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In this paper, we have introduced new sets of fractional order orthogonal 
basis moments based on Fractional order Legendre orthogonal Functions 
(FLeFs) and Fractional order Laguerre orthogonal Functions (FLaFs) for 
image representation. We have generated a novel set of Fractional order 
Legendre orthogonal Moments (FLeMs) from fractional order Legendre 
orthogonal functions and a new set of Fractional order Laguerre orthogonal 
Moments (FLaMs) from the fractional order Laguerre orthogonal functions. 
The new presented sets of (FLeMs) and (FLaMs) are tested with the recently 
introduced Fractional order Chebyshev orthogonal Moments (FCMs). This 
edge detection filter can be used successfully in the gray level image and 
color images. The new sets of fractional moments are used to reconstruct the 
gray level image. The numerical results show FLeMs and FLaMs are promised 
techniques for image representation. The computational time of the 
proposed techniques is compared with the computational time of Chebyshev 
orthogonal Moments techniques and gives better results. Also, the fractional 
parameters give the flexibility of studying global features of the image at 
different positions of moments. 
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1. Introduction 

*Image representation and edge detection play the 
core of image processing, computer vision, and 
pattern recognition fields. In recent view months, the 
image representation based on fractional order 
moments attracting many researchers. For example, 
a set of fractional order orthogonal Chebyshev 
moments is used to represent a gray-scale image 
(Kazem et al., 2013). Discrete fractional order 
orthogonal Chebyshev moments for Image 
encryption and watermarking based on FCMs are 
investigated in Xiao et al. (2020; 2017), Fernández et 
al. (2010), and Xu (2005). Shifted Chebyshev 
polynomials are developed to the new family of basis 
functions, namely generalized shifted Chebyshev 
polynomials (Fernández et al., 2011). The bivariate 
orthogonal polynomials are used to define 
continuous and discrete orthogonal moments are 
discussed in Hassani et al. (2020). Only a few papers 
have used bivariate or multivariate orthogonal 
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polynomials for image analysis and pattern 
recognition (Xu, 2004; Fernández, 2007).  

The orthogonal moments of gray-scale images 
were firstly studied in Teague (1980), where these 
orthogonal moments were able to represent digital 
images with no redundancy or overlap of 
information. Moreover, orthogonal moments are 
robust against well-known kind of noise and have an 
efficient capability of features reconstruction 
(Papakostas, 2014). The orthogonal moments enable 
researchers to reconstruct the image from a finite set 
of moments, using the inverse moment transform 
(Flusser et al., 2016). Many studies are introduced 
about the representation of images from orthogonal 
moments (Hosny et al., 2020a; 2020b; Sweilam et al., 
2016). 

In this paper, we have introduced new sets of the 
orthogonal basis of fractional order Legendre 
moments and fractional order Laguerre moments to 
represent an image. The rest of this article is 
organized as follows. In section 2, we have 
introduced the fractional order Legendre functions 
and moments. The fractional order Laguerre 
functions and moments are mentioned in section 3. 
Finally, we have demonstrated the numerical 
computations of the proposed FLeMs, FLaMs, FCMs, 
the effect of fractional parameters of the polynomials 
in reconstructing images, and CPU elapsed times of 
different proposed algorithms. 
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2. Fractional order Legendre functions 

The well-known fractional-order Legendre 
functions 𝐹𝑛

𝛼(𝑥), 𝛼 > 0  on the interval [0, 1] is 
defined in Bhrawy (2014) as following (Fig. 1 and 
Table 1):  
 

𝐹𝑛+1
𝛼 (𝑥) =  

(2𝑛+1)(2𝑥𝛼−1)

𝑛+1
 𝐹𝑛

𝛼(𝑥) − 
𝑛

𝑛+1
 𝐹𝑛−1

𝛼 (𝑥)                  (1) 

 

where, n=1,2,.., 𝐹0
𝛼(𝑥) = 1 and 𝐹1

𝛼(𝑥) = 2𝑥𝛼— 1. The 
analytic form of 𝐹𝑛

𝛼(𝑥) of degree 𝑛𝑎 is given by: 
 

𝐹𝑛
𝛼(𝑥) =  ∑

(−1)𝑘+𝑛(𝑛+𝑘)!

(𝑛−𝑘)!(𝑘!)2
𝑥𝛼𝑘𝑛

𝑘=0                                                 (2) 

 

The fractional order Legendre functions satisfy 
the orthogonal condition with respect to the weight 
function 𝑤𝛼(𝑥) = 𝑥𝛼−1 on the interval [0, 1]. 
 

∫ 𝑤(𝑥)𝐹𝑛
𝛼(𝑥)𝐹𝑚

𝛼(𝑥) = ℎ𝑛𝛿𝑛𝑚
1

0
                                                   (3) 

 

where ℎ𝑛 =
1

(2𝑛+1)𝛼
 and 𝛿𝑛𝑚 is the Kronecker 

function. The normalized fractional order Legendre 
functions can be obtained from the formula: 
 

𝐹𝑛
𝛼(𝑥) =  √

𝑤(𝑥)

ℎ𝑛
       𝐹𝑛

𝛼(𝑥)                                                            (4) 

 

and can easily prove that the normalized fractional 
order functions are orthogonal on the interval [0, 1]. 

2.1. Fractional order Legendre orthogonal 
Moments (FLeMs) 

For any two dimensions image 𝑓(𝑥, 𝑦) ∈
 𝐿2([0,1] × [0, 1]) the continuously Legendre 

moment of order (n+m) can be defined as in the 
following formula: 

𝐿𝑀𝑛𝑚 =
1

ℎ𝑛ℎ𝑚
 ∫ ∫ 𝑓(𝑥, 𝑦) 𝐹𝑛

𝛼𝑥 (𝑥)𝐹𝑚

𝛼𝑦  𝑤(𝑥)𝑤(𝑦)𝑑𝑥 𝑑𝑦 
1

0

1

0
 (5) 

 

So, the Legendre moment of an image of 
resolution 𝑁 × 𝑀 Eq. 5 can be rewritten in the form: 
 

𝐿𝑀𝑛𝑚 = ∑ ∑ 𝑓(𝑖, 𝑗)𝐹𝑛
𝛼𝑥(𝑥𝑖)𝑀

𝑗=1
𝑁
𝑖=1  𝐹𝑚

𝛼𝑦(𝑦𝑗), 𝑖 =

1,2, … , 𝑁; 𝑗 = 1,2, … 𝑀                                                                   (6) 
 

where, 
 

𝑥𝑖 =
2𝑖+1

2𝑁
;  𝑦𝑗 =

2𝑗+1

2𝑀
, 𝑖 = 1,2, … , 𝑁; 𝑗 = 1,2, , 𝑀                    (7) 

 

Also, an approximation of the original image 
𝑓(𝑥, 𝑦) can be reconstructed from the equation: 
 

𝑓 =  ∑ ∑ 𝐿𝑀𝑛𝑚 𝐹𝑛
𝛼𝑥(𝑥𝑖)𝐹𝑚

𝛼𝑦(𝑦𝑗)𝐿
𝑚=0

𝐾
𝑛=0                                    (8) 

3. Fractional order Laguerre functions (FLFs) 

Let 𝐿𝑛
𝛽 (𝑥), 𝛽 > −1 be the Fractional order 

Laguerre Functions (FLFs) of order n. The 
recurrence relation of FLFs can be defined as 
(Parand and Delkhosh, 2017; Parand et al., 2017): 
 

𝐿𝑛+1
𝛽 (𝑥) = (2𝑛 − 𝑥𝛽 + 1)𝐿𝑛

𝛽(𝑥) − 𝑛2 𝐿𝑛−1
𝛽 (𝑥)                     (9) 

 

with, 
 

𝑛 = 0,1, … 𝑎𝑛𝑑 𝐿0
𝛽(𝑥) = 1, 𝐿1

𝛽(𝑥) = 1 − 𝑥𝛽   

 

and the analytic form of 𝐿𝑛
𝛽 (𝑥)is obtained as: 

 

𝐿𝑛
𝛽(𝑥) =  ∑ (−1)𝑘  

𝑛!

(𝑛−𝑘)!(𝑘!)2
𝑛
𝑘=0  𝑥𝑘𝛽                                      (10) 

 

  
a: shows the fractional Legendre functions with 𝛼 = 1.25, 𝑛 =

0, 1, … , 5 
b: shows the fractional Legendre functions with 𝛼 =

0.25, 0.5, 0.75, 1, 1.25, 1.5 

  
c: shows the normalized fractional Legendre functions with 

𝛼 = 1.25; 𝑛 = 0, 1, … ,5 
d: shows the normalized fractional Legendre functions 

with  𝛼 = 0.25, 0.5, 0.75, 1, 1.25, 1.5 

Fig. 1: Fractional Legendre functions and normalized fractional Legendre functions with  𝛼 
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Table 1: Algorithm 1 
Fractional Legendre orthogonal Moments (FLeMs) 

Input  𝑓(𝑥, 𝑦), 𝛼𝑥, 𝛼𝑦, 𝑛, 𝑚 

Step 1  Generate  vectors 𝑥𝑖 , 𝑦𝑗  from Eq. 7 

Step 2  
Compute 𝐹𝑛

𝛼(𝑥) ,𝑛, 𝑥𝑖 , 𝛼𝑥 and 𝐹𝑚
𝛼(𝑦) 𝑚, 𝑦𝑗 , 𝛼𝑦  

Eq. 4 
Step2  Calculate 𝐿𝑀𝑛𝑚  from Eq. 5 

Output  Image moment at n, m. 

 
The fractional Laguerre functions are orthogonal 

with respect to the weight function 𝑤𝛽(𝑥) =

 𝑥𝛽−1𝑒−𝑥𝛽
 on the interval [0, ∞), and satisfy the 

orthogonally condition: 
 

∫ 𝑤𝛽(𝑥)𝐿𝑛
𝛽(𝑥)𝐿𝑚

𝛽∞

0
(𝑥)𝑑𝑥 =

1

𝛽
 𝛿𝑛𝑚                                        (11) 

 
where 𝛿𝑛𝑚 is the Kronecker function. Due to the 

fractional order, Laguerre functions 𝐿𝑛
𝛽 (𝑥) expand 

rapidly with higher orders. In numerical 
computation, we have used the normalized fractional 

order Laguerre functions �̂�𝑛
𝛽

 (x) defined by the 
formula: 
 

�̂�𝑛
𝛽(𝑥) = √𝛽 𝑤𝛽  𝐿𝑛

𝛽(𝑥)                                                               (12) 

3.1. Fractional Laguerre orthogonal moments 
(FLMs) 

For any arbitrary function𝑓(𝑥, 𝑦) ∈ (0, ∞) ×
[0, ∞), the fractional order Laguerre moments of 
order (n+m) can be obtained from the continuous 
integral by the following formula: 
 

𝐿𝑛𝑚 = ∫ ∫ 𝑓(𝑥, 𝑦)𝐿𝑛
𝛼𝑥(𝑥)𝐿𝑚

𝛼𝑦  𝑑𝑥 𝑑𝑦
∞

0

∞

0
                                  (13) 

 

For a digital image 𝑓(𝑖, 𝑗) of the resolution 𝑁 × 𝑀, 
the fractional order Laguerre moments can be 
written the formula: 
 

𝐿𝑛𝑚 =  
1

𝑁𝑀
 ∑ ∑ 𝑓(𝑖, 𝑗) 𝐿𝑛

𝛼𝑥(𝑥)𝐿𝑚

𝛼𝑦(𝑦)𝑀
𝑗=0

𝑁
𝑖=0                           (14) 

 

The reconstructed image can be obtained from 
the formula: 
 

𝑓 = ∑ ∑ 𝐿𝑛𝑚 𝐿𝑛
𝛽𝑥(𝑥)𝐿𝑚

𝛽𝑦(𝑦)𝐿
𝑚=0

𝐾
𝑛=0                                          (15) 

 
where K and L are the maximum number of orders, 
in our computation, we but K=L (Fig. 2 and Table 2). 
 

 

  
a: normalized fractional Laguerre functions with different 

orders 𝛽 = 1.5; 𝑛 = 0,1, … ,5 
b: normalized fractional Laguerre functions with different 

values of 𝛽 = 0.25, 0.75, 1.25, 1.75, 2.25, 2.75; 𝑛 = 3 
Fig. 2: Fractional Legendre functions and normalized fractional Legendre functions with  𝛽 

 
Table 2: Algorithm 2 

Fractional Laguerre orthogonal Moments (FLFs) 

Input  𝑓(𝑥, 𝑦), 𝛽𝑥, 𝛽𝑦, 𝑛, 𝑚 

Step 1  Compute �̂�𝑛
𝛼 (𝑥) ,𝑛, 𝑥, 𝛽𝑥 and �̂�𝑚

𝛼 (𝑦) 𝑚, 𝑦, 𝛼𝑦  Eq. (12) 

Step2  Calculate  𝐿𝑛𝑚from Eq. (14) 
Output  Image moment at n, m. 

4. Discussion and numerical results 

To demonstrate the performance of the newly 
introduced algorithms, FLeMs, FLaMs, and FLLMs, 
we have done a set of numerical experiments on 
dataset images that are displayed in Fig. 3. All the 
algorithms and the numerical experiments are 
implemented and executed in MATLAB8.2 under 
Microsoft Windows environment using a PC with 
IntelCore i5 CPU 2.4 GHz and 4 GB RAM. 

4.1. Image representation  

To check the stability of the proposed new 
algorithms to reconstruct an image, we have used 

Mean Square Error (MSE) to measure the 
performance of the proposed FLeMs constructed 
from fractional Legendre orthogonal functions, 
FLaMs from fractional order orthogonal Laguerre 
functions, and compare our results with FCMs 
recently introduced in Benouini et al. (2019) and 
Hassani et al. (2019). The MSE between the original 

image 𝑓(𝑥, 𝑦) and reconstructed image 𝑓(𝑥, 𝑦) is 
computed from the following formula: 
 

𝑀𝑆𝐸 =
1

𝑁𝑀
∑ ∑ [𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]

2𝑀
𝑦

𝑁
𝑥                                   (16) 

 

The reconstructed image MSE of the proposed 
FLeMs and FLaMs, Lena gray level image is 
compared with FCMs and displayed in Fig. 4. In our 
computation for FLeMs, we have used by 𝛼 =
0.8, 0.9, 1.2 Eq. 4, Eq. 6, and Eq. 7. In the case of 
FLaMs, we have substituted by 𝛽 = 0.8, 1.2, 0.2 in Eq. 
11, Eq. 13, and Eq. 14. For comparison purposes, we 
have plotted the MSE errors of the FLeMs from 
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fractional order Legendre, FLaMs from fractional 
order Laguerre, and against FCMs.  

Fig. 5 shows the reconstructed Lena image at the 
different orders from the different proposed FLeMs, 
FLaMs, and FCMs. 

 

  

  
Fig. 3: Original dataset 

 

 
Fig. 4: MSE for the different proposed FLeMs, FLaMs, and 

compared with FCMs for the Lena gray level image 
reconstruction error 

 

The results of the proposed algorithms for 
different orders n m are reconstructed for different 
image datasets displayed in Fig. 3. In Fig. 5, we have 
displayed the reconstructed the first image at order 
n=m=50, n=m=100, n=m=150, n=m=200 and 
n=m=300. We observe in the numerical results that; 
the higher orders give better results for all 
algorithms. Also, we have noted the accuracy of the 
reconstruction depends on 𝛼 and 𝛽 as well as the 
FLaMs is highly depend on 𝛽. 

 
 

 FLeMs FCMs FLaMs 

n=50, m=50 

   

n=100, m=100 

   

n=150, m=150 
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n=200, m=200 

   

n=300, m=300 

   

Fig. 5: The reconstructed Lena image at the different orders from the different proposed FLeMs, FLaMs and FCMs 
 

4.2. Computational time  

In order to examine the priority of the proposed 
novel FLeMs, FLaMs, and FCMs, we have computed 
the computational performance of the proposed 
fractional-order moments. Fig. 6 shows the elapsed 
CPU times in seconds for the moment’s computation 
of the first test image, with size 256×256 pixels. In 
Fig. 6, we have plotted the natural logarithm of the 
CPU elapsed times against the number of moments. 
According to the results presented in Fig. 6, one can 
observe that the computation time taken by FLeMs, 
FLaMs is less than the CPU elapsed times were taken 
by FCMs. In numerical computation, we have 
observed that the CPU elapsed times increase with 
increasing order of moments and also depend highly 
on the scale parameter in FLeMs and FLaMs α and β, 
respectively. The shift parameters α are not highly 
affected by the CPU elapsed times. All curves in Fig. 6 
are computed with shifts parameters α-0.8 and β-12. 

 

 
Fig. 6: Comparative study of FLeMs, FLaMs, and FCMs 

5. Conclusion  

In this paper, we have presented a novel set of 
fractional order Legendre orthogonal moments 
(FLeMs) and fractional order Laguerre orthogonal 
moments. These moments have been used to 
reconstruct an image. Also, we have compared our 

results with fractional order Chebyshev orthogonal 
moments, which is recently introduced by Hassani et 
al. (2020). This set of moments mathematically is 
able to represent any two-dimension image, and in 
practice, we noticed the numerical result perfectly 
represents an image as shown in Fig. 5. Finally, we 
have computed the computational time, and our 
algorithms are less than the consumed time by FCMs, 
and it can be used in image processing, pattern 
recognition to reconstruct and analyze its contents. 
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