
 International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

106

Nominate of significant features for unknown internet traffic applications
filtering based on a neural network algorithm

Abdulbasit Abbas Mohamed 1, *, Ahmed Hamza Osman 2, Abdelwahed Motwakel 1, Hani Moetque Aljahdali 2

1Faculty of Computer Science and Information Technology, Omdurman Islamic University, Khartoum, Sudan
2Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Rabigh, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 13 July 2020
Received in revised form
17 October 2020
Accepted 22 October 2020

The evolution of the internet into a large, complex service-based network has
posed tremendous challenges for network monitoring and control in terms of
how to collect massive volumes of data, in addition to the accurate
classification of new emerging applications, such as peer-to-peer networks,
streaming content and online games. In this work, machine learning
algorithms are used for the classification of traffic into their corresponding
applications. Furthermore, this research uses our customized training data
set collected from the three institutions' campuses. The effect on the size of
the training data set has been considered before examining the accuracy of
various classification algorithms and selecting the best from a large amount
of data traffic in the network, which has led to delays in performance;
therefore, to solve this problem we suggested a distinct approach using
multiple neural networks with the feature selection in order to predict and
identify known and unknown applications. By applying the proposed
method, we get excellent accuracy in the classification of data traffic in the
network of up to 99.11%, which leads to improved data traffic in the network
and avoids delays.

Keywords:
Detection
Classification
Feature selection
Semantic role
Unknown application

© 2020 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Internet traffic describes the sum of data or
knowledge available on a site or in another language,
which we may claim is a flow of data across the web.

The classification of internet traffic has the ability
to handle different types of network problems
(Namdev et al., 2015), such as the management of
internet traffic applications by identifying an
application’s basic functionality that has been given
to polity. The various solutions include advanced
network monitoring, management of network
resources, and detection of anomalies, device-
specific strategies, and network audits. Therefore,
the awareness of the internet at the application level
is extremely useful to those who design internet
traffic and research long-term internet changes and
conditions. In principle, more than 20 years ago,
internet measurements found that 70-75% of traffic
was online. For various network operations, accurate

* Corresponding Author.
Email Address: abdulbasitabbas@gmail.com (A. A. Mohamed)

https://doi.org/10.21833/ijaas.2021.02.015
 Corresponding author's ORCID profile:

https://orcid.org/0000-0003-1486-7468
2313-626X/© 2020 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

identifications and predictions of internet-traffic are
important, such as for network management and
security control, traffic analysis and network
preparation, performance, and accounting services
delivery (Gunnar et al., 2005). Now, sharing files and
applications across the web is often the major
influence on data traffic in the network. In order to
determine the known and unknown requests in the
network (Nguyen and Armitage, 2008) in a given
traffic dataset, machine learning can automatically
search for and identify useful structural patterns. We
investigate the use of multiple neural network
algorithms to classify internet traffic.

The advantage of the proposed method is that the
model can predict incoming applications and classify
them into known and unknown applications in order
to reduce web traffic with more accuracy than
previous research in the literature.

This article is structured into five parts: Part One
is about the motivation and includes an introduction;
Part Two addresses the literature linked to the
research and process enhancement; Part Three will
explain the fundamental structure. The trial
architecture and research results, and
comprehensive descriptions are to be found in Part
Four. The work’s conclusions are listed in Part Five.

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:abdulbasitabbas@gmail.com
https://doi.org/10.21833/ijaas.2021.02.015
https://orcid.org/0000-0003-1486-7468
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2021.02.015&domain=pdf&

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

107

2. Related works

Several methods of traffic clustering have been
suggested and tested using stream statistical
functionality (Zhang et al., 2013a). McGregor et al.
(2004) have suggested aggregating traffic flows into
a small number of clusters through the maximization
of standards. This is in addition to the statistical
characteristics of the algorithm and several full-flow
bases. It was found that the algorithm separates
traffic into a minimal number of clusters based on
the type of traffic rather than the application. Zander
et al. (2005) used Auto Class to band traffic flows
and suggested a metric for cluster evaluation called
intra-class homogeneity. The training method was
conducted on a random sampling sub-set of traffic
data. The effects of the clustering are tested in terms
of accuracy. Bernaille et al. (2006) used a payload
analysis tool where the K-means algorithm was
applied to traffic clusters and clusters that were
marked for applications. The researchers used the
first few packets of transmission control protocol
(TCP) and the complete stream to describe traffic
flows as numerical functions. Erman et al. (2006)
evaluated the traffic clustering algorithms, K-means,
density-based spatial clustering of applications with
noise (DBSCAN), and Auto Class on two empirical
traces of data. The authors concluded that the K-
means algorithm was more suited to traffic
clustering because of its strong overall accuracy and
short model construct time. Previous research has
shown that where the number of clusters is
considerably greater than the number of
specifications, traffic clusters may produce high-
purity clusters. However, it also contributes to a key
problem in the distance between clusters and
applications. The payload-based manual mapping
was partly bridging the gap or using the method to
evaluate payload (Bernaille et al., 2006). Through an
automated mapping system, Erman et al. (2006) has
also been suggested. Throughout their system, a
variety of flows are pre-labeled manually depending
on payload. Next, pre-labeled flows together with
unlabelled flows are fed into the clustering algorithm
K-means. Then, a large number of traffic clusters are
mapped to several established applications using the
accessible labeled flows. Finally, the closest cluster
will be assigned a new traffic flow. Their
experimental results showed that the mapping
system would achieve high precision with a
reasonable array of named flows. These mapping
methods can combine traffic clusters of existing
flow-based applications, but they cannot fuse the
traffic clusters of unknown applications. In recent
years, several methods of clustering utilizing payload
have also been introduced. Ma et al. (2006)
developed three models to capture numerical and
systemic dimension data flow sets. The researchers
introduced a clustered solution to flow sets and
checked their traffic database approach with more
than 10 implementations. Zhang et al. (2013b) have
combined a statistical signature of Contact and the K-
means algorithm to identify unclassified traffic

groups dependent on material for use. Wang et al.
(2013) suggested using the clustering method for the
automatic creation of software signatures dependent
on the classifier. They evaluated several supervised
classifiers of the clustered traffic generated by the X-
means on the payload content of 32 bytes. Such
experiments highlight the utility of flow charges to
identify specific traffic groups; however, it remains
uncertain how to describe the substance and
calculate the similarity of traffic clusters, and
supervised learning relates to several other works to
the classification of traffic on a payload basis. While
the classification of traffic is a more reliable way of
searching for program signatures in the payload
material, it takes a lot of time to derive the
signatures manually. To address this issue, Moore
and Zuev (2005) have used Classifier Naïve Bayes of
kernel estimate and Fast Correlation-Based Filter
(FCBF), which has been proposed to be categorized.
They used a wide range of 248 functions, including
packet series information and the TCP protocol.
Moore used nine strategies to identify hand-set info,
including gate number, payload header, single packet
signature and protocol attribute, first K‐Byte
payload, host background, etc. Application
signatures are obtained in these studies through an
in-depth packet-level trace analysis or device
procedure documentation (where accessible). The
latest developments have seen an attempt to free
citizens from the stressful pre-processing phase of
labor. Wang et al. (2010) suggested using supervised
machine programming to recognize signatures to a
variety of technologies automatically. Finamore et al.
(2011) suggested code signatures to carry out traffic
analysis using g numerical characterization of
payload and implemented controlled algorithms,
such as the support vector machine (SVM). Existing
classification methods based on payload, however,
cannot deal with "unknown applications." Zhao et al.
(2008) suggested traffic classification real-time
feature collection. The different types of
characteristics used in the traffic classification are
discussed, and the accuracy of various algorithms for
traffic selection, in particular the Peer to Peer (P2P)
classification of traffic, is evaluated and compared in
the classification of traffic. They suggested a real-
time function subset to complete the online traffic
classification. Cao et al. (2015) suggested that the
SVM's classification performance after scaling is
better, but the high feature dimension causes the
SVM classifier to have a longer training time and
higher computational complexity. By this method,
we obtain the accuracy of each flow according to the
characteristic numbers, and the accuracy would be
the maximum in any characteristic number of each
traffic flow. Get this number of features, and
compose the best subset of features. After feature
selection, the average accuracy of all flows reaches
98.69%. Lotfollahi et al. (2020) proposed a deep
learning approach that combines both the extraction
and classification phases of features into a single
system. The proposed scheme, known as the "Deep
Packet," can handle both traffic classification in

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

108

which network traffic is divided into major groups
(e.g., File Transfer Protocol (FTP) and P2P) and
application recognition in which end-user
applications (e.g., BitTorrent and Skype) are defined.
Unlike most current approaches, Deep Packet can
recognize encrypted traffic and even differentiate
between network traffic, and the Deep Packet
architecture employs two deep neural network
architectures, architectures for network traffic
classification.

3. Proposed model

The essential aim of this paper is to classify and
predict network traffic data. The proposed method
has four primary steps, which are:

A. Pre-processing, such as data cleansing, outliner,

and missing values removal.
B. Dividing the dataset into learning and testing

data.
C. Applying the multiple neural network algorithm

and feature selection method across the network
traffic dataset.

D. Classifying and determining the accuracy of the
known applications and unknown applications
that affect the network.

The steps of the proposed model are

demonstrated in Fig. 1.

Fig. 1: Proposed model

3.1. Data pre-processing

Data pre-treatment is one of the most important
steps in the preparation of the data set before the
mining process. In our research, the statistical
program software platform, which offers advanced
statistical analysis (IBM SPSS), was used to analyze
the data, and the hybrid method consisting of neural
networks and a feature selection method. We used
the ten ready datasets collected by a high-
performance network screen (Auld et al., 2007). The
data were classified according to the entry for each
category. The parameters input of the neural
network and feature selection that have been used
are Interactive, Database, Games, Sevres’s, Mail,

Www, p2p, Attack, and Media. We used the same 10
datasets that were extracted by Moore and Zuev
(2005). 249 different discriminators have been used
in our research to define traffic flows, including
statistics on flow length, TCP port data, statistics on
payload size, and four-part packet transformation.
They constructed a flow collection by tracking the
day, breaking it into ten blocks of roughly 1,680
seconds (28 min) each. They offered a wider variety
of mixtures during the day using the random
selection of samples. The dataset comprises specific
flow levels in each data-block. Traffic single block of
28-minutes has been captured owing to the higher
traffic level. We divided all groups into percentages
to determine the accuracy of each percentage of the
training and test experiments of the data with 50%,
60%, and 70% for training, 50%, 40%, and 30% for
the test, respectively. Accuracy results were
extracted from each group, and the average results
for these groups have been calculated.

In this phase, the text pre-processing stage
contained three sub-stages, which were text chunk,
stop words withdrawal, and term stemming. A text
chunk partitioned a text archive into sub-sentences.
Several of the studies which concentrate on text
preparing strategies in various fields incorporate
intrusion detection (Sharma et al., 2007). The step of
stop terms removal for erasing meaningless terms
was utilized. A stemming procedure to delete the
attached (suffixes and prefixes) in a term to create
its root term was additionally connected. This
progression separated the critical terms from the
text and disregarded the rest of the terms. This may
have influenced the comparability between texts
unfavorably.

3.2. Combination stage

In this stage, we combined two techniques: the
neural network approach and features selection
methodology, to learn about the classifiers.

3.3. Artificial neural networks

Neural networks are the typical depiction of the
brain focused on nature neurons that are associated
with other neurons to create a network, like “move
the hand to pick up the cup.” An artificial neural
network is normally placed on tables, such that
tables n-1 and n+1 will only bind to neurons (Arnx,
2018). We can characterize an artificial neural
network like Fig. 2.

Usually, neural networks tend to be converted
from left to right. The first layer here is the one that
accesses outputs. There are two internal layers that
do some algebra (known as invisible layers) and one
final layer that includes all possible inputs. Do not
mess around with the "+1"s at the bottom of each
line. It's labeled “bias.”

Every neuron's operations are quite simple (Fig.
3) (Arnx, 2018).

Firstly, it applies the meaning of an earlier section
that is correlated with each neuron. There are three

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

109

neuron outputs in Fig. 2 (x1, x2, and x3), so our
neuron is related to the three neurons of the
previous section. By applying this value, this
quantity is compounded by another variable named
"weight" (w1, w2, w3). That decides how they

interact amid the two neurons. Increasing neuronal
interaction has its own weight, and these are the
only principles that can shift in the course of
learning.

Fig. 2: Representation of multiple neural networks

Fig. 3: The operations performed by multiple neural networks

In contrast, the estimated total cost can be added
to a discrimination variable. It is not an output that
comes from a single neuron that is selected before
the learning process, so it can be helpful to the
network.

This is all done by a neuron. One has to take all
the values compounded by their respective weight
from attached neurons, bind them, and add an
activation mechanism to it. The neuron will then give
the new value to other neurons.

The parameters for the Neural Network
algorithm have been selected based on the nature of
the data on the network. The input parameters have
been tuned as features of the applications on the
network, while the output has been adjusted as a
target of classification features to known and
unknown applications based on the weighted
parameters in the hidden layers.

The neural network moves to the next row after
each neuron of a column has been made. The last
obtained value must eventually be one that can be

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

110

used to evaluate the output wanted. This is how the
learning cycle functions: First, note that it returns an
output when an input is provided to the neural
network. It cannot get the right output on its own at
the first attempt (except with luck), and this is why
each input comes with its tag during the learning
phase, indicating what should be the performance of
the neural network. If the option is the right one, the
variables will be preserved, and the corresponding
data will be given. If the output received does not
match the tag, however, weights will be modified.
These are the only factors in the learning phase that
can be modified. This mechanism can be interpreted
as several keys, which are converted into different
possibilities each time an input is not correctly
calculated.

A complex process called "backpropagation" is
performed to decide what weight is best to change.
We are not going too far longer on this, as the neural
network we are trying to create does not use the
same method, so it is about going back to the neural
network and testing each relationship to see if the
output would respond as a consequence of a weight
shift.

Eventually, there is a final variable to know how
to monitor neural network learning: the "learning
level." It defines how quickly the neural network is
going to know or, more precisely, how the weight
will shift, slowly or in bigger steps. Ultimately, this
variable is a good value.

Now that we understand the fundamentals, we
can test the neural network we are going to create.
This design allows two classes to be separated by an
easy category. Let's see a quick example (which has
little value except to understand) to better
understand the possibilities and limitations.

When we substitute the "trues by 1 and the falsies
by 0" and put the four options on a graph as
coordinate points, it is clear that the two "false" and
"true" final classes can be separated by a single line.
This can be done by a perceptron. A neural network
can be built from scratch with Python (3.x in the
following example):

Import numpy, random, os
lr=1 #learning rate
bias=1 #value of bias
weights=[random.random (), random.random (),
random.random ()] #weights generated in a list (3 weights
in total for 2 neurons and the bias) (1)

Put simply, libraries and parameter values can be

defined at the start of the program, and a list
containing the values of the weights to be changed
can be created at random.

Below is a structure that determines the output
neuron function. It needs three variables (the two
values of the neuron and the output predicted).
"OutputP" is the variable that corresponds to the
perceptron's output. Then, we compute the error,
which is used straight afterward to change the
weights of each connection to the output neuron
(Arnx, 2018).

for i in range (50):
Perceptron (1,1,1) #True or true
Perceptron (1,0,1) #True or false
Perceptron (0,1,1) #False or true
Perceptron (0,0,0) #False or false (2)

We are building a circle loop repeating every

situation several times by the neural network. This
part is the process of reading. The number of
iterations is selected based on the reliability we
need. We have to be mindful, however, that too many
iterations could result in the network being over-
fitted, allowing it to concentrate too much on the
instances being handled, so it cannot get the right
performance of a case that it did not see during its
training phase.

Nonetheless, our situation here is very different
because there are only four options, and we send all
of them during their learning phase to the neural
network. A perceptron should give the right output
without ever seeing the case that is being treated
(Arnx, 2018).

X=int (input())
Y= int (input())
Outputp=x*weights[0]+y*weights[1]+bias*weights[2]
If outputp>0: #activation function
 Outputp=1
Else:
Outputp=0 (3)

Lastly, we will ask the consumer to enter the

values to test if the perceptron is operating. This is
the study phase.

In this case, it is useful to use the activation
function, Heaviside. All values are taken back to
exactly 0 or 1, as we are finding a fake or a real value.
We may try to get a decimal number between 0 and
1 with a sigmoid feature, typically very close to one
of those limits.

Outputp=1/1+numpy.exp(-output))#sigmoid function (4)

We could also save the weights already

determined in a file by the neural network to use
later without any additional stage in the learning
experience. This is done for a broader project and in
that cycle will last days or weeks. The study
suggested a multiple neural network technique to
predict and filter data traffic on the network to
identify unknown applications through the physical
network. Multiple neural network algorithms were
used to perform a scientific experiment to assess the
accuracy of internet traffic for potential
enhancement. It has been demonstrated that several
neural network model applications can be used to
predict and process high accuracy network data
traffic, as we will be doing later.

3.4. Feature selection algorithms

In this section, we present the classical selection
algorithm: a forward selection of features (Mao,
2002). Then, we examine selfish forward algorithm

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

111

variants to boost computational efficiency without
the risk of losing so much accuracy.

The feature selection process begins by analyzing
all sub-sets of features consisting of one attribute for
data. In other words, we start by measuring the sub-
sets of one element's Leave-One-Out Cross-
Validation (LOOCV) error, [X1], [X2], ..., [XM], where
M is the input dimension, so we can find the best
individual component, X(1). The complete selection
process for selecting the function up to m attributes:

1. Collect a specific domain data set for the training.
2. Shuffle this set of data.
3. Divide it into P partitions (say P=20)
4. For each partition (i=0, 1... P-1)
a. Let OuterTrainset (i)=all partitions excepti.
b. Let OuterTestset (i)=the i’th partition
c. Let InnerTrain (i)=randomly chosen 70% of the
OuterTrain-set (i)
d. Let InnerTest (i)=the remaining 30% of the
OuterTrainset(i).
e. For j=0, 1, ..., m
Search for the best feature set with j components, fsij. using
Leave-one-out on Inner Train (i)
Let InnerTestScoreij=RMS score of fsij on Inner Test (i). End
loop of (j).
f. Select the fsij with the best inner test score.
g. Let OuterScorei=RMS score of the selected feature set on
OuterTestset (i)
End of loop of (i).
Return the mean Outer Score. (5)

First, forward selection would find two strong

subset components, X (1), and another function of
the rest attributes of M-1 data. Therefore, there are
M-1 pairs in total. Suppose X (2) is the other
attribute besides X (1) in a strong set. Then, the
input subsets are tested with three, four, and more
functions. The safest m-function subset is the m-
tuple composed of X (1), X (2), ..., X (m), according to
the forward selection, while the overall best
collection of features is the winner of all measures of
the M. If the cost of a LOOCV evaluation of I features
is C (i), then the computational expense of choosing a
sub-set of size m out of the total M input attributes
would be:

MC(1)+(M-1)C(2)+…+(M-m+1)C (m) (6)

Liu and Motoda (2007) estimated the cost of

predicting one-nearest-neighbor as function, using a
kd-tree with j inputs, is O (j log N) where N is the
number of data points. Therefore, the expense of
measuring the mean leave-one-out mistake,
including calculations of N, is O (j N log N). So, the
maximum expense of using the aforementioned
equation to pick the function is O (m2 M N log N).

We can also use an exhaustive search to find the
best overall output feature collection. The exhaustive
search starts by searching for the best one-
component subset of input features, which is similar
to the forward selection algorithm. Instead, the
strongest two-component subset of features that
may consist of any pair of input features will be
identified. It then moves to find the best triple out of

all the combinations of each production of three
functions, etc. The comprehensive quest meaning is
as follows (Arnx, 2018):

MC(1)+ (M/2)C(2)+…+(M/m)C(M) (7)

The collection advances are far cheaper than the

comprehensive quest.
Nevertheless, the forward option will suffer

because of its greed. For example, if X (1) is the best
individual function, then there is no assurance that
either [X (1), X (2)] or [X (1), X (3)] would have to be
better than [X (2), X (3)]. Thus, a forward selection
algorithm may pick a feature set other than the one
selected by exhaustive quest. Estimating a query
with a poor set of features of the input: Xq=[x1, x2, ...,
xM] can vary significantly from the true Yq.

4. Experimental design

This experiment was aimed at identifying and
filtering unknown internet traffic applications. We
used the ready dataset that was gathered via a high-
efficiency network panel. We used their minimal loss
and capture of complete payload to a disk with a
resolution of more than 35 nanoseconds for time-
stamps. They examine data in time from one website
over several different periods of time. This place is
an investigational center hosting approximately
1,000 internet-connected users through a Gigabit
Ethernet full-duplex connection. For each traffic
collection, full-duplex traffic on this link has been
controlled. The location they were looking at houses
many biology-related buildings, collectively
regarded as a Genome Campus. There are three
organizations on-site that hire about 1,000 scholars,
managers, and professional personnel. This is a
campus connected to the internet with a full-duplex
Gigabit Ethernet link. Our screen was put on this
internet connection. For each traffic array, traffic
was tracked for a complete 24-hour, weekday
duration, and for all connections.

Appropriate input data are needed for the
analysis of data using the neural network technique.
To this end, we capitalized on the trace data
identified and categorized. This confidential data
was further reduced, with each having about
25,000–65,000 items (flows) separated into ten
periods of equivalent time. In addition, each data set
was used as a training set and tested against the
remaining data sets to determine the efficiency of
the neural network methodology, allowing for
estimation of the average classification accuracy. In
each round, the data were divided into three clusters
(Osman and Aljahdali, 2017) (70%, 60%, and 50%)
for the learning process and (30%, 40%, and 50%)
for research. Each learning and testing takes the
following traffic into account.

4.1. Traffic categories

One of the fundamental matters for the
classification movement is the selection of categories

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

112

from the flowing data to perform the classification
on. In this research, we use the most popular
categories of users, such as (BULK, DATABASE,
INTERACTIVE, MAIL, SERVICES, WWW, P2P,
ATTACK, GAMES, MULTIMEDIA), examples of which
are given to them. In Table 1, these categories are
not all traffic data only. They are popular categories,
and therefore we ran experiments on them. Each
category has unique characteristics and features
(such as the source and destination ports), a certain
amount of information, and its own behavior.
Together, this information and data form the
important values for input to make classifications for
data traffic within the network. A probabilistic
classification approach for internet traffic is used for
specific classes to determine the flow characteristics
and shunt of the potential layer; for example, flow is
classified with a probability of 0.9 that it is a game,
0.1 bulk, and 0.2 that it is www. Flow is classified
with the highest likelihood, and in the example, flow
is classified as a game category because it is the
highest probability. Table)1(shows the network
traffic allocation to each category (Moore and Zuev,
2005).

Our key objective for classification is the flow,
and for the research addressed in this extended
abstract, we restricted our description of the flow to
a maximum TCP flow–that is, all the packets between
two hosts–for a specific tuple that we limit to
complete flows, those that validly start and finish.

Table 1: Network traffic category

Classification Example Application
Bulk FTP, TFTP

Database Postgres, sqlnet, oracle, Ingres
Interactive ssh, klogin, rlogin, telnet

Mail Imap, pop2/3, SMTP
Services X11, DNS, ident

Www www
P2P kaZaA, BitTorrent, GnuTella

Attack Internet worm and virus Attacks
Games Microsoft direct play

Multimedia Windows Media Player, Real

The illustration of the classification of the
discriminators for every entity can be shown as:

 Data Flow time
 Port with TCP and unshielded twisted pair (UTP)
 Intra-arrival packet time (mean, variance)
 Element of payload (mean, variance)
 Active Entropic Bandwidth
 Fourier transfer of inter-arrival time for packets

An example of discriminator classification objects
has been presented in order to classify the scheme
that involves defining each element’s
characterization. By using these variables, the
classifier assigns an entity to a class because of its
potential to enable discrimination between classes.
Such object-describing parameters are used as
discriminators. 249 different discriminators (Moore
and Zuev, 2005) have been used in our research to
define traffic flows, including Statistics on flow

length, TCP port data, statistics on payload size, and
four-part packet transformation.

4.1.1. First experiment

The study used the experiment that was
described before and after combination using neural
network methods to evaluate the improvement of
the proposed method. Before the upgrade, the filter
tests were obtained using a neural network, which is
only 98.54%, 98.55%, and 98.60% of learning data
and 98.66%, 98.48%, and 98.58% of research data,
respectively, in Table 2. On the other hand, filtering
performance outcomes after enhancement using the
combination approach between the neural network
and the potential rating algorithm was 98.68%,
98.98%, 98.93% for training data and 99.10%,
99.11%, and 99.04% for testing data.

The outcomes of the tests are determined as:

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8)

where, True Positive (TP): Correctly listed the
number of documented applications and the
available unknown-applications. False Positive (FP):
The number of executables known to the
applications classified as unknown. Real Negative
(TN): Wrongly listed the number of established
applications and unknown-applications executable.
False-negative (FN): Number of executables
unknown-applications listed as known applications.

Table 2: Results of the neural network without feature

selection algorithm
Error Accuracy Algorithm

Testing Training Testing Training

1.34 1.46
98.66

(50% size)

98.54
(50%
size)

Neural
network(mlp)

1.52 1.45
98.48

(60% size)

98.55
(60%
size)

Neural
network(mlp)

1.42 1.4
98.58

(70% size)

98.60
(70%
size)

Neural
network(mlp)

Figs. 4, 5, and 6 demonstrate that the testing filter
accuracies of the multiple layers perceptron (MLP)
neural network have 50%, 60%, and 70%,
respectively. The results of the neural network only
with the latest training and testing tests algorithm
are presented. This is the graph obtained for the
neural network training and testing performance
before using the feature selection technique in Table
2. As for the classification using a neural network, a
successful filter for the training data was obtained
98.54% with a sample size of 50% and filter
performance of 98.66% for processing data with a
data size of 50%. Expressively, the classification
performance outcomes obtained by the neural
network were 98.54%, 98.55%, and 98.60%,
respectively, for learning tests of 50%, 60%, and
70%, and 98.66%, 98.48%, and 98.58%, respectively,
for research studies of 50%, 60%, and 70%.

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

113

4.1.2. Second experiment

The performance obtained after integrating the
neural network with feature selection is described in
Table 3. The accuracy of the filtering process is
clarified by the values of results. There are various
results that have been derived from the neural
network. Such findings have been improved by using
the features selection method. The neural network
with a feature selection approach obtained better
accuracy than the neural network alone.

Fig. 4: Filter accuracy testing neural network 50%

Fig. 5: Filter accuracy testing neural network 60%

Figs. 7, 8, and 9 display the reliability of neural
network tests with a feature selection method based
on important features with the best category in
Table 3 for training and testing experiments. After
using the feature selection algorithm with important
features, the figures obtained represented test
results of the neural network with the first collection
of data. The classification using a neural network
without a feature selection method for testing data
obtained optimum filtering for an average of 10
datasets is 98.66%, 98.48%, and 98.58 with data size
of 50%, 60%, and 70%, respectively (Table 4). The
classification using a hybrid method (neural network

with feature selection) for testing data obtained
optimum filtering for an average of 10 datasets is
99.10, 99.11, and 99.04 for research experiments of
50%, 60%, and 70%, respectively (Table 5). From
this, we conclude that the use of the hybrid method
led to better results than the use of the neural
network method alone.

Fig. 6: Filter accuracy testing neural network 70%

Table 3: Results of neural network with feature selection

algorithm
Error Accuracy

Algorithm
Testing Training Testing Training

0.9 1.32
99.10

(50%size)

98.68
(50%
size)

Neural
network(mlp)
and Feature

selection

0.89 1.02
99.11

(60%size)

98.98
(60%
size)

Neural
network(mlp)
and Feature

selection

0.96 1.07
99.04

(70%size)
98.93

(70%size)

Neural
network(mlp)
and Feature

selection

Fig. 7: Filter accuracy testing neural network with feature

selection 50%

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

114

Fig. 8: Filter accuracy testing neural network with feature

selection 60%

Fig. 9: Filter accuracy testing neural network with feature

selection 70%

Table 4: Experimental results without feature selection
Dataset use the neural network (MLP) before feature selection

Dataset NN-
MLP

ACCURACY-TR-
50%

ACCURACY-TS-
50%

ACCURACY-TR-
60%

ACCURACY-TS-
40%

ACCURACY-TR-
70%

ACCURACY-TS-
30%

DATASET-1 98.2 98.6 98.6 98.9 98.4 98.7
DATASET-2 98.7 98.7 98 98.6 98.8 98.8
DATASET-3 98.9 98.9 98.9 98.7 98.9 98
DATASET-4 98.7 98.4 97.7 98.3 98.2 98.6
DATASET-5 98.5 98.9 98.8 98.7 98.9 98.4
DATASET-6 98.3 98.8 98.6 97.4 98.4 98.7
DATASET-7 98.5 98.5 98.9 99 98.8 98.8
DATASET-8 98.9 98.7 98.9 98.1 98.8 98.9
DATASET-9 98 98.5 98.2 98.3 98 98.3

DATASET-10 98.7 98.6 98.9 98.8 98.8 98.6
AVARAGE 98.54 98.66 98.55 98.48 98.60 98.58

Table 5: Experimental results with feature selection
Dataset using neural network (MLP) after feature selection

Dataset +NN-
MLP

ACCURACY-TR-
50%

ACCURACY-TS-
50%

ACCURACY-TR-
60%

ACCURACY-TS-
40%

ACCURACY-TR-
70%

ACCURACY-TS-
30%

DATASET-1 98.3 99 98.9 98.9 98.4 99.1
DATASET-2 99.2 99.3 99 99.1 99.4 99
DATASET-3 98.9 99.1 99.1 99.2 99.1 99
DATASET-4 98 99 99 99.1 98.4 98.7
DATASET-5 99.2 99.1 98.8 98.9 99.2 99.3
DATASET-6 98.1 99.2 99.2 99.2 99 98.9
DATASET-7 98.7 99.1 99.3 99.4 99.3 99.2
DATASET-8 99 99.1 99 99.1 99.1 99.1
DATASET-9 98.4 99.2 98.6 99.3 98.5 99

DATASET-10 99 98.9 98.9 98.9 98.9 99.1
AVARAGE 98.68 99.10 98.98 99.11 98.93 99.04

For comparative approaches, most authors used
the methodology of statistical significance for the t-
test. The t-tests use the hybrid approach to assess
statistical significance. Among the findings obtained
from Experiment 1 using the neural network-mlp
and Experiment 2 using the hybrid approach include
the neural network and feature selection technique
revealed improvements. Table 5 illustrates standard
deviations, certain events, mean values, standard
errors, and sensitive tests for pairs with pre and post
factors neural network enhancement with feature
selection method compared to paired samples t-test.
The paired-sample test measures the mean of two
variables reflecting the same unit at various periods.
The two mean value variables are shown in the table

of paired samples. Since the paired samples t-test
measures the value of the two variables,
understanding what the mean values are is
important. A small t-test meaning value typically less
than 0.05 indicates that the two variables differ. The
outcome of the t-test is 0.0183; this condition has
been stressed in estimation steps, indicating that the
hybrid methodology (neural network with a
collection of features) has obtained important
results on the accuracy of the study. This
discrepancy is deemed statistically relevant by
traditional standards. Table 6 shows t-test
comparison results between the neural network
algorithm before and after feature selection.

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

115

Table 6: T-test comparison results between the neural network algorithm before and after feature selection

Method

Differences result in 70%, 60%, and 50% dataset between the neural network and feature
selection

t
Sig.

Value
mean Std. Deviation Std. Err Mean

95% Confidence Interval of the
Difference

Lower upper
Neural network and

feature selection
0.51 0.037 0.02 0.208 0.81 7.285 0.018

The proposed approach implemented the
algorithm of feature selection to boost the process of
the neural network. In the classification process,
only the most appropriate features as selected by the
feature selection method were used. The findings of
the experimental test dataset showed that better
results were obtained by the overall performance of
the proposed method. The hypothesis presented the

idea that the selection technique can improve the
quality of classification. The proposed method's
emphasis was changed so that attention was paid to
before and after the combination phase to analyze
the changes made by the proposed method.

The comparison between the proposed method
and state of the art is illustrated in Table 7.

Table 7: Comparison between the proposed method and a state of the art

Method Accuracy Results Reference
K-Means Clustering algorithms 92.4% (Erman et al., 2006)

Bayesian Neural Networks method 95% (Auld et al., 2007)
support vector machine (SVM) 97.8% (Kim et al., 2008)
Statistical Bias Correction Kit

(SBCK) method
96% (Wang et al. 2013)

Kernel-Based Extreme method 96.27% (Ertam and Avcı, 2016)
incremental learning method 96.00% (Sun et al., 2017)

Transfer learning model (TrAdaBoost) 94.6%. (Sun et al., 2018)
C5.0 decision tree classifier 97.4% (Oudah et al., 2019)

Proposed method 99.11%

We noted that the proposed method achieved
better performance results in terms of classification
accuracy.

We noted that the shortcoming of the proposed
method is that the prediction model can classify only
offline applications rather than online applications.
The time of classification needs to be improved if the
model is to be upgraded to work online.

5. Conclusion

This research attempted to solve the issue of the
identification of internet traffic. The study suggested
that the hybrid method of multiple neural network
technique and the feature selection method can be
used for predicting and filtering network data traffic
to classify the unknown applications through the
physical network. A scientific experiment has been
conducted using multiple neural network algorithms
to determine the reliability of internet traffic for
future enhancement. It has been shown that the
applications of the multiple neural network models
can be used to predict and filter the network data
traffic with high accuracy.

The data was collected and divided into 10
groups, and each data group was divided into
percentages to be based on the experiment, as
follows: 50%, 60%, and 70% for training, and in
return for the same data 50%, 40% and 30% for the
testing. As for the percentage of 50% for testing, the
results showed a clear improvement in classification
and verification with an accuracy rate of 99.10% and
with an error rate not exceeding 0.9, and thus we
would have improved the accuracy of the
classification of unknown internet traffic

applications by using multiple neural network
algorithms with the feature selection method.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Arnx A (2018). Understand and create a Perception. In the First
Neural Network for Beginners Explained (with code), CS
Student, France.

Auld T, Moore AW, and Gull SF (2007). Bayesian neural networks
for internet traffic classification. IEEE Transactions on Neural
Networks, 18(1): 223-239.
https://doi.org/10.1109/TNN.2006.883010 PMid:17278474

Bernaille L, Teixeira R, Akodkenou I, Soule A, and Salamatian K
(2006). Traffic classification on the fly. ACM SIGCOMM
Computer Communication Review, 36(2): 23-26.
https://doi.org/10.1145/1129582.1129589

Cao J, Fang Z, Zhang D, and Qu G (2015). Network traffic
classification using feature selection and parameter
optimization. Journal of Communications, 10(10): 828-835.
https://doi.org/10.12720/jcm.10.10.828-835

Erman J, Arlitt M, and Mahanti A (2006). Traffic classification
using clustering algorithms. In the 2006 SIGCOMM Workshop
on Mining Network Data, Association for Computing
Machinery, Pisa, Italy: 281-286.
https://doi.org/10.1145/1162678.1162679

Ertam F and Avcı E (2016). Network traffic classification via
kernel based extreme learning machine. International Journal
of Intelligent Systems and Applications in Engineering,
4(Special Issue): 109-113.
https://doi.org/10.18201/ijisae.267522

https://doi.org/10.1109/TNN.2006.883010
https://doi.org/10.1145/1129582.1129589
https://doi.org/10.12720/jcm.10.10.828-835
https://doi.org/10.1145/1162678.1162679
https://doi.org/10.18201/ijisae.267522

Mohamed et al/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 106-116

116

Finamore A, Mellia M, and Meo M (2011). Mining unclassified
traffic using automatic clustering techniques. In the
International Workshop on Traffic Monitoring and Analysis,
Springer, Vienna, Austria: 150-163.
https://doi.org/10.1007/978-3-642-20305-3_13

Gunnar A, Abrahamsson H, and Söderqvist M (2005). Performance
of traffic engineering in operational IP networks–an
experimental study. In the International Workshop on IP
Operations and Management, Springer, Barcelona, Spain: 202-
211. https://doi.org/10.1007/11567486_21

Kim H, Claffy KC, Fomenkov M, Barman D, Faloutsos M, and Lee K
(2008). Internet traffic classification demystified: Myths,
caveats, and the best practices. In the 2008 ACM CoNEXT
Conference, Association for Computing Machinery, Madrid,
Spain: 1-12. https://doi.org/10.1145/1544012.1544023

Liu H and Motoda H (2007). Computational methods of feature
selection. CRC Press, Boca Raton, USA.
https://doi.org/10.1201/9781584888796

Lotfollahi M, Siavoshani MJ, Zade RSH, and Saberian M (2020).
Deep packet: A novel approach for encrypted traffic
classification using deep learning. Soft Computing, 24(3):
1999-2012. https://doi.org/10.1007/s00500-019-04030-2

Ma J, Levchenko K, Kreibich C, Savage S, and Voelker GM (2006).
Unexpected means of protocol inference. In the 6th ACM
SIGCOMM Conference on Internet Measurement, Association
for Computing Machinery, Rio de Janeiro, Brazil: 313-326.
https://doi.org/10.1145/1177080.1177123

Mao KZ (2002). Fast orthogonal forward selection algorithm for
feature subset selection. IEEE Transactions on Neural
Networks, 13(5): 1218-1224.
https://doi.org/10.1109/TNN.2002.1031954
PMid:18244519

McGregor A, Hall M, Lorier P, and Brunskill J (2004). Flow
clustering using machine learning techniques. In the
International Workshop on Passive and Active Network
Measurement, Springer, Antibes, France: 205-214.
https://doi.org/10.1007/978-3-540-24668-8_21

Moore AW and Zuev D (2005). Internet traffic classification using
bayesian analysis techniques. In the ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, Association for Computing Machinery,
Banff, Canada: 50-60.
https://doi.org/10.1145/1064212.1064220

Namdev N, Agrawal S, and Silkari S (2015). Recent advancement
in machine learning based internet traffic classification.
Procedia Computer Science, 60: 784-791.
https://doi.org/10.1016/j.procs.2015.08.238

Nguyen TT and Armitage G (2008). A survey of techniques for
internet traffic classification using machine learning. IEEE
Communications Surveys and Tutorials, 10(4): 56-76.
https://doi.org/10.1109/SURV.2008.080406

Osman AH and Aljahdali HM (2017). Diabetes disease diagnosis
method based on feature extraction using K-SVM.
International Journal of Advanced Computer Science and
Applications, 8: 236-244.
https://doi.org/10.14569/IJACSA.2017.080130

Oudah H, Ghita BV, and Bakhshi T (2019). A novel features set for
internet traffic classification using burstiness. In the
International Conference on Information Systems Security
and Privacy, Prague, Czechia: 397-404.
https://doi.org/10.5220/0007384203970404

Sharma A, Pujari AK, and Paliwal KK (2007). Intrusion detection
using text processing techniques with a kernel based
similarity measure. Computers and Security, 26(7-8): 488-
495. https://doi.org/10.1016/j.cose.2007.10.003

Sun G, Li S, Chen T, Su Y, and Lang F (2017). Traffic classification
based on incremental learning method. In the International
Conference on Advanced Hybrid Information Processing,
Springer, Harbin, China: 341-348.
https://doi.org/10.1007/978-3-319-73317-3_40

Sun G, Liang L, Chen T, Xiao F, and Lang F (2018). Network traffic
classification based on transfer learning. Computers and
Electrical Engineering, 69: 920-927.
https://doi.org/10.1016/j.compeleceng.2018.03.005

Wang Y, Xiang Y, and Yu SZ (2010). An automatic application
signature construction system for unknown traffic.
Concurrency and Computation: Practice and Experience,
22(13): 1927-1944. https://doi.org/10.1002/cpe.1603

Wang Y, Xiang Y, Zhang J, Zhou W, Wei G, and Yang LT (2013).
Internet traffic classification using constrained clustering.
IEEE Transactions on Parallel and Distributed Systems,
25(11): 2932-2943. https://doi.org/10.1109/TPDS.2013.307

Zander S, Nguyen T, and Armitage G (2005). Automated traffic
classification and application identification using machine
learning. In The IEEE Conference on Local Computer
Networks 30th Anniversary, IEEE, Sydney, Australia: 250-257.
https://doi.org/10.1109/LCN.2005.35 PMid:15351913

Zhang J, Chen C, Xiang Y, and Zhou W (2013a). Robust network
traffic identification with unknown applications. In the 8th
ACM SIGSAC symposium on Information, computer and
communications security, Association for Computing
Machinery, Hangzhou, China: 405-414.
https://doi.org/10.1145/2484313.2484366

Zhang J, Xiang Y, Zhou W, and Wang Y (2013b). Unsupervised
traffic classification using flow statistical properties and IP
packet payload. Journal of Computer and System Sciences,
79(5): 573-585. https://doi.org/10.1016/j.jcss.2012.11.004

Zhao JJ, Huang XH, Qiong SUN, and Yan MA (2008). Real-time
feature selection in traffic classification. The Journal of China
Universities of Posts and Telecommunications, 15: 68-72.
https://doi.org/10.1016/S1005-8885(08)60158-2

https://doi.org/10.1007/978-3-642-20305-3_13
https://doi.org/10.1007/11567486_21
https://doi.org/10.1145/1544012.1544023
https://doi.org/10.1201/9781584888796
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1145/1177080.1177123
https://doi.org/10.1109/TNN.2002.1031954
https://doi.org/10.1007/978-3-540-24668-8_21
https://doi.org/10.1145/1064212.1064220
https://doi.org/10.1016/j.procs.2015.08.238
https://doi.org/10.1109/SURV.2008.080406
https://doi.org/10.14569/IJACSA.2017.080130
https://doi.org/10.5220/0007384203970404
https://doi.org/10.1016/j.cose.2007.10.003
https://doi.org/10.1007/978-3-319-73317-3_40
https://doi.org/10.1016/j.compeleceng.2018.03.005
https://doi.org/10.1002/cpe.1603
https://doi.org/10.1109/TPDS.2013.307
https://doi.org/10.1109/LCN.2005.35
https://doi.org/10.1145/2484313.2484366
https://doi.org/10.1016/j.jcss.2012.11.004
https://doi.org/10.1016/S1005-8885(08)60158-2

	Nominate of significant features for unknown internet traffic applicationsfiltering based on a neural network algorithm
	1. Introduction
	2. Related works
	3. Proposed model
	3.1. Data pre-processing
	3.2. Combination stage
	3.3. Artificial neural networks
	3.4. Feature selection algorithms

	4. Experimental design
	4.1. Traffic categories
	4.1.1. First experiment
	4.1.2. Second experiment

	5. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References

