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One of the most fundamental concepts in fuzzy set theory is the extension 
principle. It gives a generic way of dealing with fuzzy quantities by extending 
non-fuzzy mathematical concepts. There are a few examples, including the 
concept of fuzzy distance between fuzzy sets. The extension approach is then 
methodically applied to real algebra, with considerable development of fuzzy 
number operations. These operations are computationally appealing and 
generalized interval analysis. Although the set of real fuzzy numbers with 
extended addition or multiplication is no longer a group, it retains many 
structural qualities. The extension concept is demonstrated to be particularly 
beneficial for defining set-theoretic operations for higher fuzzy sets. We need 
some definitions related to our properties before we can create the 
properties of integration of a crisp real-valued function over a fuzzy interval. 
It is our goal in this article to develop and demonstrate certain 
characteristics of a real-valued function over a fuzzy interval in order to 
broaden the scope of the notion of integration of a real-valued function over 
a fuzzy interval. Some of these characteristics are linked to the operations of 
extended addition and extended subtraction, while others are not. 
 

Keywords: 
Fuzzy set 
Extension principle 
Fuzzy interval 
Extended addition 
Extended subtraction 

© 2021 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction 

*The extension principle introduced by Zadeh 
(1975) is one of the most basic ideas of fuzzy set 
theory. It provides a general method for extending 
non-fuzzy mathematical concepts in order to deal 
with fuzzy quantities. Some illustrations are given 
including the notion of fuzzy distance between fuzzy 
sets. The extension principle is then systematically 
applied to real algebra: Operations on fuzzy numbers 
are extensively developed. These operations 
generalize interval analysis and are computationally 
attractive. Although the set of real fuzzy numbers 
equipped with an extended addition or 
multiplication is no longer a group, many structural 
properties are preserved. Lastly, the extension 
principle is shown to be very useful for defining set-
theoretic operations for higher fuzzy sets, then 
before building the properties of integration of a 
crisp real-valued function over a fuzzy interval we 
need some definitions related to our properties. To 
characterize the mathematical model of fuzzy HIV 
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dynamics, the authors presented the approximate 
technique known as VIM in Saleh et al. (2021). In the 
linear fuzzy HIV infection model, VIM is 
reformulated and studied in terms of the fuzzy 
domain. Because of existing patients with varying 
immunization levels, it appears that the fuzzy HIV 
model can be used to depict the vulnerability-
resistant cell level and the viral stack. The method 
series solution obeys the properties in the form of 
the triangular fuzzy number, according to the VIM 
results. The authors of Jameel et al. (2021) utilized 
HAM as a method for solving the fuzzy Volterra 
integral equation of the second kind with separable 
kernels. With application to the fuzzy Volterra 
integral equation of the second kind, fuzzy set theory 
was used to offer a new formulation of HAM. To 
determine the best value for the convergence-
control parameter, the convergence of this strategy 
was qualitatively discussed. The method accurately 
approximates both linear and nonlinear fuzzy 
Volterra integral equations of the second type, as 
shown by numerical results and graphs. The authors 
of Stefanini et al. (2020) gave new calculus results 
for fuzzy-valued functions on a single real variable. 
They employ the midpoint-radius representation of 
intervals in the real half-plane extensively and 
demonstrate its utility in fuzzy calculus. Partial 
ordering and features of monotonicity and convexity 
are described and examined in detail using the 
midpoint representation of fuzzy-valued functions. 
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Based on the form of decomposition theorem, Wu 
(2019) suggested a new methodology for fuzzifying 
real-valued functions. They will also suggest that 
when fuzziness is taken into account, this new 
methodology prefers to be applied in real-world 
circumstances. The definition of new varieties of 
fuzzy number arithmetic is an interesting use of this 
new technology. This novel methodology can also be 
used to define the differentiations and integrals of 
fuzzy-number-valued functions. In Shakhatreh and 
Qawasmeh (2015), the authors introduced some 
concepts and definitions related to the Max-Min 
composition of fuzzy relations and prove the 
associativity of the Max-Min composition of three 
fuzzy relations. Shakhatreh and Qawasmeh (2020) 
proposed a new method to generate fuzzy 
equivalence relations in matrix form. They begin by 
constructing fuzzy equivalence relations in the 
matrix forms 3x3 and 4x4 matrices, and then use 
mathematical induction to construct a 

comprehensive approach for generating fuzzy 
equivalence relations of the form nxn matrices. 
 
Definition 1 (Dubois, 1980; Zadeh, 1965): Let 𝑋 be a 
universal set .Then a fuzzy set �̃�  in 𝑋 is defined by 
�̃� = {(𝑥, 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋}, where 𝜇𝐴(𝑥) is the degree of 
membership of 𝑥 in �̃�  with 𝜇𝐴(𝑥) ∈ [0,1].  
 
Definition 2 (Nguyen, 1978; Jain, 1976): (a) Let 𝑋 be 
a Cartesian product of universal sets 𝑋 = 𝑋1 × 𝑋2 ×
… × 𝑋𝑛 and �̃�1, �̃�2, … , �̃�𝑛 be 𝑛 fuzzy sets in 
𝑋1, 𝑋2, … , 𝑋𝑛 , respectively, 𝑓 is a mapping from 𝑋 to a 
universal set 𝑌, 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), and 𝑓−1(𝑦) =
{𝑥 ∈ 𝑋: 𝑓(𝑥) = 𝑦}. Then the extension principle 
allows us to define a fuzzy set �̃� in 𝑌 by: 
 

�̃� = 𝑓(�̃�1 × �̃�2 × … × �̃�𝑛) = {(𝑦, 𝜇�̃�(𝑦)): 𝑦 =

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋}  
 

where, 
  

𝜇�̃�(𝑦) = {
𝑠𝑢𝑝(𝑥1,𝑥2,…,𝑥𝑛)∈𝑓−1(𝑦)  𝑚𝑖𝑛{𝜇𝐴1

(𝑥1), 𝜇𝐴2
(𝑥2), … , 𝜇𝐴𝑛

(𝑥𝑛)}   , 𝑓−1(𝑦) ≠ 𝜙
 

0                                                                                  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  
 

(b) For 𝑛 = 1, the extension principle reduces to: 
 

�̃� = 𝑓(�̃�) = {(𝑦, 𝜇�̃�(𝑦)): 𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝑋}  

 

where 
 

𝜇�̃�(𝑦) = 𝜇𝑓(𝐴)(𝑦) = {
𝑠𝑢𝑝𝑥∈𝑓−1(𝑦){𝜇𝐴(𝑥)}, 𝑓−1(𝑦) ≠ 0 

0                              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
(c) If 𝑛 = 1 and 𝑓 is an injective function, then, 
 

𝜇�̃�(𝑦) = 𝜇𝑓(𝐴)(𝑦) = {
𝜇𝐴(𝑓−1(𝑦)), 𝑓−1(𝑦) ≠ 0 

0                 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Definition 3 (Zimmerman, 1996; Dubois and Prade, 
1982): Let 𝑓 be a crisp real-valued function that is 
integrable on the interval 𝐼 = [𝑎0, 𝑏0]. Then 
according to the extension principle, the 

membership function of the integral ∫ 𝑓(𝑢)𝑑𝑢
�̃�

�̃�
 is 

given by: 
 
𝜇

∫ 𝑓(𝑢)𝑑𝑢
�̃�

�̃�

(𝑧) = 𝑠𝑢𝑝𝑥,𝑦∈𝐼:∫ 𝑓(𝑢)=𝑧
𝑦

𝑥
𝑚𝑖𝑛{𝜇�̃�(𝑥), 𝜇�̃�(𝑥)}. 

 

If one of �̃� and �̃� is crisp (say �̃�), then the integral 

of 𝑓 over [𝑎, �̃�]  is given by: 
 
𝜇

∫ 𝑓(𝑢)𝑑𝑢
�̃�

𝑎

(𝑧) = 𝑠𝑢𝑝𝑦:∫ 𝑓(𝑢)𝑑𝑢
𝑦

𝑎
𝜇�̃�(𝑦) =

𝑠𝑢𝑝𝑦:𝐹(𝑦)−𝐹(𝑎)=𝑧𝜇�̃�(𝑦)  

 

where 𝐹 is an antiderivative of 𝑓. 
 
Example 1: Let �̃� = {(2,0.5), (3,0.8), (4,0.4)}, �̃� =
{(6,0.7), (7,0.9), (8,0.2)}, and 𝑓(𝑥) = 1. Then 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑏 − 𝑎
𝑏

𝑎
. 

According to definition 2, the detailed 

computational results of ∫ 𝑓(𝑥)𝑑𝑥
�̃�

�̃�
 are given in 

Table 1. 
Hence choosing the maximum of the membership 

values for each value of the integral yields. 
 

∫ 𝑓(𝑥)𝑑𝑥
�̃�

�̃�
= {(2,0.4), (3,0.7), (4,0.8), (5,0.5), (6,0.2)}.  

 
Definition 4 (Nahmias, 1978): A fuzzy set �̃�  is 
called a fuzzy number if the following condition 
holds: 
 
a) �̃� is a fuzzy set in the universe 𝑅 
b) �̃� is a convex fuzzy set 
c) �̃� is normalized fuzzy set 
d) There exist a unique 𝑋0 ∈ 𝑅 such that 𝜇�̃�(𝑥0) = 1 
e) 𝜇�̃�: 𝑅 → [0,1] is piecewise continuous 

 

Table 1: Details computational results of ∫ 𝑓(𝑥)𝑑𝑥
�̃�

�̃�
 

[𝑎, 𝑏] ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 𝑚𝑖𝑛{𝜇�̃�(𝑎), 𝜇�̃�(𝑏)} 

[2,6] 4 0.5 
[2,7] 5 0.5 
[2,8] 6 0.2 
[3,6] 3 0.7 
[3,7] 4 0.8 
[3,8] 5 0.2 
[4,6] 2 0.4 
[4,7] 3 0.4 
[4,8] 4 0.2 

 

Definition 5 (Zadeh, 1975;  Kaufmann, 1975): Let �̃� 
and �̃� be two numbers. Then the extended addition 

defined by �̃� ⊕ �̃� = {(𝑧, 𝜇�̃�⊕�̃�(𝑧)): 𝑧 ∈ 𝑅}, where 

𝜇𝐴⊕�̃�(𝑧) = 𝑠𝑢𝑝𝑥,𝑦:𝑥+𝑦=𝑧𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐴(𝑦)} 
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Definition 6 (Nahmias, 1978): Let �̃� and �̃� be two 
numbers. Then the extended subtraction defined by 
�̃� ⊖ �̃� = {(𝑧, 𝜇𝐴!�̃�(𝑧)): 𝑧 ∈ 𝑅}, where 𝜇𝐴⊖�̃�(𝑧) =

𝑠𝑢𝑝𝑥,𝑦:𝑥−𝑦=𝑧𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐴(𝑦)} 

 

Now we can give and prove some properties of 
the integration of a real-valued function over a fuzzy 
interval according to definition 2. 
 
Property 1: Let 𝑓 be a function 𝑓: 𝐼 → 𝑅, integrable 

on 𝐼. Then (∫ 𝑓(𝑢)𝑑𝑢)𝐶�̃�

𝑎
⊆ ∫ 𝑓(𝑢)𝑑𝑢.

�̃�𝐶

𝑎
  

If 𝑓: 𝐼 → 𝑅+  or 𝑓: 𝐼 → 𝑅−, then the equality hold. 
 
Proof: 
𝝁

(∫ 𝑓(𝑢)𝑑𝑢
�̃�

�̃�
)

(𝒛) =𝑪 𝟏 − 𝝁
(∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
)

= 𝟏 −

𝒔𝒖𝒑𝒙:∫ 𝒇(𝒖)𝒅𝒖
𝒙

𝒂
𝝁�̃�(𝒙) = 𝒊𝒏𝒇𝒙:∫ 𝒇(𝒖)𝒅𝒖

𝒙

𝒂
=𝒛

{𝟏 − 𝝁�̃�(𝒙)} ≤

𝒔𝒖𝒑𝒙:∫ 𝒇(𝒖)𝒅𝒖
𝒙

𝒂
=𝒛{𝝁𝒃�̃�(𝒙)} = 𝝁

∫ 𝑓(𝑢)𝑑𝑢
�̃�𝐶

�̃�

(𝒛) ⇒

𝝁
(∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
)

(𝒛)𝑪 ≤ 𝝁
∫ 𝑓(𝑢)𝑑𝑢

�̃�𝐶

�̃�

(𝒛)   

   

Therefore  (∫ 𝑓(𝑢)𝑑𝑢)𝐶�̃�

𝑎
⊆ ∫ 𝑓(𝑢)𝑑𝑢.

�̃�𝐶

𝑎
 

 
Now, if  𝑓: 𝐼 → 𝑅+  or 𝑓: 𝐼 → 𝑅−, then 
 
𝝁

(∫ 𝑓(𝑢)𝑑𝑢
�̃�

�̃�
)

(𝒛) =𝑪 𝟏 − 𝝁
(∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
)
(𝒛) = 𝟏 −

𝒔𝒖𝒑𝒙:∫ 𝒇(𝒖)𝒅𝒖
𝒙

𝒂
𝝁�̃�(𝒙).  

 
Since there exists a unique 𝑥0 such that  

∫ 𝑓(𝑢)𝑑𝑢
𝑥0

𝑎
= 𝑧,  

  
𝝁

(∫ 𝑓(𝑢)𝑑𝑢
�̃�

�̃�
)

(𝒛) =𝑪 𝟏 − 𝝁�̃�(𝒙𝟎) = 𝝁�̃�𝑪(𝒙𝟎) = 𝒔𝒖𝒑𝒙:∫ 𝒇(𝒖)𝒅𝒖=𝒛
𝒙

𝒂
{𝝁�̃�𝑪(𝒙)} = 𝝁

∫ 𝑓(𝑢)𝑑𝑢
�̃�𝐶

𝑎

(𝒛) ⇒ 𝝁
(∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
)

(𝒛) =𝑪 𝝁
∫ 𝑓(𝑢)𝑑𝑢

�̃�𝐶

𝑎

(𝒛) 

  
 

Therefore (∫ 𝑓(𝑢)𝑑𝑢)𝐶�̃�

𝑎
= ∫ 𝑓(𝑢)𝑑𝑢.

�̃�𝐶

𝑎
 

 
Property 2: Let 𝑓 be a function  𝑓: 𝐼 → 𝑅, integrable 

on 𝐼. Then (∫ 𝑓(𝑢)𝑑𝑢)𝐶𝑏

�̃�
⊆ ∫ 𝑓(𝑢)𝑑𝑢.

𝑏

�̃�
 

If 𝑓: 𝐼 → 𝑅+  or 𝑓: 𝐼 → 𝑅−, then the equality hold. 
 
Proof: 
 

(∫ 𝑓(𝑢)𝑑𝑢)𝐶𝑏

�̃�
= (− ∫ 𝑓(𝑢)𝑑𝑢)𝐶�̃�

𝑏
= (∫ −𝑓(𝑢)𝑑𝑢)𝐶�̃�

𝑏
⊆

∫ −𝑓(𝑢)𝑑𝑢
�̃�𝐶

𝑏
= − ∫ 𝑓(𝑢)𝑑𝑢

�̃�𝐶

𝑏
= ∫ 𝑓(𝑢)𝑑𝑢

𝑏

�̃�𝐶   

 

Property 3: Let 𝑓  be a function 𝑓: 𝐼 → 𝑅, integrable 
on  𝐼. 

If �̃� ⊆ �̃�, then ∫ 𝑓(𝑢)𝑑𝑢
�̃�

𝑎
⊆ ∫ 𝑓(𝑢)𝑑𝑢

𝑐̃

𝑎
. 

 

Proof: 
𝝁

∫ 𝑓(𝑢)𝑑𝑢
�̃�

𝑎

(𝒛) = 𝒔𝒖𝒑𝒙:∫ 𝒇(𝒖)𝒅𝒖=𝒛
𝒙

𝒂
𝝁�̃�(𝒙) ≤

𝒔𝒖𝒑𝒙:∫ 𝒇(𝒖)𝒅𝒖=𝒛
𝒙

𝒂
𝝁�̃�(𝒙) = 𝝁

∫ 𝑓(𝑢)𝑑𝑢
�̃�

𝑎

(𝒛) ⇒ 𝝁
∫ 𝑓(𝑢)𝑑𝑢

�̃�

𝑎

(𝒛) ≤

𝝁
∫ 𝑓(𝑢)𝑑𝑢

�̃�

𝑎

(𝒛).  

 

therefore, ∫ 𝑓(𝑢)𝑑𝑢
�̃�

𝑎
⊆ ∫ 𝑓(𝑢)𝑑𝑢

𝑐̃

𝑎
. 

 
Property 4: Let 𝑓and 𝑔 be two functions 𝑓: 𝐼 → 𝑅 
and 𝑔: 𝐼 → 𝑅  integrable on 𝐼. Then 
 

(a) ∫ [𝑓(𝑢) + 𝑔(𝑢)]𝑑𝑢
�̃�

�̃�
⊆ ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
⊕ ∫ 𝑔(𝑢)𝑑𝑢

�̃�

�̃�
 

(b) ∫ [𝑓(𝑢) − 𝑔(𝑢)]𝑑𝑢
�̃�

�̃�
⊆ ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
! ∫ 𝑔(𝑢)𝑑𝑢

�̃�

�̃�
 

 
Proof (a): 

  
𝝁

∫ [𝑓(𝑢)+𝑔(𝑢)]𝑑𝑢
�̃�

�̃�

(𝒛) = 𝒔𝒖𝒑𝒙,𝒚:∫ [𝑓(𝑢)+𝑔(𝑢)]𝑑𝑢=𝑧
𝑦

𝑥
𝒎𝒊𝒏{𝝁�̃�(𝒙), 𝝁�̃�(𝒚)}

= 𝒔𝒖𝒑(𝒙,𝒚,𝒙,𝒚):∫ 𝑓(𝑢)𝑑𝑢+∫ 𝑔(𝑢)𝑑𝑢
𝑦

𝑥
=𝑧

𝑦

𝑥
𝒎𝒊𝒏{𝝁�̃�(𝒙), 𝝁�̃�(𝒚), 𝝁�̃�(𝒙), 𝝁�̃�(𝒚)}

≤ 𝒔𝒖𝒑(𝒙𝟏,𝒙𝟐,𝒙𝟑,𝒙𝟒):∫ 𝑓(𝑢)𝑑𝑢+∫ 𝑔(𝑢)𝑑𝑢
𝑥4

𝑥3
=𝑧

𝑥2
𝑥1

𝒎𝒊𝒏{𝝁�̃�(𝒙𝟏), 𝝁�̃�(𝒙𝟐), 𝝁�̃�(𝒙𝟑), 𝝁�̃�(𝒙𝟒)}

= 𝒔𝒖𝒑(𝒔,𝒕):𝒔+𝒕=𝒛,(𝒙𝟏,𝒙𝟐):∫ 𝒇(𝒖)𝒅𝒖=𝒔,(𝒙𝟑,𝒙𝟒):∫ 𝒈(𝒖)𝒅𝒖=𝒕
𝒙𝟒

𝒙𝟑

𝒙𝟐
𝒙𝟏

𝒎𝒊𝒏{𝝁�̃�(𝒙𝟏), 𝝁�̃�(𝒙𝟐), 𝝁�̃�(𝒙𝟑), 𝝁�̃�(𝒙𝟒)}

= 𝒔𝒖𝒑(𝒔,𝒕):𝒔+𝒕=𝒛𝒔𝒖𝒑(𝒙𝟏,𝒙𝟐):∫ 𝒇(𝒖)𝒅𝒖=𝒔,(𝒙𝟑,𝒙𝟒):∫ 𝒈(𝒖)𝒅𝒖=𝒕
𝒙𝟒

𝒙𝟑

𝒙𝟐
𝒙𝟏

𝒎𝒊𝒏 {𝒎𝒊𝒏{𝝁�̃�(𝒙𝟏), 𝝁�̃�(𝒙𝟐)}, 𝒎𝒊𝒏{𝝁�̃�(𝒙𝟑), 𝝁�̃�(𝒙𝟒)}}

= 𝒔𝒖𝒑(𝒔,𝒕):𝒔+𝒕=𝒛𝒎𝒊𝒏{𝒔𝒖𝒑(𝒙𝟏,𝒙𝟐):∫ 𝒇(𝒖)𝒅𝒖=𝒔
𝒙𝟐

𝒙𝟏

𝒎𝒊𝒏{𝝁�̃�(𝒙𝟏), 𝝁�̃�(𝒙𝟐)}, 𝒔𝒖𝒑(𝒙𝟑,𝒙𝟒):∫ 𝒈(𝒖)𝒅𝒖=𝒕
𝒙𝟒

𝒙𝟑

𝒎𝒊𝒏{𝝁�̃�(𝒙𝟑), 𝝁�̃�(𝒙𝟒)}

= 𝒔𝒖𝒑(𝒔,𝒕):𝒔+𝒕=𝒛𝒎𝒊𝒏 {𝝁
∫ 𝒇(𝒖)𝒅𝒖

�̃�

�̃�

(𝒔), 𝝁
∫ 𝒈(𝒖)𝒅𝒖

�̃�

�̃�

(𝒕)} =  𝝁
∫ [𝒇(𝒖)⊕𝒈(𝒖)]𝒅𝒖

�̃�

�̃�

(𝒛) ⇒ 𝝁
∫ [𝒇(𝒖)+𝒈(𝒖)]𝒅𝒖

�̃�

�̃�

(𝒛)

≤ 𝝁
∫ [𝒇(𝒖)⊕𝒈(𝒖)]𝒅𝒖

�̃�

�̃�

(𝒛) 

  
 

therefore, 
 

∫ [𝑓(𝑢) + 𝑔(𝑢)]𝑑𝑢
�̃�

�̃�
⊆ ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
⊕ ∫ 𝑔(𝑢)𝑑𝑢

�̃�

�̃�
  

 

Proof (b): 

∫ [𝑓(𝑢) − 𝑔(𝑢)]𝑑𝑢
�̃�

�̃�
= ∫ [𝑓(𝑢) + (−𝑔(𝑢))]𝑑𝑢

�̃�

�̃�
⊆

∫ 𝑓(𝑢)𝑑𝑢
�̃�

�̃�
⊕ ∫ −𝑔(𝑢)𝑑𝑢

�̃�

�̃�
= ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
⊕

(− ∫ 𝑔(𝑢)𝑑𝑢
�̃�

�̃�
) = ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
! ∫ 𝑔(𝑢)𝑑𝑢

�̃�

�̃�
  

therefore,  
 

∫ [𝑓(𝑢) − 𝑔(𝑢)]𝑑𝑢
�̃�

�̃�
⊆ ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
! ∫ 𝑔(𝑢)𝑑𝑢

�̃�

�̃�
. 

 

Example: Let 𝑓(𝑥) = 2𝑥 − 2, 𝑔(𝑥) = −2𝑥 + 3, �̃� =

{(1,0.7), (2,1), (3,0.4)}, and �̃� =
{(3,0.6), (4,1), (5,0.3)}. Then  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= [𝑥2 − 2𝑥]𝑎

𝑏  , ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
= [−𝑥2 + 3𝑥]𝑎

𝑏 , 

and∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
= [𝑥]𝑎

𝑏    
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According to definition 2, the detailed computational 

results of ∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥
�̃�

�̃�
 and ∫ 𝑓(𝑥)𝑑𝑥

�̃�

�̃�
⊕

∫ 𝑔(𝑥)𝑑𝑥
�̃�

�̃�
 given in Table 2. 

 

Table 2: Details computational results of ∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥
�̃�

�̃�
 and ∫ 𝑓(𝑥)𝑑𝑥

�̃�

�̃�
⊕ ∫ 𝑔(𝑥)𝑑𝑥

�̃�

�̃�
 

[𝑎, 𝑏] 𝒎𝒊𝒏{𝝁�̃�(𝒂), 𝝁�̃�(𝒃)} ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎

 ∫[𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥

𝑏

𝑎

 

[1,3] 0.6 4 −2 2 
[1,4] 0.7 9 −6 3 
[1,5] 0.3 16 −12 4 
[2,3] 0.6 3 −2 1 
[2,4] 1 8 −6 2 
[2,5] 0.3 15 −12 3 
[3,3] 0.4 0 0 0 
[3,4] 0.4 5 −4 1 
[3,5] 0.3 12 −10 2 

 

And hence,  
 

∫ 𝑓(𝑥)𝑑𝑥

�̃�

�̃�

= {(0,0.4), (3,0.6), (4,0.6), (5,0.4), (8,1), (9,0.7), (12,0.3), 
(15,0.3), (16,0.3)}   
 

and  

∫ 𝑔(𝑥)𝑑𝑥
�̃�

�̃�
=

{(−12,0.3), (−10,0.3), (−6,1), (−4,0.4), (−2,0.6), (0,0.4)} ⇒

∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥
�̃�

�̃�
=

{(0,0.4), (1,0.6), (2,1), (3,0.7), (4,0.3)}  

 
Applying the formula for the extended addition 

according to the extension principle yields. 
 
 

  

∫ 𝑓(𝑥)𝑑𝑥

�̃�

�̃�

⊕ ∫ 𝑔(𝑥)𝑑𝑥

�̃�

�̃�

= {(12,0.3), (−10,0.3), (−9,0.3), (−8,0.3), (−7,0.3), (−6,0.4), (−5,0.3), (−4,0.4), (−3,0.6), (−1,0.4), 

(0,0.4), (1,0.6), (2,1), (3,0.7), (4,0.4), (5,0.4), (6,0.6), (7,0.6), (8,0.4), (9,0.5), (10,0.5), (11,0.4), (12,0.4), 
(13,0.5), (14,0.5), (15,0.4), (16,0.4)} 

  
 

Now, we can easily verify that:  
 

∫ [𝑓(𝑢) + 𝑔(𝑢)]𝑑𝑢
�̃�

�̃�
⊆ ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
⊕ ∫ 𝑔(𝑢)𝑑𝑢

�̃�

�̃�
  

 

Property 5: Let 𝑓be a function 𝑓: 𝐼 → 𝑅, integrable 

on 𝐼 and �̃� be a normalized fuzzy set. Then  

 

(a) ∫ 𝑓(𝑢)𝑑𝑢
𝑐̃

�̃�
⊆ ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
⊕ ∫ 𝑔(𝑢)𝑑𝑢

𝑐̃

�̃�
 

(b) If �̃� is a real number, then ∫ 𝑓(𝑢)𝑑𝑢
𝑐̃

�̃�
= ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
⊕

∫ 𝑔(𝑢)𝑑𝑢
𝑐̃

�̃�
. 

 

Proof (a): 

  

𝜇
∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
⊕∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�

(𝑧) = 𝑠𝑢𝑝(𝑚,𝑛):𝑚+𝑛=𝑧 min {𝜇
∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�

(𝑚), 𝜇
∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�

(𝑛)} =

𝑠𝑢𝑝(𝑚,𝑛):𝑚+𝑛=𝑧 min {𝑠𝑢𝑝(𝑥1,𝑥2):∫ 𝑓(𝑢)𝑑𝑢
𝑥2

𝑥1
=𝑚 min{𝜇�̃�(𝑥1), 𝜇�̃�(𝑥2)} , 𝑠𝑢𝑝(𝑥3,𝑥4):∫ 𝑓(𝑢)𝑑𝑢

𝑥4
𝑥3

=𝑛 min{𝜇�̃�(𝑥3), 𝜇𝑐̃(𝑥4)}} =

𝑠𝑢𝑝(𝑚,𝑛):𝑚+𝑛=𝑧𝑠𝑢𝑝(𝑥1,𝑥2):∫ 𝑓(𝑢)𝑑𝑢
𝑥2

𝑥1
=𝑚𝑠𝑢𝑝(𝑥3,𝑥4):∫ 𝑓(𝑢)𝑑𝑢

𝑥4
𝑥3

=𝑛 min{min{𝜇�̃�(𝑥1), 𝜇�̃�(𝑥2)} , min{𝜇�̃�(𝑥3), 𝜇𝑐̃(𝑥4)}} =

𝑠𝑢𝑝(𝑚,𝑛):𝑚+𝑛=𝑧𝑠𝑢𝑝(𝑥1,𝑥2):∫ 𝑓(𝑢)𝑑𝑢
𝑥2

𝑥1
=𝑚𝑠𝑢𝑝(𝑥3,𝑥4):∫ 𝑓(𝑢)𝑑𝑢

𝑥4
𝑥3

=𝑛 min{𝜇�̃�(𝑥1), 𝜇�̃�(𝑥2), 𝜇�̃�(𝑥3), 𝜇𝑐̃(𝑥4)} =

𝑠𝑢𝑝(𝑥1,𝑥2,𝑥3,𝑥4) ∫ 𝑓(𝑢)𝑑𝑢
𝑥2

𝑥1
+∫ 𝑓(𝑢)𝑑𝑢

𝑥4
𝑥3

min{𝜇�̃�(𝑥1), 𝜇�̃�(𝑥2), 𝜇�̃�(𝑥3), 𝜇𝑐̃(𝑥4)} ≥

𝑠𝑢𝑝(𝑥1,𝑥2,𝑥3,𝑥4) ∫ 𝑓(𝑢)𝑑𝑢
𝑥2

𝑥1
+∫ 𝑓(𝑢)𝑑𝑢

𝑥4
𝑥3

=𝑧&𝑥2=𝑥3: min{𝜇�̃�(𝑥1), 𝜇�̃�(𝑥2), 𝜇�̃�(𝑥3), 𝜇𝑐̃(𝑥4)} =

𝑠𝑢𝑝(𝑥1,𝑦,𝑦,𝑥4) ∫ 𝑓(𝑢)𝑑𝑢
𝑦

𝑥1
+∫ 𝑓(𝑢)𝑑𝑢

𝑥4
𝑦

=𝑧: min{𝜇�̃�(𝑥1), 𝜇�̃�(𝑦), 𝜇𝑐̃(𝑥4)} = 𝑠𝑢𝑝(𝑥1,𝑦,𝑦,𝑥4) ∫ 𝑓(𝑢)𝑑𝑢
𝑥4

𝑥1
=𝑧:min {𝜇�̃�(𝑦), min{𝜇�̃�(𝑥1), 𝜇𝑐̃(𝑥4)}}  

  
 

Since �̃� is normalized set, 
 
𝜇

∫ 𝑓(𝑢)𝑑𝑢
�̃�

�̃�
⊕∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�

(𝑧) ≥

𝑠𝑢𝑝(𝑥1,𝑥4) ∫ 𝑓(𝑢)𝑑𝑢
𝑥4

𝑥1

𝑚𝑖𝑛{𝜇�̃�(𝑥1), 𝜇�̃�(𝑥4)} = 𝜇
∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�

(𝑧)  

 

Hence 𝜇
∫ 𝑓(𝑢)𝑑𝑢

�̃�
�̃� ⊕∫ 𝑓(𝑢)𝑑𝑢

�̃�
�̃�

(𝑧) ≥ 𝜇
∫ 𝑓(𝑢)𝑑𝑢

�̃�
�̃�

(𝑧)  

Therefore ∫ 𝑓(𝑢)𝑑𝑢
𝑐̃

�̃�
⊆ ∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�
⊕ ∫ 𝑔(𝑢)𝑑𝑢

𝑐̃

�̃�
 

 

Proof (b): 

If �̃� is a real number, then  
 
𝜇

∫ 𝑓(𝑢)𝑑𝑢
�̃�

�̃�

(𝑧) = 𝑠𝑢𝑝(𝑥,𝑦):∫ 𝑓(𝑢)𝑑𝑢=𝑧
𝑦

𝑥
min{𝜇�̃�(𝑥), 𝜇𝑐̃(𝑥)}

= 𝑠𝑢𝑝
(𝑥,𝑦):∫ 𝑓(𝑢)𝑑𝑢

𝑏

𝑥
+∫ 𝑓(𝑢)𝑑𝑢

𝑦

𝑏

min{𝜇�̃�(𝑥), 𝜇𝑐̃(𝑥)}

= 𝜇
∫ 𝑓(𝑢)𝑑𝑢

𝑏

�̃�
⊕∫ 𝑓(𝑢)𝑑𝑢

�̃�

𝑏

(𝑧) ⇒ 𝜇
∫ 𝑓(𝑢)𝑑𝑢

�̃�

�̃�

(𝑧)

= 𝜇
∫ 𝑓(𝑢)𝑑𝑢

𝑏

�̃�
⊕∫ 𝑓(𝑢)𝑑𝑢

�̃�

𝑏

(𝑧) 
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Therefore ∫ 𝑓(𝑢)𝑑𝑢
𝑐̃

�̃�
= ∫ 𝑓(𝑢)𝑑𝑢

𝑏

�̃�
⊕ ∫ 𝑔(𝑢)𝑑𝑢

𝑐̃

𝑏
 

2. Conclusion  

The extension principle is one of the most 
essential principles in fuzzy set theory. By extending 
non-fuzzy mathematical notions, it provides a 
generic technique to deal with fuzzy quantities. 
There are a few examples, such as the fuzzy distance 
between fuzzy sets idea. After that, the extension 
method is applied to real algebra, with a focus on 
fuzzy number operations. These methods, as well as 
generalized interval analysis, are computationally 
interesting. Although the set of real fuzzy numbers 
with extended addition or multiplication is no longer 
a group, it nevertheless has a number of structural 
characteristics. It is shown that the extension notion 
is particularly useful for developing set-theoretic 
procedures for higher fuzzy sets. Before we can build 
the properties of integration of a crisp real-valued 
function over a fuzzy interval, we need some 
definitions relevant to our properties. In this paper, 
we develop and prove some real-valued function 
properties over a fuzzy interval to extend the 
principle of real-valued function integration over a 
fuzzy interval. Such features are correlated with 
extended addition and extended subtraction. 
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