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Cognitive radio is a promising technology to solve the spectrum scarcity 
problem caused by inefficient utilization of radio spectrum bands. It allows 
secondary users to opportunistically access the underutilized spectrum 
bands assigned to licensed primary users. The local individual spectrum 
detection is inefficient, and cooperative spectrum sensing is employed to 
enhance spectrum detection accuracy. However, cooperative spectrum 
sensing opens up opportunities for new types of security attacks related to 
the cognitive cycle. One of these attacks is the spectrum sensing data 
falsification attack, where malicious secondary users send falsified sensing 
reports about spectrum availability to mislead the fusion center. This 
internal attack cannot be prevented using traditional cryptography 
mechanisms. To the best of our knowledge, none of the previous work has 
considered both unreliable communication environments and the spectrum 
sensing data falsification attack for cognitive radio based smart grid 
applications. This paper proposes a fuzzy inference system based on four 
conflicting descriptors. An attack model is formulated to determine the 
probability of detection for both honest and malicious secondary users. It 
considers four independent malicious secondary users’ attacking strategies 
of always yes, always no, random, and opposite attacks. The performance of 
the proposed fuzzy fusion system is simulated and compared with the 
conventional fusion rules of AND, OR, Majority, and the reliable fuzzy fusion 
that does not consider the secondary user’s sensing reputation. The results 
indicate that incorporating sensing reputation in the fusion center has 
enhanced the accuracy of spectrum detection and have prevented malicious 
secondary users from participating in the spectrum detection fusion. 
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1. Introduction 

*A smart grid is evolving towards a more 
modernized smarter grid to provide two-way 
communications of information and electricity to 
support the diverse applications (Fadel et al., 2015). 
Bidirectional communications are essential for 
monitoring and control of power generating stations, 
transmission lines, distribution centers, and smart 
homes, where Wireless Sensor Networks are 
impeded in every part of the smart grid (Yigit et al., 
2016). Home Area Networks (HANs) consists of 
devices and appliances that communicate with their 
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home controller and/or smart meter to exchange 
data with the utility control center. A group of smart 
meters in each Neighborhood Area Networks (NANs) 
is connected to a data collector to aggregate data to 
the utility for further analysis through the Wide Area 
Networks (WANs). These communication networks 
use different communication technologies in various 
spectrum bands, one of which is the radio frequency 
band. Smart grid applications require stringent 
demand for the spectrum to satisfy the Quality of 
Service (QoS) requirements of diverse applications. 
However, radiofrequency bands are overloaded and 
suffer from interference from multiple coexisting 
technologies. Cognitive Radio (CR) solutions provide 
a highly attractive communication technology to 
access the underutilized frequency bands. This 
enabling technology opens up the licensed spectrum 
bands to the unlicensed Secondary Users (SUs) 
(Toma et al., 2020). SUs are allowed to sense, 
observe, and learn from the environment to 
opportunistically access underutilized frequency 
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bands of licensed Primary Users (PUs) (Akyildiz and 
Brandon, 2011).  

The Dynamic Spectrum Access (DSA) allows 
reliable communication, avoids the license costs, and 
allows sharing of the spectrum among multiple 
communication networks (Akyildiz et al., 2006). In 
addition, SUs can also be aware of their wireless 
environment to reconfigure their transmission 
parameters to communicate over the most reliable 
available spectrum. These reliable communications 
are vital for the successful deployments of the smart 
grid, where failure to transmit some events to the 
utility or back to actuators to perform certain 
prescribed actions results in major operational 
problems (Fadel et al., 2017). CR technology can be 
integrated with traditional networks due to their 
software-based nature (Huang et al., 2020). CR 
enabled networks can provide substantial benefits to 
both the utility and service provider to deploy WSNs 
to perform usual functions in addition to spectrum 
sensing. Furthermore, the utility can deploy CR-
based smart meters that communicate over the 
advanced metering infrastructure (Khan et al., 
2017). Currently, Wireless Regional Area Network 
(WRAN) is proposed to allow wireless broadband 
services in wide rural areas to access TV bands 
opportunistically (Dehalwar et al., 2016).  

The most common technique to detect PUs signal 
or channel occupancy is by using energy detection 
(Bae et al., 2017). However, local sensing is 
inefficient due to propagation impairments 
(Mustapha et al., 2015). Therefore, the Cooperative 
Spectrum Sensing (CSS) is used to combine the 
spectrum sensing reports from multiple SUs. Report 
fusion can be distributed or centralized (Akyildiz 
and Brandon, 2011). In distributed CSS, local sensing 
reports are exchanged with neighbors SUs, while in 
centralized CSS, SUs send their local sensing reports 
to a centralized Fusion Center (FC) (Hernandes and 
Abrao, 2020). However, a cluster-based CSS is more 
suitable for the smart grid where each cluster is 
controlled by a CR-based Cluster Head (CH) to collect 
sensing reports and forward these reports to the FC 
(Nassef et al., 2018). Hard fusion or soft fusion can 
be used (Fu et al., 2018). However, the accuracy of 
the decision depends highly on the received 
spectrum sensing reports, the reliability of the 
wireless channels, and the trustworthiness of the 
cooperating SUs. These critical and conflicting 
parameters result in inaccurate spectrum decision 
reports and consequently waste the opportunities to 
access the available spectrum or cause interference 
to the PUs.  

On the other hand, the smart grid inherits most of 
the security vulnerabilities commonly found on 
wireless communication networks, sensor networks, 
and the Internet as a whole (Ansere et al., 2019). A 
smart grid is vulnerable to security threats that 
target traditional networks, plus new security 
threats related to the cognitive features of the 
software-based air interface. The current spectrum 
sensing techniques do not provide a security 
mechanism to defend against these newly 

introduced attacks (Nassef and Alhebshi, 2016). The 
current cryptography security solutions cannot deal 
with this internal type of attack that initiates from 
malicious SUs within the network (Fragkiadakis et 
al., 2014). One of the cognitive-related attacks is the 
Spectrum Sensing Data Falsification (SSDF) attack 
(Chen et al., 2017), where malicious SUs send 
falsified sensing decisions to mislead the FC and to 
disrupt the network operation. This attack may 
waste the opportunity for other SUs to access the 
spectrum and also cause interference to PU. 
Furthermore, malicious SUs can work independently 
or collaborate and can use different attacking 
strategies (Wan et al., 2019). Security solutions 
proposed for both Cognitive Radio Ad Hoc Networks 
(CRAHNs) and Cognitive Radio Networks (CRNs) are 
not applicable for the resource-constrained CR-
based WSNs (Joshi et al., 2013). 

Among the possible solutions to prevent the SSDF 
attack is to evaluate the trustworthiness of 
cooperative SUs (Wang et al., 2018). A reputation-
based detection scheme to detect SSDF attacks was 
considered in Wang et al. (2017). An attack aware 
cooperative spectrum sensing to defend against 
SSDF is proposed in Sharifi (2019) to estimate node 
behavior based on the estimated attack strength. The 
SUs' reputation values are developed in (Ye et al., 
2016) based on their current and historical sensing 
behaviors. They used a punishment strategy to 
recompute the reputation to ensure correct global 
decisions. A multinomial Bayesian trust model is 
proposed in Bhattacharjee et al. (2015) to defend 
against SSDF attacks by classifying nodes into honest 
or malicious. A double adaptive threshold technique 
is proposed in Khan et al. (2019) to differentiate the 
honest and malicious nodes by assigning weights to 
nodes using a Maximal Ratio Combining (MRC) 
scheme. Dempster-Shafer evidence theory is used at 
the FC to combine the decision of all the honest 
nodes. A sequential CSS in the presence of dynamic 
byzantine attack for mobile networks to defend 
against dynamic SDFF attacks is designed in Wu et al. 
(2018), where consistency of individual sensing 
report is checked. Reputation management 
combined with subcarrier modulation-based CSS 
scheme is presented in Zheng et al. (2016) to achieve 
robustness against unreliable subcarriers due to 
harsh industrial environments. Both trust and 
reputation are used in Bennaceur et al. (2018) to 
secure the network against SSDF. A cooperative 
multiband detection scheme to optimize the 
detection performance and maximize the throughput 
in the existence of malicious users is presented in 
Saber and Sadough (2016). Moreover, a trust 
management scheme based on sensing reputation is 
developed in Kar et al. (2017) to defend against SSDF 
attacks. They used sensing reputation based on 
history and consistency factor to isolate malicious 
nodes from spectrum sensing decision making. 

Fuzzy logic was used to develop communication 
protocols for clustered based networks to select CHs. 
Both energy efficiency and enhance network lifetime 
were considered based on three factors of the node’s 
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remaining energy, the distribution of neighboring 
nodes or node degree, and the closest node to the 
base station. The aim was to decrease energy 
consumption and increase network lifetime 
(Rasheed et al., 2018). Finally, a fuzzy-based CSS to 
improve the probability of spectrum detection in a 
harsh smart grid environment was developed in 
Nassef and Alhebshi (2016). However, combining the 
reliability of communication channels with node 
behavior was not considered. The objective of this 
paper is to propose a Fuzzy Inference System (FIS) 
to improve spectrum detection performance in the 
presence of malicious SUs. The aim is to evaluate the 
impact of SSDF attack on fusion decisions, to propose 
an attack detection to classify SU’s behavior, and be 
able to prevent malicious SU’s from cooperating in 
the fusion process. The proposed FIS allows 
intermediate values to have a degree of membership 
function defined in the interval [0, 1]. The FIS inputs 
apply different functions to determine output using 
some formulated rules. The FIS takes crisp inputs 
and produces fuzzy output, which needs 
defuzzification to extract the crisp output that 
represents the fuzzy set. It is based on four 
descriptors of sensing reputation, channel condition, 
energy, and the probability of detection in the smart 
grid environment. To the best of our knowledge, 
there is no previous work that has proposed a secure 
and reliable cluster-based CSS that is designed 
especially for a smart grid environment. Therefore, 
this paper proposes a cluster-based CSS to detect 
and prevent SSDF malicious activities in a CR-based 
smart grid. The sensing reputation of SU is computed 
to classify SUs as honest, malicious, and suspected. A 
FIS based on sensing reputation of SUs behaviors, 
channel condition, energy, and the local probability 
of detection is proposed to enhance the accuracy of 
spectrum sensing detection. 

The rest of the paper is organized as follows. 
Section II develops the threat model and evaluate 
performance indicators in both benign network and 
under SSDF attack with different attacking strategies 
and attacking probabilities. Section III develops the 
sensing reputation algorithm to detect SSDF attacks 
and to classify network nodes as trusted, malicious, 
and suspicious. Section IV proposes the fuzzy-based 
trust and reliable fusion to mitigate the impact of 
SSDF attacks based on four fuzzy descriptors to 
enhance the accuracy of spectrum decisions. Section 
V presents the simulation environment, performance 
metrics, simulation scenarios, and results analysis, 
where the proposed model is compared with the 
benign and attacked scenarios. Finally, Section VI 
provides the conclusion and future work.  

2. Threat model 

The network consists of N number of 𝑆𝑈𝑠 that are 
uniformly distributed in a square area 𝐴 of 𝐿𝑥𝐿 sides 
and 𝑘 number of 𝑃𝑈𝑠. Nodes are clustered into 𝑞 
clusters, and each cluster is assumed to occupy an 

area of 
𝐿2

𝑞
 square meters. Each cluster has one Cluster 

Head (𝐶𝐻) to communicate with member nodes 

𝑛𝑐 =  
𝑁

𝑞
, where 𝑛𝑐  is the number of SUs in each 

cluster. The network architecture includes at the 
higher level a network controller (FC) in which 
different applications are implemented. The FC 
selects the frequency bands to be sensed and 
instructs all network nodes to perform individual 
sensing. Correspondingly, it receives the sensing 
reports from all cluster heads. The cluster-based CSS 
is used to reduce the overhead associated with 
sensing reports transmission at the WAN level and 
with limiting effects of malicious SUs within the 
cluster to enhance attack detection accuracy. ALL 
𝑆𝑈𝑠 continuously scans 𝑘 channels to construct their 
local occupancy vector and transmits their sensing 
reports to FC through their corresponding 𝐶𝐻𝑗 . The 
honest 𝑆𝑈𝑖  transmits the same actual vector while 
malicious 𝑆𝑈𝑖  transmits a modified report to falsify 
the occupancy of some channels. Based on the 
received vectors, 𝐶𝐻𝑠 submit their reports to FC, 
which employs fusion rules to make a cluster 
decision about the spectrum occupancy of all of 𝑘𝑐  
channels. For the hard fusion, the binary decision of 
𝑆𝑈𝑖   about all channels are constructed as a binary 
vector 𝑢𝑖

𝑎𝑐𝑡  and submitted to FC through the 
corresponding 𝐶𝐻𝑗  over the error-free channel. For 
soft fusion, the actual energy and channel conditions 
are constructed. The occupancy vector 𝑢𝑖

𝑎𝑐𝑡  is 
constructed as: 
 
{𝑢𝑖

𝑎𝑐𝑡 = {𝑢1, … , 𝑢𝑘}                                                (1) 
 

where 
 

 𝑢𝑘 {
= 0      𝑖𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑠 𝑣𝑎𝑐𝑎𝑛𝑡

= 1     𝑖𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑
 

 

In a benign network, two error performance 
indicators are defined. The probability of false alarm 
𝑃𝑓𝑎  which are the probability of sensing the presence 

of a PU when the channel is vacant and the 
probability of miss detection 𝑃𝑚𝑑  which is the 
probability of not sensing a PU when the channel is 
occupied. Therefore, for honest SUs, 𝑃𝑓𝑎 =

𝑃(𝑢𝑖 = 1 |𝐻0) and 𝑃𝑚𝑑 = 𝑃(𝑢𝑖 = 0 |𝐻1). These 
honest SUs do not change their sensing decision 
𝑢𝑗  results and they advertise 𝑣𝑖  to CH such as 

𝑃(𝑣𝑖 = 1 |𝑢𝑖 = 1) = 1, 𝑃(𝑣𝑖 = 0 |𝑢𝑗 = 1) = 0, 

𝑃(𝑣𝑖 = 0 |𝑢𝑖 = 0) = 1, and 𝑃(𝑣𝑖 = 1 |𝑢𝑖 = 0) = 0. 
Then the probability of detection of individual SUs, 
 𝑃𝑑𝑒𝑡𝑒𝑐𝑡

𝐻 , is defined as:  
 

𝑃𝑑𝑒𝑡𝑒𝑐𝑡
𝐻 = 𝑃(𝑣𝑗 = 0 |𝐻0) 𝑃(𝐻0) +  𝑃(𝑣𝑗 =

1 |𝐻1) 𝑃(𝐻1)               = (1 −  𝑃𝑓𝑎)𝑃𝑣𝑎𝑐𝑎𝑛𝑡 + (1 −

𝑃𝑚𝑑)𝑃𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑                                                                                  (2) 

 

The performance indicators for "𝑙 𝑜𝑢𝑡 𝑜𝑓 𝑛𝑐" 
fusion in a benign environment is formulated as: 
 

𝑃𝑑
𝐶𝐻𝑗

=  ∑ (𝑛𝑐
𝑙

)
𝑛𝑐
𝑖=𝑙  (𝑃𝑑

𝐻)
𝑖
 (1 − 𝑃𝑑

𝐻)𝑛𝑐−𝑖                                 (3) 

𝑃𝑓𝑎
𝐶𝐻𝑗

=  ∑ (𝑛𝑐
𝑙

)
𝑛𝑐
𝑖=𝑙  (𝑃𝑓𝑎

𝐻)
𝑖
 (1 − 𝑃𝑓𝑎

𝐻)𝑛𝑐−𝑖                            (4) 
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where 
 

(𝑛𝑐
𝑙

) =  
𝑛𝑐!

𝑙! .  ( 𝑛𝑐−𝑙)!
.  

 

 
When malicious 𝑆𝑈𝑠 decide to launch the attack 

with a probability of 𝑃𝑚𝑎𝑙 , they modify sensing 
reports sent to the CH to influence the decision about 
the channel status. Different attacking strategies can 
be used based on the attack’s objectives. The first 
strategy can be ‘‘Always YES” in which malicious 
nodes always report that the channel is occupied 
with increasing the probability of false alarm and 
with causing channel underutilization. The second 
strategy can be ‘‘Always NO” in which malicious 
nodes always report that the channel is vacant to 
lower the detection probability and increase 
interference to the PU. The third attack can be 
‘‘Always Opposite’’ in which the opposite decision is 
reported to increase false alarm probability and 
decrease detection probability. The fourth attack can 
be a ‘‘random attack’’ in which a random decision is 
reported. Always yes and always no strategies are 
easily identified after several rounds of CSS due to 
constant sensing reports. However, always opposite 
and random strategies are the most harmful attacks.  

The clustered based CSS consists of a number of 
SUs that are defined as 𝑛𝑐 = 𝑛𝑎 + 𝑛ℎ, where 𝑛𝑎 
nodes are the number of malicious nodes; 𝑛ℎ are a 
number of honest nodes and 𝑛𝑐  is the total number 
of cluster members. In each cluster, there is a 

percentage of 𝜃𝑚𝑎𝑙 =  
𝑛𝑎

𝑛𝑐
 malicious SUs that defines 

the attack strength. When 𝑆𝑈𝑖  decides to attack with 

a probability 𝑃𝑚𝑎𝑙 , the advertised vector {𝑢𝑖
𝑎𝑑𝑣} of 

𝑆𝑈𝑖  may be different from the actual vector 𝑢𝑖
𝑎𝑐𝑡  

where honest nodes would have the same (𝑢𝑖 = 𝑣𝑖), 
and malicious nodes would have submitted the 
report 𝑣𝑖  that will depend on its attack strategy. The 
advertises vector 𝑣𝑖

𝑎𝑑𝑣  will be, 
 

𝑢𝑖
𝑎𝑑𝑣 {

= 𝑢𝑖
𝑎𝑐𝑡         𝑖𝑓  𝑛𝑜𝑑𝑒 𝑖 ∈  𝐻 (ℎ𝑜𝑛𝑒𝑠𝑡 𝑆𝑈𝑠) 

 ≠ 𝑢𝑖
𝑎𝑐𝑡   𝑖𝑓  𝑛𝑜𝑑𝑒 𝑖 ∈  𝑀 (𝑚𝑒𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑆𝑈𝑠)

                 (5) 

 

Since all the honest SUs 𝑛ℎ are sensing the same 
channels, their sensing reports should be similar. 
The dissimilar reports are received from the 𝑛𝑎 
malicious SUs. It is assumed that 𝑛𝑎 ≪ 𝑛𝑐Where the 
number of sensing reports from honest 𝑆𝑈𝑠 is 
greater than the number of sensing reports from the 
malicious 𝑆𝑈𝑠 for the proper operation of the 
majority fusion, which considers only the maximum 
number of similar sensing reports to reach a 
decision. Without loss of generalities, the following is 
the detection probability of an individual malicious 
𝑆𝑈𝑖  and defined as 𝑃𝑑𝑒𝑡𝑒𝑐𝑡

𝑎 , 
 
𝑃𝑑𝑒𝑡𝑒𝑐𝑡

𝑎 = 𝑃(𝑣𝑖
𝑎 = 0 |𝐻0) 𝑃(𝐻0) +  𝑃(𝑣𝑖

𝑎 = 1 |𝐻1) 𝑃(𝐻1) =

((1 − 𝑃𝑚𝑎𝑙  )(1 − 𝑃𝑓𝑎 )) + 𝑃𝑚𝑎𝑙𝑃𝑓𝑎 ) 𝑃𝑣𝑎𝑐𝑎𝑛𝑡 +

((1 − 𝑃𝑚𝑎𝑙  )(1 − 𝑃𝑚𝑑 ) + 𝑃𝑚𝑎𝑙𝑃𝑚𝑑 ) 𝑃𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑                     (6) 

 

For 𝑙 𝑜𝑢𝑡 𝑜𝑓 𝑛𝑐 fusion where 𝑙 =  
𝑛𝑎+ 𝑛ℎ

2
, the 

𝑃𝑑𝑒𝑡𝑒𝑐𝑡
𝐻  follows a binomial distribution with 

parameter  𝑛ℎ and 𝑃𝑑𝑒𝑡𝑒𝑐𝑡
𝑎  also follows a binomial 

distribution with parameter 𝑛𝑎. Therefore, the 
overall detection probability 𝑃𝑑𝑒𝑡𝑒𝑐𝑡  is calculated 
using the joint distribution of detection probability 
of independent, honest 𝑆𝑈𝑠 and independent 
malicious nodes as follows: 
 
𝑃𝑑𝑒𝑡𝑒𝑐𝑡 =   𝑃(𝑛𝑎 + 𝑛ℎ) > 𝑙 = 
∑ 𝜓(𝑛ℎ

𝑛ℎ
𝑦=1 , 𝑦, 𝑃𝑑𝑒𝑡𝑒𝑐𝑡

𝐻 ) ∑ 𝜓(𝑛𝑎
𝑛𝑎
𝑥=𝑙−𝑦 , 𝑥, 1 − 𝑃𝑑𝑒𝑡𝑒𝑐𝑡

𝑎 )           (7) 

 

where 
 

𝜓(𝑛𝑎, 𝑦, 𝑃𝑑𝑒𝑡𝑒𝑐𝑡
𝐻 ) =  (𝑛𝑎

𝑦
) (𝑃𝑑𝑒𝑡𝑒𝑐𝑡

𝐻 )
𝑦

 (1 − 𝑃𝑑𝑒𝑡𝑒𝑐𝑡
𝐻 )𝑛𝑎−𝑦 , 

 
and 
 

𝜓(𝑛𝑎, 𝑥, 1 − 𝑃𝑑𝑒𝑡𝑒𝑐𝑡
𝑎 ) =  (𝑛𝑎

𝑥
) (1 − 𝑃𝑑𝑒𝑡𝑒𝑐𝑡

𝐻 )
𝑥

 (𝑃𝑑𝑒𝑡𝑒𝑐𝑡
𝐻 )𝑛𝑎−𝑥  

3. Computation of sensing reputation  

To secure the network against the SSDF attack, 
the sensing reports are collected from all clusters. In 
each cluster, reports are highly correlated, and 
malicious reports can be detected based on their 
similarity (or difference) with reports from honest 
SUs. The SU’s behavior is classified into honest and 
malicious based on their sensing reputation, which is 
computed based on direct and indirect trust. Trust is 
an expectation of a SU’s behavior, and for simplicity, 
trust is formulated for one cluster. In this case, an 
indirect trust level is not required as all 
communications are performed between 𝐶𝐻𝑗  and 
it’s immediate cluster members. Trust is dependent 
on time, and SUs can gain or lose trust with time. A 
single observation is not sufficient to estimate the 
behavior of the nodes. The trust value should be 
dynamically updated due to its dependence on the 
percentage of malicious SUs. However, updating the 
trust value frequently often results in the rapid 
consumption of energy, and it may not reflect trust 
value efficiently if the interval for the trusted update 
is too long. SUs usually observe the spectrum over a 
time window that may be adjusted depending on the 
user requirement and computational resource 
availability. A larger time window of observation 
allows a more accurate estimation of SU’s behavior 
but consumes more resources. Trust is computed 
based on previous and current sensing reports. Over 
the sliding time window 𝑇, the history of the last 
spectrum sensing periods is used to classify nodes as 
Trusted, malicious, and suspicious using trust level. 
The trust value is modeled as a random variable in 
the range of [0, 1] (Bai et al., 2017), where the 
probability of expectation to effectively evaluate the 
trustworthiness of a SU is computed using the Beta 
distribution. Beta probability distribution function is 
computed using two parameters of the number of 
positive behavior of honest SUs (u_i^h)) and the 
number of negative behavior of malicious nodes 
(u_i^m) (Kar et al., 2017). The probabilistic 
estimation of the future trust and uncertainty about 
the behavior of a SU is captured from a history table 
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that is created for each channel to record sensing 
reports from each SU during the 𝑇𝑐𝑠  sensing periods. 
The accumulated number of times the sensing 
reports that were similar to the final decision is 
computed as positive observations “𝑢𝑗

ℎ,” and the 

accumulated number of times the number the 
sensing report was different from the final decision 
computed as the negative observations “𝑢𝑖

𝑚 .” These 
accumulated evidences formulate the trust 
relationship between CH and SU. The direct trust 
level is defined as the expectation 𝐸[𝐵𝑒𝑡𝑎(𝑢𝑗

ℎ, 𝑢𝑗
𝑚)] 

and is computed as 𝑇𝐿′[𝑢𝑗
𝑡] =  

|𝑢𝑖
ℎ|

𝑢𝑖
ℎ+ 𝑢𝑖

𝑚. The average 

trust level is computed as 𝑇𝐿[𝑢𝑖] =  
1

𝑛𝑐
∑ 𝑇𝐿′[𝑢𝑖

𝑡]𝑛
0 . 

The same way for the malicious level that is 

computed as 𝑆𝐿′[𝑢𝑗
𝑡] =  

|𝑢𝑖
𝑚|

𝑢𝑖
ℎ+ 𝑢𝑖

𝑚  

The Sensing Reputation 𝑆𝑅[𝑢𝑖] is computed using 
the sliding time window that moves to remove the 
recorded history based on three factors. The first 
factor is the historical trust level with an attenuation 
factor 𝜇(𝑡) to weight the historical experience based 
on timestamp t, where the newer sensing period is 
weighted more than, the older one. The second 
factor is the incentive factor to reward honest SUs 
for their honest behavior and also punish malicious 
SUs by decreasing their trust level. The third factor is 
the consistency factor that maintains an honest trust 
level. These factors are weighted with different 

weights to compute the 𝑆𝑅 [𝑢𝑗] for each 𝑆𝑈𝑗  as 

follows: 
 

𝑆𝑅[𝑢𝑖] =  𝑤1 ∗ 
∑ 𝑇𝐿[𝑢𝑖

𝑥]∗𝜇(𝑡)        𝑡
𝑥=1

𝑇
+ 𝑤2 ∗ (1 −

1

𝑛
∑ 𝑆𝐿′[𝑢𝑖

𝑡]𝑛
0 ) +    

𝑤3 ∗ (1 −  
√

∑
(𝑇𝐿[𝑢𝑖

𝑥]− 
𝑇𝐿[𝑢𝑖

1]+𝑇𝐿[𝑢𝑖
2]+⋯,𝑇𝐿[𝑢𝑖

𝑡]

𝑇
)

2

𝑇−1
 𝑡
 𝑥=1 )                    (8) 

 

where weights 𝑤 ∈ [0,1] and ∑ 𝑤𝑒
𝑡
𝑒=1 = 1. These 

weights are adjusted according to the demand of the 
network. 𝑤1 is specified to give more weight to 
current sensing reports for immediate detection of 
node behavior, 𝑤2 is used to inhibit malicious 
behavior, and 𝑤3 is used to encourage the SUs to be 
honest for a long time. The trust value is computed 
over all sensed channels as follows: 
 

[𝑢𝑖
𝑥] =  

(𝑇𝐿[𝑢𝑖
1]+𝑇𝐿[𝑢𝑖

2]+⋯,𝑇𝐿[𝑢𝑖
𝑡])∗𝜇(𝑡)

𝑇
                                          (9) 

 

A predefined threshold 𝛿 is used to classify a 
node’s behavior-based node’s sensing reputation. 
Initially the 𝑆𝑅[𝑢𝑗] of all SUs are assigned a value 𝛿 =

0.5 which is used to initialize the network when no 

historical trust file is found. With time, the 𝑆𝑅[𝑢𝑗] 

will be modified, and SUs are classified as honest, 
malicious, or suspicious based on the following 
predefined threshold for the three categories as 
follows: 
 

𝑢𝑖 =  {

𝐻𝑜𝑛𝑒𝑠𝑡                 𝑖𝑓 𝑆𝑅[𝑢𝑖]  ≥ 0.9

𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠               𝑖𝑓 𝑆𝑅[𝑢𝑖]  < 𝛿
𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (10) 

4. Proposed fuzzy inference system 

Fuzzy fusion to enhance spectrum detection 
accuracy in unreliable harsh smart grid 
environments was developed in Nassef and Alhebshi 
(2016). The proposed FIS considers both reliability 
and the presence of malicious by incorporating four 
fuzzy descriptors to detect spectrum: Sensing 
reputation, channel condition, energy difference, and 
the local probability of detection. The four input 
descriptors have three levels of linguistic values to 
reflect the different degree of membership of the 
input linguistic variable and specified as follows: 
 
Descriptor 1: The sensing reputation 𝑆𝑅 has 3 input 
linguistic variables of malicious, suspicious, and 
honest. 
Descriptor 2: The channel condition has 3 input 
linguistic variables of poor, good, excellent. 
Descriptor 3: The difference of the energy 
difference of sensed energy of 𝑆𝑈 to the average of 
all SUs in the cluster. It has 3 input linguistic 
variables of high, medium, and low. 
Descriptor 4: The local probability of detection has 
an input linguistic variable of low, medium, and high. 

 
The output linguistic variable 𝑃𝑑

𝑐
𝑖
 has seven 

linguistic values of very high, high, med-high, med, 
med-low, low, very low. All of the seven membership 
functions are represented by triangular functions, as 
shown in Fig. 1. The four input parameters with 
three different levels give a total of 81 fuzzy IF-THEN 
rules. The two extreme rules are located between 
these two cases: 
 
Case (1): If SR is malicious, SNR is poor, DIFF is high 
and local 𝑃𝑑  is low, then the fuzzy cluster decision is 
very low. 
Case (2): If SR is honest, SNR is excellent, DIFF is 
low, and 𝑃𝑑  is high, then the fuzzy cluster decision is 
very high. 

5. Simulation environment 

Simulations are performed to create the same 
environment found in HAN to investigate the newly 
introduced SSDF attack and validate the 
effectiveness of the proposed FIS. The network 
consists of 100 nodes, and a percentage of these 
nodes are selected to be malicious. It is also assumed 
that initially, all nodes are authorized by the FC, 
which knows the node’s location and sensing 
parameters of all clusters. The performance of the 
hard fusion rules is simulated and compared with 
the performance of the proposed FIS. Simulation is 
carried first in a benign environment, then 
independent SSDF attack with various strategies are 
introduced. The traffic and propagation models are 



Laila Nassef, Reemah Alhebshi/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 92-100 

97 
 

based on the requirements of the smart grid 
environment. The simulation parameters are 

summarized in Table 1. 

 

 
Fig. 1: Membership functions of proposed FIS 

 
Table 1: Common simulation parameters 

Parameter Values Parameter Values 
Network diameter 100 m Traffic type CBR 

Frequency band 2.4G Hz Data rate 250 kbps 
Number of SUs 100 Packet size 512B 

SU coverage radius 35 m Sensing duration 1msec 
Number of PUs 5 Number of samples 500 

Receiver sensitivity -85 dBm Sampling duration 0.1msec 
PU coverage radius 50 m Super frame duration 10msec 
Path loss exponent 4.2 Shadowing Variance 4.0 

    

5.1. Simulation results and analysis 

Two scenarios to evaluate the performance of 
proposed fusion schemes are considered. The first 
scenario evaluates the probability of detection 
against the probability of false alarm for the majority 
fusion under the impact of different independent 
SSDF attack strategies with 10% malicious nodes. 
Results indicate that the performance of majority 
fusion degraded quickly when the percentage of 
malicious nodes is 10 % as compared with the case 
of no malicious attacks (0%). The highest 
degradation is achieved with the opposite attack 
strategy as compared to always yes and always no 
attack strategies. The majority of fusion cannot 
distinguish between honest SUs from malicious SUs, 
which greatly impacts the fusion process due to 
inaccurate sensing reports. The figure also presents 
the impact of random attack strategy and 10% 

percentage of malicious SUs on the fuzzy reliable 
fusion where sensing reputation is disabled to 
consider the impact of reliability with no measure of 
sensing reputation on detection of SSDF attacks. The 
improvement is attributed to reliability 
considerations. As indicated in Fig. 2, the proposed 
fuzzy scheme shows better results with the 
introduction of 10 % of malicious SUs and provided 
the best performance due to its effectiveness in 
detecting malicious SUs and isolating them from 
participating in the fusion process, which enhanced 
detection accuracy.  

The second scenario shows the effect of 
increasing the percentage of malicious nodes on 
detection performance. When there are no malicious 
SUs, the difference between proposed fusion and 
reliable fusion is due to the impact of taking channel 
condition into consideration. 
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Fig. 2: The probability of detection against the probability of false alarm for majority fusion under 10% of SSDF attack 

 

The detection performance of proposed fuzzy 
fusion has no measures for sensing reputation, and 
performance dropped quickly when the percentage 
of malicious SUs increases due to incorrect sensing 
reports, which impacted the spectrum decision. On 
the other hand, the proposed fuzzy fusion exhibits 
more robustness and maintains a relatively good 
performance as the percentage of malicious nodes 
increases. As indicated in Fig. 3, the proposed fuzzy 
fusion has the advantage of integrating the sensing 

reputation to provide more accurate results, which 
contributed to the performance improvement. The 
proposed fuzzy-based secure fusion has prevented 
malicious SUs from participating in detection 
probability, which enhanced detection accuracy. 
Using the proposed FIS, malicious SUs are not 
allowed to participate in fusion once they are 
detected. However, suspected nodes are 
continuously monitored to evaluate their behavior. 

 

 
Fig. 3: The probability of detection against the percentage of malicious SUs 

 

6. Conclusion and future works 

The exponential growth of wireless applications 
and the spectrum scarcity problem, along with the 
traditional static spectrum allocation, have caused 
unreliable communications in the harsh smart grid 

environment. The unlicensed spectrum band suffers 
from a spectrum inefficiency problem while the 
licensed spectrum band is underutilized. Cognitive 
radio is proposed to allow opportunistic access to 
these underutilized spectrum bands. The local 
spectrum detection is inefficient, and a cooperative 
spectrum sensing is employed to enhance detection 
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accuracy. However, cooperative spectrum sensing is 
vulnerable to SSDF attacks in which malicious SUs 
modify their sensing reports to force the fusion 
center to make the wrong spectrum decision. 
Sensing reputation is developed to classify SUs as 
honest, malicious, and suspicious. A fuzzy inference 
system is proposed to maintain a good detection 
performance in the presence of malicious SUs. It is 
based on four conflicting fuzzy descriptors of node’s 
sensing reputation, channel condition, difference of 
local sensing to the average of cluster cooperative 
sensing, and the local probability of detection. The 
proposed FIS has prevented malicious SUs from 
participating in the fusion process and also allowed 
to keep track of suspicious SU’s behavior. The 
proposed FIS was evaluated through simulation, and 
the results demonstrated that the proposed scheme 
was effective in enhancing detection probability as 
compared to fuzzy reliable and majority fusion 
under independent SSDF attacks. However, the effect 
of launching collaborative malicious SSDF attacks 
needs to be considered along with other attacks that 
target the spectrum sensing phase as well as other 
phases of the cognitive cycle. A deep learning 
approach is now considered to enhance attack 
detection and prevention for multiple types of 
spectrum sensing attacks under a wide range of 
scenarios, propagation environment, topology, 
and/or attack strategies that will be based on the 
dataset obtained from the current simulation work. 

Compliance with ethical standards 

Conflict of interest 

The author(s) declared no potential conflicts of 
interest with respect to the research, authorship, 
and/or publication of this article. 

References  

Akyildiz IF, Lee WY, Vuran MC, and Mohanty S (2006). NeXt 
generation/dynamic spectrum access/cognitive radio 
wireless networks: A survey. Computer Networks, 50(13): 
2127-2159. https://doi.org/10.1016/j.comnet.2006.05.001 

Akyildiz IF, Lo BF, and Balakrishnan R (2011). Cooperative 
spectrum sensing in cognitive radio networks: A survey. 
Physical Communication, 4(1): 40-62.  
https://doi.org/10.1016/j.phycom.2010.12.003 

Ansere JA, Han G, Wang H, Choi C, and Wu C (2019). A reliable 
energy efficient dynamic spectrum sensing for cognitive radio 
IoT networks. IEEE Internet of Things Journal, 6(4): 6748-
6759. https://doi.org/10.1109/JIOT.2019.2911109 

Bae S, So J, and Kim H (2017). On optimal cooperative sensing 
with energy detection in cognitive radio. Sensors, 17(9): 2111. 
https://doi.org/10.3390/s17092111                      
PMid:28914753 PMCid:PMC5621099 

Bai P, Zhang X, and Ye F (2017). Reputation-based Beta reputation 
system against SSDF attack in cognitive radio networks. In the 
Progress in Electromagnetics Research Symposium-Fall, IEEE, 
Singapore, Singapore: 792-799.  
https://doi.org/10.1109/PIERS-FALL.2017.8293243 

Bennaceur J, Idoudi H, and Azouz Saidane L (2018). Trust 
management in cognitive radio networks: A survey. 

International Journal of Network Management, 28(1): e1999. 
https://doi.org/10.1002/nem.1999 

Bhattacharjee S, Chatterjee M, Kwiat K, and Kamhoua C (2015). 
Multinomial trust in presence of uncertainty and adversaries 
in DSA networks. In the MILCOM 2015-2015 IEEE Military 
Communications Conference, IEEE, Tampa, USA: 611-616.  
https://doi.org/10.1109/MILCOM.2015.7357511 

Chen H, Zhou M, Xie L, and Li J (2017). Cooperative spectrum 
sensing with M-ary quantized data in cognitive radio 
networks under SSDF attacks. IEEE Transactions on Wireless 
Communications, 16(8): 5244-5257.  
https://doi.org/10.1109/TWC.2017.2707407 

Dehalwar V, Kalam A, Kolhe ML, and Zayegh A (2016). Compliance 
of IEEE 802.22 WRAN for field area network in smart grid. In 
the IEEE International Conference on Power System 
Technology, IEEE, Wollongong, Australia: 1-6.  
https://doi.org/10.1109/POWERCON.2016.7754046 

Fadel E, Faheem M, Gungor VC, Nassef L, Akkari N, Malik MGA, and 
Akyildiz IF (2017). Spectrum-aware bio-inspired routing in 
cognitive radio sensor networks for smart grid applications. 
Computer Communications, 101: 106-120.  
https://doi.org/10.1016/j.comcom.2016.12.020 

Fadel E, Gungor VC, Nassef L, Akkari N, Malik MA, Almasri S, and 
Akyildiz IF (2015). A survey on wireless sensor networks for 
smart grid. Computer Communications, 71: 22-33.  
https://doi.org/10.1016/j.comcom.2015.09.006 

Fragkiadakis A, Angelakis V, and Tragos EZ (2014). Securing 
cognitive wireless sensor networks: A survey. International 
Journal of Distributed Sensor Networks, 10(3): 393248.  
https://doi.org/10.1155/2014/393248 

Fu Y, Yang F, and He Z (2018). A quantization-based multibit data 
fusion scheme for cooperative spectrum sensing in cognitive 
radio networks. Sensors, 18(2): 473.  
https://doi.org/10.3390/s18020473                   
PMid:29415448 PMCid:PMC5856117 

Hernandes AG and Abrao T (2020). Distributed average consensus 
optimization for cooperative spectrum sensing in cognitive 
radio ad hoc networks. Emerging Telecommunications 
Technologies, 31(7): e3965.  
https://doi.org/10.1002/ett.3965 

Huang XL, Tang XW, and Hu F (2020). Dynamic spectrum access 
for multimedia transmission over multi-user, multi-channel 
cognitive radio networks. IEEE Transactions on Multimedia, 
22(1): 201-214.  
https://doi.org/10.1109/TMM.2019.2925960 

Joshi GP, Nam SY, and Kim SW (2013). Cognitive radio wireless 
sensor networks: Applications, challenges and research 
trends. Sensors, 13(9): 11196-11228.  
https://doi.org/10.3390/s130911196                     
PMid:23974152 PMCid:PMC3821336 

Kar S, Sethi S, and Sahoo RK (2017). A multi-factor trust 
management scheme for secure spectrum sensing in cognitive 
radio networks. Wireless Personal Communications, 97(2): 
2523-2540. https://doi.org/10.1007/s11277-017-4621-5 

Khan AA, Rehmani MH, and Rachedi A (2017). Cognitive-radio-
based internet of things: Applications, architectures, spectrum 
related functionalities, and future research directions. IEEE 
Wireless Communications, 24(3): 17-25.  
https://doi.org/10.1109/MWC.2017.1600404 

Khan MS, Jibran M, Koo I, Kim SM, and Kim J (2019). A double 
adaptive approach to tackle malicious users in cognitive radio 
networks. Wireless Communications and Mobile Computing, 
2019: 2350694. https://doi.org/10.1155/2019/2350694 

Mustapha I, Ali BM, Rasid MFA, Sali A, and Mohamad H (2015). An 
energy-efficient spectrum-aware reinforcement learning-
based clustering algorithm for cognitive radio sensor 
networks. Sensors, 15(8): 19783-19818.  
https://doi.org/10.3390/s150819783                       
PMid:26287191 PMCid:PMC4570397 

https://doi.org/10.1016/j.comnet.2006.05.001
https://doi.org/10.1016/j.phycom.2010.12.003
https://doi.org/10.1109/JIOT.2019.2911109
https://doi.org/10.3390/s17092111
https://doi.org/10.1109/PIERS-FALL.2017.8293243
https://doi.org/10.1002/nem.1999
https://doi.org/10.1109/MILCOM.2015.7357511
https://doi.org/10.1109/TWC.2017.2707407
https://doi.org/10.1109/POWERCON.2016.7754046
https://doi.org/10.1016/j.comcom.2016.12.020
https://doi.org/10.1016/j.comcom.2015.09.006
https://doi.org/10.1155/2014/393248
https://doi.org/10.3390/s18020473
https://doi.org/10.1002/ett.3965
https://doi.org/10.1109/TMM.2019.2925960
https://doi.org/10.3390/s130911196
https://doi.org/10.1007/s11277-017-4621-5
https://doi.org/10.1109/MWC.2017.1600404
https://doi.org/10.1155/2019/2350694
https://doi.org/10.3390/s150819783


Laila Nassef, Reemah Alhebshi/International Journal of Advanced and Applied Sciences, 8(2) 2021, Pages: 92-100 

100 
 

Nassef L and Alhebshi R (2016). Secure spectrum sensing in 
cognitive radio sensor networks: A survey. International 
Journal of Computational Engineering Research, 6(3): 1-7.  

Nassef L, El-Habshi R, and Jose L (2018). Clustering-based routing 
for wireless sensor networks in smart grid environment. 
International Journal of Advanced Smart Sensor Network 
Systems, 8(1/2/3): 1-14.  
https://doi.org/10.5121/ijassn.2018.8301  

Rasheed T, Rashdi A, and Akhtar AN (2018). Cooperative 
spectrum sensing using fuzzy logic for cognitive radio 
network. In the Advances in Science and Engineering 
Technology International Conferences, IEEE, Abu Dhabi, UAE: 
1-6.                                 
https://doi.org/10.1109/ICASET.2018.8376914 
PMCid:PMC5870312 

Saber MJ and Sadough SMS (2016). Multiband cooperative 
spectrum sensing for cognitive radio in the presence of 
malicious users. IEEE Communications Letters, 20(2): 404-
407. https://doi.org/10.1109/LCOMM.2015.2505299 

Sharifi AA (2019). Attack-aware defense strategy: A robust 
cooperative spectrum sensing in cognitive radio sensor 
networks. Iranian Journal of Science and Technology, 
Transactions of Electrical Engineering, 43(1): 133-140.  
https://doi.org/10.1007/s40998-018-0133-x 

Toma OH, López-Benítez M, Patel DK, and Umebayashi K (2020). 
Estimation of primary channel activity statistics in cognitive 
radio based on imperfect spectrum sensing. IEEE Transactions 
on Communications, 68(4): 2016-2031.  
https://doi.org/10.1109/TCOMM.2020.2965944 

Wan R, Ding L, Xiong N, and Zhou X (2019). Mitigation strategy 
against spectrum-sensing data falsification attack in cognitive 
radio sensor networks. International Journal of Distributed 

Sensor Networks, 15(9): 1550147719870645.  
https://doi.org/10.1177/1550147719870645 

Wang J, Chen R, Tsai JJ, and Wang DC (2018). Trust-based 
mechanism design for cooperative spectrum sensing in 
cognitive radio networks. Computer Communications, 116: 
90-100. https://doi.org/10.1016/j.comcom.2017.11.010 

Wang P, Chen C, Zhu S, Lyu L, Zhang W, and Guan X (2017). An 
optimal reputation-based detection against SSDF attacks in 
industrial cognitive radio network. In the 13th IEEE 
International Conference on Control and Automation, IEEE, 
Ohrid, Macedonia: 729-734.  
https://doi.org/10.1109/ICCA.2017.8003150 

Wu J, Song T, Yu Y, Wang C, and Hu J (2018). Sequential 
cooperative spectrum sensing in the presence of dynamic 
Byzantine attack for mobile networks. PloS One, 13(7): 
e0199546.                      
https://doi.org/10.1371/journal.pone.0199546 
PMid:29975727 PMCid:PMC6033420 

Ye F, Zhang X, and Li Y (2016). Comprehensive reputation-based 
security mechanism against dynamic SSDF attack in cognitive 
radio networks. Symmetry, 8(12): 147.  
https://doi.org/10.3390/sym8120147 

Yigit M, Gungor VC, Fadel E, Nassef L, Akkari N, and Akyildiz IF 
(2016). Channel-aware routing and priority-aware multi-
channel scheduling for WSN-based smart grid applications. 
Journal of Network and Computer Applications, 71: 50-58.  
https://doi.org/10.1016/j.jnca.2016.05.015 

Zheng M, Liang W, Yu H, and Song M (2016). SMCSS: A quick and 
reliable cooperative spectrum sensing scheme for cognitive 
industrial wireless networks. IEEE Access, 4: 9308-9319.  
https://doi.org/10.1109/ACCESS.2016.2641471 

 

https://doi.org/10.5121/ijassn.2018.8301
https://doi.org/10.1109/ICASET.2018.8376914
https://doi.org/10.1109/LCOMM.2015.2505299
https://doi.org/10.1007/s40998-018-0133-x
https://doi.org/10.1109/TCOMM.2020.2965944
https://doi.org/10.1177/1550147719870645
https://doi.org/10.1016/j.comcom.2017.11.010
https://doi.org/10.1109/ICCA.2017.8003150
https://doi.org/10.1371/journal.pone.0199546
https://doi.org/10.3390/sym8120147
https://doi.org/10.1016/j.jnca.2016.05.015
https://doi.org/10.1109/ACCESS.2016.2641471

	Fuzzy-based reliable and secure cooperative spectrum sensing for the smart grid
	1. Introduction
	2. Threat model
	3. Computation of sensing reputation
	4. Proposed fuzzy inference system
	5. Simulation environment
	5.1. Simulation results and analysis

	6. Conclusion and future works
	Compliance with ethical standards
	Conflict of interest
	References




