, 2015).
Hard real-time and soft real-time systems are the
main two types of real-time systems. In hard real-
time systems, any deadline miss is considered a
catastrophic failure (Alsheikhy et al., 2016; Guo and
Baruah, 2015). In contrast, any deadline miss that
occurs in soft real-time systems affects only a

* Corresponding Author.
Email Address: aalsheikhy@nbu.edu.sa
https://doi.org/10.21833/ijaas.2021.04.009

 Corresponding author's ORCID profile:
https://orcid.org/0000-0002-9811-0341
2313-626X/© 2021 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

system’s functioning which can be seen as the
Quality of Service (QoS) (Guo and Baruah, 2015). A
basic definition for the scheduling method is to
determine which task or the set of tasks must be
picked up first and assigned to the system resources
such as CPU. Deciding which task must be selected
first from several existing tasks in the ready queue
and ensuring that no task misses its deadline time
are considered the key purposes of any scheduling
technique (Alsheikhy et al., 2016). The CPU and
resource utilization in any hard real-time systems
can be affected by a scheduling method. In addition,
the scheduling policies determine a system
performance which can be defined as the time taken
to accept and complete the task before or on its
deadline time (Alsheikhy et al., 2016). Furthermore,
the ability to deliver all tasks without any deadline
miss is also considered as the system performance.
Image processing, satellite communication systems,
monitoring activities in chemical plants, controlling
commands in aircraft, and periodic activities in
manufacturing are examples of real-time systems
and applications (Alsheikhy et al., 2016; Guo and
Baruah, 2015; Ren and Phan, 2015; Harkut and
Agrawal, 2014; Kim et al., 2013). The objectives of
scheduling approaches are summarized as follows: 1.
Increasing the throughput, 2. Ensuring all tasks meet

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aalsheikhy@nbu.edu.sa
https://doi.org/10.21833/ijaas.2021.04.009
https://orcid.org/0000-0002-9811-0341
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2021.04.009&domain=pdf&

Ahmed A. Alsheikhy/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 75-81

76

their deadline times and no deadline miss occurs, 3.
Maximizing CPU utilization “U”, where U is defined as
the ratio of the summation between the execution
time “Ct” and the deadline time (dt), and 4. Providing
a good timely response time (Alsheikhy et al., 2016).
The periodic tasks represent the most computational
aspects in many real-time systems (Alsheikhy et al.,
2016).

Real-time systems perform several tasks with
different priorities. These tasks can be run on a
uniprocessor environment or on multiprocessor
environments (Guo and Baruah, 2015; Ren and Phan,
2015; Harkut and Agrawal, 2014). Deploying real-
time systems on multiple processor platforms
reduces the cost, weight, space, power consumption,
and response time (Ren and Phan, 2015). In hard
systems, multiple tasks with different functionalities
compete for the system resources. Thus, providing
an efficient CPU slot for timing guaranteed is
required and needed (Ren and Phan, 2015; Harkut
and Agrawal, 2014; Kim et al., 2013). Running
several tasks with different priorities on real-time
systems makes them more complex and even
unpredictable than other systems (Ren and Phan,
2015; Kim et al., 2013; Vora and Somkuwar, 2012).
Typically, any task is assumed to be executed within
its deadline time, here the execution time is defined
as the Worst-Case Execution Time “WCET”. In some
conditions or circumstances, a task may exceed its
execution time before completing its cycle.
Therefore, a deadline miss occurs and causes a
disaster. So it is crucial to schedule several tasks on
different processors by using a sufficient algorithm
(Ren and Phan, 2015).

Nowadays, two categories to schedule several
tasks with different priorities exist (Alsheikhy et al.,
2016). These two categories are static and dynamic
methods (Alsheikhy et al., 2016). Two types of
scheduling schemes take place in each category, are
the preemptive approach and the non-preemptive
approach (Alsheikhy et al., 2016). In a preemptive
algorithm, any process is blocked “jammed” by
another process with a higher priority where any
process finishes its execution time even if a higher
priority process has arrived in a non-preemptive
scheme (Alsheikhy et al., 2016; Guo and Baruah,
2015; Ren and Phan, 2015; Harkut and Agrawal,
2014). Several keys, points, characterize any
scheduling policy and they are summarized as
follows: 1. Consistency, 2. Resources utilization, 3.
Fairness and 4. The time needed to execute any
process or several processes (Alsheikhy et al., 2016).
The interested readers are referred to Alsheikhy et
al. (2016) for more information.

In particular, several algorithms to schedule
multiple periodic tasks to exist which are A) Rate
Monotonic (RM), B) Deadline Monotonic (DM), C)
Earliest Deadline First (EDF) and D) Least Slack
Time first (LST) (Alsheikhy et al., 2016). RM scheme
is constructed and designed as a static type since a
fixed priority is assigned to any process according to
its request rate. Any task with the highest request
rate gets the highest priority and assigned first to the

CPU or resources (Alsheikhy et al., 2016). That
priority is also fixed during the run-time stage and
never changes. DM can be seen as a general version
of the RM method. They have almost the same
principle of working, however, in DM, a priority
assigned to any process is inversely proportional to
its deadline time (Alsheikhy et al., 2016). Therefore,
a task with the shortest deadline gets the highest
priority and assigned first. The EDF technique is a
dynamic one since any task with the shortest
deadline time becomes the first task in the ready
queue among all other tasks. This scheme can be
seen as the optimal method in uniprocessor and
multiple processor environments for both types of
tasks “periodic and aperiodic (Alsheikhy et al.,
2016). In the LST approach, any task or set of tasks
with the smallest slack, which is defined as a value of
the difference between its/their deadline time(s) (dt)
with its/their current remaining execution time(s)
(crt) and a current time (t), is selected first and then
allocated to the available resources such CPU(s) for
execution. On the other hand, the slack can be
defined as the remaining spare time. Fig. 1 depicts
the characteristics, which are known as the timing
constraints, of periodic tasks in real-time systems.

In Fig. 1, “r” is a release time and it is the time
when any task or a set of tasks appears at the ready
queue, “c” is the execution time, also known as the
remaining execution time, “P” is a period which is a
time taken for any task to repeat its cycle, “D” is an
absolute deadline time which is defined as a time
interval between the release time “r” and the period
“P” of the process.

In particular, D=d–r, “t” represents the current
time as stated earlier, and lastly “d” is a relative
deadline time which is an interval time between the
first appearing of any task at the ready queue and its
deadline time; mathematically, d=D+r.

In this paper, the relative deadline time “r” and
the period “p” are considered equal so d=p
(Alsheikhy et al., 2016).

Fig. 1: Timing constraints of periodic tasks

This paper makes the following contributions as
follows:

 Minimizing the overhead occurs from context

switching between several processes on different
processors.

 Minimizing the response time for any task to be
executed and successfully completed.

 Delivering all tasks without any deadline miss for
safety and/or severity sake by using an efficient
hybrid approach that works either on the
uniprocessor or on multiple processors.

Ahmed A. Alsheikhy/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 75-81

77

The hybrid approach refers to cooperating with
the EDF scheme to decide which process must be
selected first and gains the system resource such as
CPU when needed. The proposed technique is
applied during run-time to select a process from
several ones in the ready queue which makes it a
dynamic feasible approach. Feasible means no
deadline miss occurs under any condition(s) or
circumstances.

The rest of the paper is organized as follows, we
present the related work on scheduling schemes in
Section 2, followed by a detailed discussion of the
proposed approach in section 3. Section 4 includes
simulation results to show the validation of the
proposed approach on a multiprocessor
environment. Section 5 concludes the paper.

2. Related works

Working on scheduling problems is no easy task,
they are considered NP problems (Guo and Baruah,
2015). Several operating systems execute
multitasking operations on different processors.
Hence, performing multiple tasking requires an
efficient scheduling scheme in order to guarantee
that all tasks meet their deadline times and also be
executed fairly. Several attempts to solve real-time
scheduling problems have been performed and
developed. However, they still exist with some
limitations such as insufficient to exploit maximum
CPU utilization, some CPUs might be in idling mode
“state” which causes a catastrophic failure to a
system and suffering from high overhead from
context switching between several processes on the
uniprocessor or on multiple ones.

Alsheikhy et al. (2016) proposed an effective
dynamic algorithm for scheduling periodic tasks in
real-time systems. That technique uses a rate “R”
value to determine which task must be selected first
and then allocated to the CPU. The rate is computed
using the available information about three factors
which are: The slack “sl”, the deadline time “dt” and
the current time “t”. Any task with the smallest rate
is chosen first and then assigned to the CPU, if
multiple tasks exist with the same rate R then a task
with the shortest deadline time “dt” is selected first.
It is a very effective method and delivers all tasks
with no deadline miss. However, it suffers from too
high overhead from context switching. The new
proposed scheme in this paper minimizes that
overhead around 12% to 50% as observed from the
experiments.

Guo and Baruah (2015) proposed a
Neurodynamic method for scheduling real-time
tasks by maximizing piecewise linear utility. Initially,
they performed several literature reviews on a set of
real-time scheduling issues when using a piecewise
linear utility. A Neural Network-based analysis and
optimization is used to solve those problems. A ratio
bound of 0.5 was achieved and they considered their
method as optimal when there is no overload.
Nevertheless, the method works only in the
uniprocessor environment. The presented algorithm

herein works either on the uniprocessor or
multiprocessor environments as it can be applied in
any environment without any issue. It is very
efficient and effective since it is capable of delivering
all tasks to meet their requirement deadline times.

Ren and Phan (2015) proposed an approach to
schedule mixed-criticality tasks on multiprocessors
using a Task Grouping technique. Their method was
developed to provide mixed-criticality timing
guarantees for mixed-criticality tasks. The algorithm
works by partitioning a high-priority task with a
subset of low priority tasks into multiple processors.
It encapsulates them using the task grouping method
based on the EDF policy. Mixed-integer nonlinear
programming was used to provide the Schedulability
analysis for the developed approach. However, it is
unable to exploit the maximum CPU utilization since
there is an idling state in some CPUs during the run
time. The method presented in this paper provides
the maximum utilization for all CPUs since no one is
in idling mode.

Harkut and Agrawal (2014) performed a survey
on some of the classic real-time scheduling schemes.
The purpose of their survey was to show the impact
of choosing a scheduling algorithm in designing and
developing a real-time system. The survey was
applied mainly to the RM and the EDF algorithms.
More information about the survey can be found in
(Harkut and Agrawal, 2014).

Kim et al. (2013) proposed an effective task
scheduling method for real-time systems using an
iterative clustering slack optimization scheme. It
uses the Branch and Bound technique to capitalize
the slack distribution to optimize it. However, it is a
static one while herein algorithm is dynamic and
works in the online mode. The interested readers are
referred to Kim et al. (2013) for more information.

3. The proposed algorithm

The algorithm developed in Alsheikhy et al.
(2016) is very efficient and reliable in terms of
delivering all tasks and maintaining system stability.
However, that scheme suffers from high overhead
from context switching between several tasks on
different processors. In addition, checking each time
unit to decide which task should be selected is also
considered very costly in terms of computations
needed and the memory space required for it. In this
paper, the algorithm in Alsheikhy et al. (2016) was
modified and enhanced in order to:

 Maintain system stability by meeting all timing

constraints for any system.
 Maintain maximum CPU utilization.
 Minimize the response time needed to complete

the tasks in the ready queue along with reducing
the overhead from context switching.

Keep in mind that the proposed scheme acts

exactly like the method in Alsheikhy et al. (2016)
when min (dt–cirt)=1. In many scenarios, min (dt–cirt)
≠1, “min” stands for a minimum value. From

Ahmed A. Alsheikhy/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 75-81

78

previous mentioned three points, the motivations for
the developed scheme can be summarized as
follows:

 Maintaining Maximum CPUs utilization “U”, where

U can be defined as U = ∑
𝐶𝑘

𝑑𝑘

𝑛

𝑘=1
, n represents the

total number of tasks in the ready queue where k is
the task index and keeping all other resources
utilized.

 Feasible method where no deadline miss occurs
under any circumstances.

 Efficient method on both platforms (uniprocessor
and multiple processors.

 A dynamic mechanism is applied in online mode to
deliver all tasks in order to satisfy their timing
constraints.

In the proposed method, several assumptions are

made to guarantee the satisfaction of all timing
constraints and they are summarized as follows:

1. Task migration is allowed for all processes. Thus,

any task can complete its execution on any
available processor upon selection.

2. It is a preemptive scheme, so any task or set of
tasks is jammed by another task with a higher
priority.

3. All tasks are independent and available in the
ready queue. Appearing on multiple processors at
the same time is strictly banned.

4. Combining with the EDF algorithm when and if
needed.

5. Any task or set of tasks that have multiple
consecutive selections is forced to be executed on
the same processor if available and possible to
reduce the number of contexts switching. This
assumption will help to minimize the overhead;
however, it is not the only solution to achieve it.

The following steps illustrate the working

mechanism for the proposed algorithm.

 Determine a minimum value ∆δ for all processes in
the ready queue where:

∆𝛿 = 𝑑i – 𝑐irt (1)

Initially, all the current remaining execution times crt
are equal to the execution times c assigned by the
system. ∆δ represents the maximum time slot
allocated by the CPU to each task in the ready list.

 Examine each process to compute its rate Ʀ, also

known as the ratio, using the following equation:

Ʀi =
𝑠𝑙𝑖

𝑑𝑖−𝑡
 (2)

where, “sl” refers to the slack value as stated earlier
and i is the process index. sl is determined as
follows:

𝑠𝑙i = 𝑑ti – 𝑐irt – 𝑡 (3)

The purpose of finding the ratio is to know which

process or task is far from its deadline time, hence,
there is enough time to execute another process that
is close to its deadline time.

 Any task with the smallest rate is chosen first and

then allocated to the CPU if it is only the
uniprocessor environment or several tasks with
the smallest rate are assigned to multiple
processors. If several tasks have a common rate,
then the task with the shortest deadline time is
selected first and assigned to the CPU.

 Every assigned task or set of tasks is executed in
the CPU(s) for a time unit equal to the ∆δ only if
needed. If the execution time is less, then it will be
executed for that amount of time.

 If a new process is added to the ready queue or an
existing one is removed due to its completion, then
determining a new value for the minimum ∆δ is
performed again.

 All previous procedures are repeated until there
are no more tasks in the ready queue.

Two examples in the uniprocessor environment

are given to demonstrate how the proposed
algorithm works in order to show its efficiency and
validation. Working on the uniprocessor
environment implies that it works perfectly on
multiple processor environments. Furthermore, a
simulation in Matlab was developed to apply the
proposed scheme in many scenarios for a different
number of sets and multiple tasks in each set.
Uniprocessor and multiple processor environments
are included in the simulation experiments. In
applications such as air traffic control, medical,
manufacturing, and monitoring, the proposed
scheme can be applied to deliver all periodic tasks
successfully to meet their timing constraints.
Example 1 is taken from Alsheikhy et al. (2016) as
Table 1 depicts three tasks with their timing
constraints which are the execution time and the
deadline time.

Example 1: Table 1 illustrates the number of tasks
in the ready queue with their deadline and execution
times in the uniprocessor environment.

Table 1: Available tasks in single CPU

Tasks Release Time Deadline Time Execution Time
T1 0 4 1
T2 0 5 2
T3 0 7 2

By using the algorithm in Alsheikhy et al. (2016),
the Gantt chart for scheduling all three tasks is
shown as Fig. 2, due to the space limitation and
quality purpose, a part of the Gantt chart is
illustrated.

Ahmed A. Alsheikhy/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 75-81

79

Fig. 2: Gantt chart for scheduling all three tasks

For the proposed method:

1- Initially, current time t=0, which is the starting
time, ∆δ1=4-1=3, ∆δ2=5-2=3, ∆δ3=7-2=5, so
min(∆δ={3,3,5})=3.

2- Ʀ1=
[4−1−0]

[4−0]
= 0.75

Ʀ2=
[5−2−0]

[5−0]
= 0.60

Ʀ3=
[7−2−0]

[7−0]
= 0.714

So T2 has the smallest rate, then it is allocated for

the CPU and is executed for two-time units. T2 will be
removed from the ready list.

3- Ʀ1=
[4−1−2]

[4−2]
= 0.50

Ʀ3=
[7−2−2]

[7−2]
= 0.60

T1 is chosen since it has the smallest rate. It will

be executed for a one-time unit and then removed
from the ready list.

4- T3 is the only task left on the list, so it will be

executed without needing to determine its rate.
Now during the processing of executing T3, T1 has
returned to the list. And T3 is removed. T2 is on
the ready list after finishing executing T3 since its
new period. Repeating the previous procedures
for a period will provide the following Gantt chart
(Fig. 3), each orange and the yellow square
represents two-time units while the blue square
takes a one-time unit.

Fig. 3: Repeating the previous procedures for a period

By doing a comparison study for both schemes in

terms of the Number of Context Switching “NCS”
until time=14, we obtain the following results:
NCS1=14 and NCS2=10. Thus, the proposed algorithm
within this paper provides a smaller number of
context switching which is around a 28.5% reduction
in the overhead to deliver all processes successfully
without making any deadline miss. Table 2
illustrates a set of three jobs/tasks with their
execution and deadline times as it was taken from
(Hwang et al., 2011).

Example 2: three tasks with their timing constraints
as in Hwang et al. (2011) are illustrated in Table 2.

The Gantt chart for example 2 after applying the
algorithm developed in Alsheikhy et al. (2016) is
demonstrated as follows (Fig. 4), only part of it is
shown due to the space limitation as mentioned in

the previous example. Each yellow square
represents the execution process of T3, the orange
squares represent the execution process of T2 while
the blue ones refer to the execution process of T1.

Table 2: Available tasks in single CPU

Tasks Release Time Deadline Time Execution Time
T1 0 12 3
T2 0 6 3
T3 0 4 1

Fig. 4: Gantt chart for example 2 after applying the

algorithm

The developed algorithm in Alsheikhy et al.
(2016) was able to guarantee the timing constraints
for all tasks by delivering their execution
successfully. However, it suffers from high overhead
in context switching. NCS1=10. The Gantt chart from
using the proposed technique within this paper is
illustrated as follows (Fig. 5), min ∆δ {9, 3, 3}=3.

Fig. 5: The Gantt chart from using the proposed technique

within this paper

The value for NCS2, which refers to the proposed
method, is found to be 5 which is 50% less than the
overhead obtained from the developed scheme in
Alsheikhy et al. (2016). So the reduction achieved is
50% which is very acceptable and desirable.

4. Simulation experiments

The developed simulation in MATLAB helped to
test the proposed algorithm by performing multiple
experiments with different scenarios and
circumstances. More than 100,000 tasks were
created randomly with different deadlines and
execution times. Furthermore, around 300 sets were
randomly generated and a different number of tasks
were created in each set. The maximum time taken
to complete 300 sets with 2000 tasks in each set was
about 17 hours since the simulation was testing both
methods. The proposed approach delivered all tasks
successfully without allowing any deadline miss to
occur. The simulation was run more than 10,000
times with several conditions and circumstances
each time for both types of environments. During the
simulation test, the number of used processors “M”
varied from 1 to 10 as maximum. The simulation was
developed to tell and show how many tasks met
their timing constraints, how many tasks were
unable to be executed successfully, the time needed
to finish all tasks and the Number of Context
Switching that occurred during the experiment.

The simulation tests both schemes, the one
developed in Alsheikhy et al. (2016) and the

Ahmed A. Alsheikhy/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 75-81

80

proposed method within this paper. Both the
deadline and the execution times were randomly
generated with condition that c≤d, the arrival time
(r) was also generated randomly by the simulation
under a constraint that r<c and d. Information about
the used platform to perform the experiments is
shown in Table 3.

Table 3: Characteristics of used platform

Platform Name
System

Type
CPU Speed RAM

Windows 10
Pro

64 bit
I5 core 2

Due
2.67
GHz

4 GB

Several scenarios are illustrated in the following
tables with the results for both techniques. We will
refer to the algorithm developed in Alsheikhy et al.
(2016) as 1 and the proposed algorithm as 2 for the
simple reason.

The following abbreviations are used in the table:
NoI is the Number of Iterations, NST is the number of
sets and tasks in each set, NCT is the number of
completed tasks, NDM is the number of deadlines
miss occurred, TET is the total execution time
needed to complete all tasks in the list in (second
“s”) and NCS is stated earlier. Sp represents the
speed up achieved in the proposed algorithm
whereas Rd stands for the obtained reduction in
NCS.

Scenario 1: Uniprocessor with the same arrive time
(r=0), Table 4 shows that there are different sets and
all sets hold the same number of tasks. All sets run
for the same number of iterations too.

Table 4: Results of uniprocessor for NCT and NDM when

r=0

NoI NST
NCT NDM

1 2 1 2
1000 3/16 598 536 0 0
3500 6/10 1001 893 0 0
7600 5/35 1691 1386 0 0
9000 11/60 1172 935 0 0

Table 4 shows that both algorithms were
delivering all tasks successfully to meet their
deadline times without allowing deadline miss to
occur. Table 5 illustrates the results of the previous
scenario for TET, NCS, Sp, and Rd. in each run.

Table 5: Results for TET, NCS, Sp, and Rd

NoI NST
TET NCS

1 2 Sp % 1 2 Rd %
1000 3/16 852 556 34 948 781 17
3500 6/10 335 198 41 1324 989 25
7600 5/35 647 412 36 2251 1906 15
9000 11/60 907 629 30 3591 3162 12

Table 5 illustrates that the proposed algorithm
yielded better results in terms of improvement in the
speed up for the response time and the reduction
achieved in the overhead.

Scenario 2: Uniprocessor with different arrival
times. Table 6 indicates the number of sets and the
number of jobs in each set. In addition, all sets have

the same number of iterations during the simulation
tests. Furthermore, this table shows that both
approaches perform perfectly in terms of finishing
all tasks without allowing any deadline miss during
the tests.

Table 6: Results of uniprocessor for NCT and NDM when

r≥0

NoI NST
NCT NDM

1 2 1 2
770 4/20 413 327 0 0

3000 8/40 894 691 0 0
6830 7/120 820 773 0 0
9000 10/25 2406 2108 0 0

Both approaches delivered all tasks successfully.
Nevertheless, the proposed algorithm provided
better results in terms of NCT.

Table 7 illustrates the results of the previous
scenario for TET, NCS, Sp, and Rd. in each run.

Table 7: Results for TET, NCS, Sp, and Rd

NoI NST
TET NCS

1 2 Sp % 1 2 Rd %
770 4/20 102 76 25 332 271 18

3000 8/40 297 201 32 591 484 18
6830 7/120 839 709 15 2792 2456 12
9000 10/25 245 179 27 319 248 22

The proposed method provided better
achievement for the speed up improvement and in
the overhead reduction. Using more CPUs will
produce more enhancement for the speed up and
more minimization in the overhead.

Scenario 3: Different arrival time with M=7. Table 8
depicts that 7 processors were used in order to allow
task migration between different processors.

Table 8: Results of 7 processors for NCT and NDM when

r≥0

NoI NST
NCT NDM

1 2 1 2
500 6/60 1302 974 0 0

8000 11/300 2054 1659 0 0
10000 20/150 2992 2698 0 0

Table 9 illustrates the results of the previous
scenario for TET, NCS, Sp, and Rd. in each run.

Table 9: Results for TET, NCS, Sp, and Rd

NoI NST
TET NCS

1 2 Sp % 1 2 Rd %
500 6/60 35 19 46 109 62 43
800 11/89 208 128 38 287 139 51

1000 20/150 326 211 35 752 578 23

The more processors are used, the more
improvement is achieved for both performance
metrics which are the speed up for the response time
and reduction in the overhead.

5. Conclusion

A dynamic algorithm to schedule periodic tasks in
real-time systems is presented in this paper. That
scheme is capable of delivering all tasks in the ready
queue to meet their timing constraints without

Ahmed A. Alsheikhy/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 75-81

81

missing any deadline. It provides full CPU(s)
utilization and maintains stability for the system.
Furthermore, it provides a good timely response
time as observed in the experiments that were
conducted and produces a better reduction in the
overhead. Several examples were given by the
simulation to demonstrate how the proposed
scheme worked.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Alsheikhy A, Elfouly R, Alharthi M, Ammar R, and Alshegaifi A
(2016). An effective real-time dynamic scheduling approach
for periodic tasks. International Journal of Computing,
Communications and Instrumentation Engineering, 3(2): 279-
383.

Guo Z and Baruah SK (2015). A neurodynamic approach for real-
time scheduling via maximizing piecewise linear utility. IEEE
Transactions on Neural Networks and Learning Systems,
27(2): 238-248.
https://doi.org/10.1109/TNNLS.2015.2466612
PMid:26336153

Harkut DG and Agrawal AM (2014). Comparison of different task
scheduling algorithms in RTOS: A survey. International
Journal of Advanced Research in Computer Science and
Software Engineering, 4(7): 1236-1240.

Hwang M, Choi D, and Kim P (2011). Least slack time rate first: An
efficient scheduling algorithm for pervasive computing
environment. Journal of Universal Computer Science, 17(6):
912-925.

Kim J, Lee S, and Shin H (2013). Effective task scheduling for
embedded systems using iterative cluster slack optimization.
Circuits and Systems, 4(8): 479-488.
https://doi.org/10.4236/cs.2013.48063

Ren J and Phan LTX (2015). Mixed-criticality scheduling on
multiprocessors using task grouping. In the 27th Euromicro
Conference on Real-Time Systems, IEEE, Lund, Sweden: 25-34.
https://doi.org/10.1109/ECRTS.2015.10

Vora V and Somkuwar A (2012). Implementation and
performance analysis of real time scheduling algorithms for
three industrial embedded applications. International Journal
of Information Technology Convergence and Services, 2(6): 1-
10. https://doi.org/10.5121/ijitcs.2012.2601

https://doi.org/10.1109/TNNLS.2015.2466612
https://doi.org/10.4236/cs.2013.48063
https://doi.org/10.1109/ECRTS.2015.10
https://doi.org/10.5121/ijitcs.2012.2601

	Dynamic approach to minimize overhead and response time in schedulingperiodic real-time tasks
	1. Introduction
	2. Related works
	3. The proposed algorithm
	4. Simulation experiments
	5. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References

