Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences

Journal homepage: http://www.science-gate.com/IJAAS.html

Critical success factors for electronic customer relationship management success adoption: Telecommunication companies case study

Elham Abdulwahab Anaam^{1,}*, Khairul Azmi Abu Bakar¹, Nurhizam Safie Mohd Satar¹, Mohammad Kamrul Hasan¹, Mohamad A. Mohamed², Rajina R. Mohamed³

¹Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia ²Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia ³College of Computer Science and Information Technology, Universiti Tenaga Nasional, Bangi, Malaysia

ARTICLE INFO

Article history: Received 10 April 2021 Received in revised form 13 July 2021 Accepted 11 August 2021 Keywords: Critical success factors E-CRM adoption Successful factors Challenges Employee satisfaction

ABSTRACT

A systematic literature review has been conducted on the exiting E-CRM system and found that 70% of E-CRM projects do not meet their ultimate goals. Furthermore, more than 77% of E-CRM projects do not succeed in the company's objectives. Many telecommunication companies reported that the existing E-CRM systems face severe challenges, which hinder the E-CRM system's successful adoption. This study aims to report the literature review on the Critical Success Factors for E-CRM systems and identify the rate of failure for E-CRM adoption. The systematic literature review (SLR) method has been conducted by analyzing 210 articles between 2011 to 2021 from different databases collections of research papers. The study determines E-CRM Critical Success Factors from three aspects: technology, organization, and individual factors. The three main categories were analyzed as the effects of the issue on E-CRM success in telecommunication companies. The results show that the three aspects (technology, organization, and individual factors) have a significant effect on the successful adoption of E-CRM.

© 2021 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Electronic Customer Relationship Management (E-CRM) aims to present customers' needs and grow a healthy relationship between customers and the organization (Chen et al., 2021). It gives the ability to organizations to gather the knowledge of different sources successfully. The gathering of customer data may be through extranets, customer knowledge discovery algorithms, web spiders, cookies, online registration, and purchasing, generating vast amounts of data. E-CRM presents an excellent system to enable quick access to customers, store their information, and analyze customer data to provide a universal view of customer needs (Fjermestad and Romano, 2003). Many authors claim that the E-CRM system is essential to improve customer needs and organizations' performance. In Fjermestad and Romano (2003), the research was focused on enhanced customer services and cost

* Corresponding Author.

Email Address: p88048@siswa.ukm.edu.my (E. A. Anaam) https://doi.org/10.21833/ijaas.2021.10.013

Corresponding author's ORCID profile:

https://orcid.org/0000-0002-1497-5509

2313-626X/© 2021 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) reduction as a significant critical success factor (CSFs). It also considers CSFs as a successful measurement of E-CRM. Previous studies about the use of E-CRM in companies and organizations have shown that E-CRM improves customer loyalty, extends sales, expands customer service, enhances the personalization of relationships and cost savings in marketing, and improves market awareness. Shoniregun et al. (2004) examined the trust factor to increase the effectiveness of E-CRM toward customers. Khalifa and Shen (2009) discussed the successful modeling of E-CRM with practical consideration, and the paper confirmed that there is essential to take into account the conceptualization of customer satisfaction. This systematic review is designed to examine and determine the E-CRM CSFs. This systematic review aims to study many previous works based on the E-CRM scope of CSFs and identify the rate of failure of E-CRM adoption. Moreover, it may help the organization determine the essential E-CRM success. Also, decide E-CRM CSFs that contribute to the success of E-CRM adoption.

2. Background

The E-CRM started in the mid-1990 via combining the Internet and electronic touchpoint.

Touchpoint connects with customers such as email, call centers, direct sales, phone, and social media websites. Web-based E-CRM technology provides a way to interact with the business, customers, and employees. Software, hardware, processes, and executive commitments are included in the process to support an enterprise-wide CRM business strategy. Furthermore, using the Internet as a base for CRM functions and a channel for marketing, commerce, and information introduce new and great opportunities for businesses, described as E-CRM. Toyese (2014) defined E-CRM as part of the traditional CRM system that is provided using internet technology. E-CRM offers many advantages in online services, such as building a good relationship with customers, increasing customer satisfaction with loyalty supported by extensive literature studies.

E-CRM plays a critical role in managing internal and external information, offered anytime and anywhere. E-CRM has a significant role in integrating technology and the organization process. Despite the E-CRM, the system generally depends on the business approach. There are intensely competitive in many organizations in global marketing (Chang et al., 2005). The telecommunication companies attempt to deliver a high level of services to support the marketplace (Ishmael, 2015) competitively. Many studies about E-CRM failure in the literature and the causes of unsuccessful E-CRM in telecommunication companies. Among them are the lack of Top Management Support, user Training (Hosseinianzadeh, 2015), and lack of Experience and skill (Nguyen and Pham, 2015). On the other hand, Kassahun (2012) mentioned that Individual Performance influences the success of the E-CRM adoption. A significant number of previous studies in the E-CRM field suggest investigating the causes of limited E-CRM success (Sunny and Abolaji, 2016; Nguyen and Pham, 2015).

3. Systematic review

This study aims to do a systematic literature analysis to find the most Critical Success Factors (CSFs) that contribute to the successful adoption of E-CRM systems. It also seeks to define comprehensive metrics to aid in the evaluation of these Critical Success Factors. The systematic review uses the framework and guidelines that implement the following three main phases: Preparing the review (research question), selection criteria, and paper ranking.

3.1. Research questions

Bohling et al. (2006) indicated that the examination question is the central part of an empirical review. This section aims to address the issue and challenges in E-CRM adoption by reviewing the studies and literature under the E-CRM field that present the failure levels of the adoption and raise the understanding of the high failure. This study will give insight into the following study questions: What the Critical Success Factors positively affect E-CRM adoption, and how do those factors affect Employee Satisfaction with E-CRM. These questions aim to recognize the extent of those Critical Success Factors that positively affect the successful adoption of E-CRM. Moreover, it identifies the challenges of Employee Satisfaction as the main contribution to E-CRM usage. After identifying the research questions, the review for the study was done. This process has various phases: Keyword study, database selection, quality papers selection, and analysis.

3.2. Searching process in databases

The examination method of this literature involves collecting databases from the thesis, journals, and conferences with keywords. The databases were selected for the years from 2000 to 2020. The databases used are as shown in Table 1. This study selects journals and conferences based on these keyword queries (E-CRM, successful adoption, Critical Success Factors, success factors, challenges, Employee Satisfaction). The database collection provides an important list of possible researches. The processes in selecting the studies relevant to paper review are as follows:

- 1. Exclude studies whose titles are not relevant to the paper goal.
- 2. Exclude papers there abstracts and keywords not related to the paper goal.
- 3. Read the remaining sections on the papers and exclude any paper that is not relevant to the scope.

The details of the initial result for all database reviews are illustrated in Table 1.

		Table 1: Li	ist of datab	ases and initial results					
Databases	Db	Initial Results	Years	Keywords					
Scholar	scholar.google.com	3150							
Springer	www.springer.com	3							
Emerald	www.emeraldinsight.com	110		("E_CDM" OD "ECDM" successful adoption") AND ("Critical Success					
IEEE	ieeexplore.ieee.org	3	2000-	E-CRM OR ECRM Successionauophon JAND (Childa Success					
ACM Digital	http://dl.acm.org	2	2020	Satisfaction")					
Library	http://ui.aciii.org	2		Satisfaction J					
Science direct	http://sciencedirect.com	72							
Total	7 DB	3349							

3.3. Paper selection

The papers were selected based on the title and the abstract with the keywords. Then the papers were selected based on the studies conducted between 2000 and 2021. In this process, 210 papers were eligible from the initial 3349 articles, as shown in Table 2.

3.4. Papers based on database

E-CRM and CRM papers were published from different databases. Fig. 1 shows the eligible paper's distribution based on the databases in which 78% papers from google scholar, 13% from the emerald database, 1% from science direct, 5% from IEEE database, 4% from springer, and 1% from Elsevier.

Fig. 1: Databases

3.5. Papers based on E-CRM years

Fig. 2 shows the number of eligible papers based on the years of the publications. The number of eligible papers has remarkably increased in recent years, which indicates that E-CRM is progressively attracting the attention of scholars and researchers.

Fig. 2: Articles based on years of publications

3.6. Papers based on countries

This research filtered the E-CRM papers based on countries. The details are shown in Fig. 3. 10% of the papers were studies conducted in India, 7% in Indonesia, 12% in Jourdan, 2% in Nigeria, 9% in Iran, 3% in Kenya, 3% in Uganda, 8% in Taiwan, 18% in Malaysia, and 22% in general.

3.7. Investigation of existing studies focusing the critical success factors toward E-CRM

Table 2 shows the previous studies' factors that covered some issues in their Critical Success Factors. Based on the last works' attention, studies have focused on investigating technology, organization, and individual factors' effects on Employee Satisfaction, which is considered the main contributor to E-CRM success.

4. Analysis of related works

Alim and Ozuem (2014) focused on the effect of E-CRM customer satisfaction in the mobile environment. The results showed that E-customer CRM's Service Quality and customer satisfaction are closely linked (Alim and Ozuem, 2014). Hosseini et al. (2013) built a consistent and legitimate mobile communications data quality framework. The study shows that participants play an important role in determining pricing policies and service convenience and improving customer loyalty. The research has shown that the funding focuses on the consumer satisfaction effect of quality of service. The success rate has always been constrained by the lack of response and empathy with service quality. Allozi et al. (2016) addressed an electronic information database framework of the E-customer processes for better e-customer conservation. The resulting research included electronic awareness of the mechanism of E-CRM factors driving the demand for electronic customer engagement.

Furthermore, the research assessed the influence of E-CRM on customer satisfaction, whereas the E-CRM also had a multi-dimensional impact on the customer dimensions. Dubey and Srivastava (2016) studied the quality of service and effects in the Indian communications industry on customer retention. The research finding was performance efficiency, concreteness, and confirmation with important and fundamental effects on customer relationships. Intangibility has a significant impact on customer loyalty. According to the structure model's founding, responsibility, tangibility, empathy, assurance, and reliability are considered the central part of Service Quality. Still, this study has limitations and failed to investigate user

satisfaction, and is still far from measuring E-CRM performance. Employee Satisfaction can significantly impact the effectiveness of companies by contributing to income optimization. Employee Satisfaction is a measurement of critical success and has an impact on the company's competitiveness.

Employee Satisfaction becomes one of the most important and significant professional concepts that the company cannot ignore. E-CRM efficiency depends on several main components, including technology, organization, and, from the individual perspective, the user aspect. Depending on the issues, there is a need for intervention to boost employee success via Employee Satisfaction. Consequently, this paper put the interest and resolve the gap in research. The metrics are adapted when assessing employees' output via the current E-CRM framework.

Table 2	Summary	of the	key factors	of existing	works
I abic 2.	Summary	or the	Key lacturs	UI CAISUIIg	WUIKS

Reference	Previous works	Factors	Outcome	Methodology
Chang et al.	Customer	Customer loyalty and Customer-switching	E-CRM performance on customer	Questionnaires/
(2014)		intention (CSI), Customer Privacy	It indicates that almost all of the participants are	students
Ismail and Hussin (2016)	Customer	Customer Satisfaction and Loyalty	happy with the E-services offered by the airlines in Malaysia and by this attitude of consumers; loyalty satisfaction and indirectly, both customer and business are forming successful relationships.	analysis technique
Aldaihani and Ali (2018)	Technology factors	Website design, Privacy, Privacy and security, Delivery time	Electronic Service Quality on customer	questionnaire
Soltani and	Organization	Organizational Capability	Organization Performance	questionnaire
Navimipou	Customer	Knowledge Management	Customer	
Khaligh et al. (2012)	Technology customer	Information Technology Consumer allegiance, E-CRM, customer satisfaction, customer engagement, Confidence, the appeal of replacements,	Customer retention	questionnaires interviews
	Technology	pricing Service Quality		
Mang'unyi et al. (2017)	Customer	Pre-service features, During service features, Post-service features	Customer satisfaction with CRM, Overall customer loyalty	interview
Soltani and Navimipou r (2016)	Organization	Organizational Capability	Organization Performance Customer	questionnaire
Allozi et al. (2016)	Technology Human	E- customer process (E-customer analysis – customer attractive E-customer acquisition) Customer knowledge	E-customer retention	218 survey
Joshi and Sharma (2015)	Technology	Customer Focus, Organizational Factors, Knowledge Management, Technology- based CRM, Distribution Channel.	Customer Satisfaction	Reviewing paper
Dubey and Srivastava (2016)	Service Quality	Sympathy, Ensure, Awareness, tangibility, and consistency.	Customer loyalty	survey
Bataineh (2015)	Social networking	Communicative Contact, E-direct Mail, Expected Incentives	Customer Satisfaction	Review 507 of customers
Alim and Ozuem (2014)	Human	Cognitive Loyalty, Affective Loyalty, Conative Loyalty, Action Loyalty	Customer Loyalty and Satisfaction	507 customers,
Oumar et al. (2017)	Technology	Pre—services transaction E-CRM, during service transaction E-CRM, post-Service transaction E-CRM	E-customer Satisfaction	78 customers
Dubey and Srivastava (2016)	Customers	Service Quality, Tangibility, Reliability Responsiveness, Assurance, Customer Relationship Management Empathy	Customer Loyalty	262 customers
Tan and Trang (2017)	Customer	Customer companies, loyalty, implement control management	Commerce companies	customers
Dubihlela and Molise- Khosa (2014)	Implement E-CRM	Customer loyalty, customer retention	Customer profitability	Customers
Sivaraks et al. (2011)	The research framework.	Customer-based service attribute	The study investigated the organization's performance via factors of customer satisfaction, Trust, sales revenue, and investment output.	684 customers
Marjani and Sadeghi (2016)	Conceptual Framework	CRM, Organizational performance		questionnaire
Khaligh et al. (2012)	Model of this research	The study focused on customer loyalty and retention as dependent variables.	The study's result supports the association between the Applicability of E-CRM and loyalty and retention of customers.	200 questionnaires
Ismail and Hussin (2016)	Airline e-ticketing model	Web feature, promotion, loyalty program, and purchase cycle, boost booking, customer service.	This outcome detects which most of the defendant is satisfied with the e-services offered by airlines in Malaysia.	500 questionnaires
(Alim and Ozuem, 2014)	Customers	Customer Satisfaction and customer loyalty factors.	The outcome of the study is a link between E-CRM and customer satisfaction and customer loyalty.	Interview
Alim and Ozuem (2014)	Customers	Cognitive Loyalty, Affective Loyalty, Conative Loyalty.	The study that E-CRM is efficient at encouraging customer relations and promoting an appealing virtual community that further improves satisfaction	Survey on customers
Bataineh	Proposed research	Interpersonal Communication, Electronic	The study result presented that customers	507 customers

Anaam et al/International Journal of Advanced and Applied Sciences, 8(10) 2021, Pages: 116-130

(2015)	model	Direct Mai, Perceived Rewards, Customer Satisfaction.	respectively influence direct electronic mail, perceived rewards, and interpersonal communication.	
Chuang and Lin (2013)	Customers performance	Infrastructure Capability, Customer Orientation, Customer Information Quality, Customer Relationship Performance, Control Variables Firm Capital Firm Size Firm Age, Overall Firm Performance	The resulting study stated that customer Information Quality positively affects customer relationship performance, leading to perfection in total company performance.	116 financial service firm
Salehi et al. (2015)	Designed	The aim of the study was customer Loyalty, Behavioral Approach, attenuation approach.	The study result showed that E-CRM has an essential effect on customer loyalty.	correlation survey
Wang et al. (2016)	Design characteristics	E-tailer CRM capabilities, Customer attraction capability, Customer conversion capability, Customer retention capability.	CRM capabilities, through the argument that Skills can enhance the demand-side factors of EMAs.	7309 e-tailers
Vujic et al. (2016)	Adoption	to investigate rebranding and staff perception through Change Communication Factors (Receiving Information, Providing Input, Value of Input, and Involvement in Decision Making) Receiving Information, Receiving Information Executive Non- Executive.	Found only Receiving information produced significant differences between the executives and the not executives through the study.	Questionnaire
Chen and Chen (2010)	Al adoption	The paper proposes a framework to explore the effects of success factors on AI adoption by integrating the technology, organization, and environment (TOE) framework and diffusion of innovation (DOI) theory.	The results indicate that compatibility, relative advantage, complexity, managerial support, government involvement, and vendor partnership are significantly relevant to AI adoption.	Questionnaire
Yazdani et al. (2019)		The study Examined the utility and factors related to the use of a phone in the market, incorporating sustainable attributes, such as viable strategy and policy, Sustainable product design, Sustainable sourcing, Sustainable end-of-life-management	This paper endeavors to identify the most influential factors for selecting smartphones because this aids users and customers to be able to choose an ethical or sustainable phone.	Questionnaire
Keramati and Shapouri (2016)		Indicators including organization capital, human capital, customer retention process, customer perceived value, and customer expansion process play an essential role in succeeding CPM	Indicators including organization capital, human capital, customer retention process, customer perceived value, and customer expansion process play an essential role in succeeding CRM.	Analysis 32 Iranian ISP firms

5. Results

This phase presents the result of the systematic literature review process. After reviewing the previous studies dimension of the E-CRM system, this study lists all the selected papers and investigates the essential factors from the studies to meet the addressed study's objective. The study would answer questions as presented in the following subsections.

5.1. Identify the challenges behind limited E-CRM successful

Adopting E-CRM is often seen as a solution to decrease the massive gap among both consumers and companies. E-CRM is becoming widespread in different world areas for local companies (Benitto and Kumar, 2015). The E-CRM in telecommunication companies is necessary to allow these companies to monitor the vast quantities of information (Anaam et al., 2020a; 2020b; Chavoshi et al., 2015). There is also a high percentage of E-CRM failures, and in the future, this number will be increased (Bhanu and Magiswary, 2010). More than 77% of E-CRM adoption does not succeed the company's goals, and the rate of success E-CRM is low.

Hence, this provides interest for many academic researchers to investigate the high rate of unsuccessful E-CRM adoption. Previous works that studied the adoption of E-CRM systems in telecommunication companies stated that there are remaining problems that hinder the successful adoption of the E-CRM system (Chavoshi et al., 2015;

Ishmael, 2015; Joshi and Sharma, 2015; Sunny and Abolaji, 2016). Furthermore, Bataineh (2015) suggested further investigation on E-CRM in the telecommunication area. Study on 700 firms, the author stated that significant problems behind the failure were organization change 29%, company policy 22%, and lack of CRM understanding 20%. The author also validated that the main issue of CRM failure is the lack of Top Management Support. Table 3 illustrates the summary of the key factors in the previous works.

5.2. Current study of critical success factors

Critical Success Factors are defined as the major measure of a company's operations essential to its success (Alzaghal and Mukhtar, 2017). In this study, three factors are considered, (1) Technology, (2) Organization, (3) Individual. There is not much research that comprehensively examines the key success factors from the three antecedents in individual technology, organization, and relationships. This study intends to resolve this gap in the existing literature by integrating organizational, technical, and Employee Satisfaction in understanding the importance of Individual Performance to the E-CRM's successful adoption, specifically in telecommunication companies.

Furthermore, there is not much research that incorporates three-dimension antecedents to examine the performance of E-CRM. Al-Weshah et al. (2019) suggested that academic research on E-CRM efficiency, especially in telecommunication, has poorly been published. Therefore, more empirical studies are needed to bridge this shortcoming (Anaam et al., 2018). Many studies have investigated the effect of CSFs on E-CRM. The key factors reported by the past researchers depend on their specific

research objectives. A collection merely from one dimension would support just a small percentage of success factors that lead to efficient E-CRM adoption within the company.

Table 3: Critical success factor											
Authors/Years	Service Quality	System Quality	Information Quality	Top Management Support	Training	Ease of Use	Skills	Computer it-self	Computer Experience	Perceived Usefulness	Employee Satisfaction
(Zhou et al., 2010)	Х						Х				
2010)											Х
(Khaligh et al.,									x		
2012) (Siggal 2008)								v			
(Liang et al., 2009)								X			
(Hosseinianzadeh,									х		
2015) (Vec et al. 2008)		v									
(Leong et al., 2003)	Х	X					х				
(Law et al., 2013)									Х		
(Nasri and Charfeddine 2012)								Х			
(Hsiao et al., 2013)											
(Chen and Chen,									х		
2010) (Ishmael 2015)											v
(Petter et al., 2013)			Х				х				A
(Tam and Oliveira,							х				
2016) (Chang et al. 2007)			v								
(Junglas et al.,			A					v			
2008)								л			
(Kabak and Dogac, 2010)	Х										
(Li and Mao, 2012)									Х		
(Gruen et al., 2000)	Х										
(ALHUSSAII et al., 2014)									Х		
(Petter et al., 2008)	Х	Х	Х			Х					
(Hannachi, 2015) (Vang et al. 2010)			Х			X					
(Ahmad et al., 2010)				Х		X					
(Abdullateef et al.,											
2014) (Hsiao et al. 2013)	x				x	x					
(Chuchuen and	А				A	А					
Chanvarasuth,			Х			Х					
2011) (Grandhi and											
Chugh, 2012)			Х			Х					
(Petter et al., 2008)	Х	Х	Х	Х		Х					
2015)									Х		
(D'ambra and	x	x	x	x		x				x	
Wilson, 2004) (Seddon, 1997)	v		v			v					
(Liu and Arnett,	л х		X			л					
2000)	Х	Х	Х								
(Kassim, 2006) (Mohamadali									Х		
2013)										Х	
(Kim et al., 2004)		X		Х						X.	
(Maillet et al., 2015) (Tam and Oliveira.		х								X	
2016)		Х								Х	
(Akinnuwesi et al.,			х								
(Abdullateef et al.,									V		
2014)									X		

5.3. Identified critical success factors

This section identifies the factors from the past theories. Critical Success Factors can help an organization determine the key for success or failure for the organization's needs. There are many key factors from the literature that can be adopted. This method is used vastly in different business fields and is stated in many academic types of research. EUCE, TAM3, UTAUT, LR, and IS theory have been applied in this research to assist the framework modeling. Table 4 shows the factor from each of the theories.

5.4. Design items from previous studies

All questionnaire items were adopted from the previous work related to the context of each factor, as shown in Table 5.

5.5. Research questionnaire design

The data will be collected through questionnaires. A questionnaire is a set of standardized questions, often called items. The questionnaires were sent to employers of the telecommunication companies to determine the views and validate the variables used in this study. Questionnaires can assist the researchers in evaluating and comparing with other studies, and they can be used to determine the respondents' attitudes regarding a hypothesis. The questionnaire was designed based on a closed and open question that allowed respondents to provide accurate answers to each question. The questionnaire was designed so that it would not take so much time. A brief description of the research objective and focus was given before the respondents began answering the questions. This is to help the responders to answer accurately for each item. All questionnaire items were adapted from the previous studies' work related to each factor's context. Five Likert scaling methods (strongly disagree, disagree, somewhat, agree, strongly agree) were used for this questionnaire to determine the agreement level of the responders. Table 6 presents the items of the study.

Table 4: Adopted theories

		I able 4	. Auopieu in	euries							
No	Theory			Factors							
1 II	pdate DeLone and Mclean the	orv	ry System Quality, Service Quality, and information								
2	FUCE theory	Jory	Top management, Training, Experience, Employee Satisfaction								
2	EUCE theory		Top manag	gement, framing, Experience, Emplo	yee Satisfaction						
3	TAM 3		Ea	se of Use, Self-Efficacy, Perceived Use	efulness						
4	UTAUT			Experience, age, gender, education	n						
5	LR			Skills							
	Factor	Table	e 5: Design it	Posourco							
Creat		сіп <u>5</u>		(Terr and Oliverine 201()							
Syst	em Quality	5		(Tam and Oliveira, 2016)							
Inform	lation Quality	6		(Tam and Oliveira, 2016)							
Serv	rice Quality	7	(Ch	12 1, 2016; Alanezi et al.,)12)						
Top Mana	gement Support	6		(Croteau and Li, 2003)							
Т	raining	3		(Avlonitis and Panagopoulos, 2005)	1						
Ea	se of Use	6		(Vella and Caruana, 2012)							
	Skills	4		(Nguyen and Waring 2013)							
Comput	er Evnerience	5	(Aylonitis	and Panagonoulos 2005: Chen and (Then 2010)						
Comput	or Solf Efficacy	5	(minimus	(Vonkatoch 2000)	Jieli, 2010)						
Comput	er sen-Enicacy	5		(Velikatesii, 2000)							
Percer	ve userumess	1	<i></i>	(vena and caruana, 2012)	1 00050						
Employe	e's satisfaction	6	(Vella and C	aruana, 2012; Avlonitis and Panagor	oulos, 2005)						
Individu	al Performance	5	(T)	am and Oliveira, 2016; Hart et al., 20	04)						
		Та	able 6: Items								
Variables	Items	Recourse	Variable								
	E-CRM system has a high level			The E-CRM system works without							
	of operational efficiency.			crashing.							
	E-CRM system services are			E-CRM system is always available							
	always timely.			for use.							
	E-CRM system provides		C .	E-CRM system provides data that is							
	dependable services.		System	suitable for my tasks.	(Tam and Oliveira, 2016)						
	Services provided by the E-	(Chang and Thai,	Quality	E-CRM system is available to							
Service Quality	CRM system can respond to	2016; Alanezi et		provide information and reports of							
	E CDM system provides	al., 2012)		services.							
	E-CRM System provides			E-CRM system provides an easy							
	services that are free from			method to search for information.							
	ELOIS. E-CPM system services are			I am adequately trained to							
	always available			understand using the F-CRM system							
	F-CRM system provides the			The company provides external							
	right services		Training	Training	(Olunot et al. 2014)						
	ingite ber vieces			The company regularly provides	(orapoe ee all, 2011)						
	E-CRM system provides			suitable Training for the entire							
	accurate information.			business task of the system.							
	The E-CRM system provides										
	reliable information.			The E-CRM system is easy to learn.							
Information	The E-CRM system provides			The E CDM exchange is a set to use							
Quality	timeliness information.	(Tam and		The E-CRM system is easy to use.							
	E-CRM system provides	Oliveira, 2016)		The E CDM system is clean and							
	relevant information to my			understandable							
	needs.		Fase of Use	under standable.	(Vella and Caruana, 2012)						
	The E-CRM system provides		Lase of Use	The F-CRM system is controllable	(vena and cardana, 2012)						
	complete information.			The E-CRM system is controllable.							
	E-CRM system provides useful			The F-CRM system is flexible							
	information.			The E GRA System is nexible.							
	Top management provides the			The F-CRM system makes it easy for							
	facilities for E-CRM system			me to become skillful							
	success.										
	Top management is interested			I consider myself an expert in using							
	in the E-CRM system function			a computer.							
Top	Top management understands	(John, 2017:		My Experience helped me to							
Management	the importance of the E-CRM	Croteau and Li.		increase my level of satisfaction with	(Avlonitis and						
Support	system.	2003)		the use of the E-CRM system.	Panagopoulos, 2005: Hart et						
	Top management always		Experience	My Experience contributes to	al., 2004; Chen and Chen.						
	encourages the use of the E-			increased performance with the use	2010)						
	CRM system for job-related			of the E-CRM system.	- /						
	work.			Ma Francisco de la la cal							
	F-CPM system opportunities			my Experience nelped me to do my							
	B-GRM System opportunities.			work quickly and enforcently.							

Perceived	I have the ability to develop my Skills using E-CRM. E-CRM system helps me to work more quickly. E- CRM system helps my job performance. E- CRM system helps me to increase productivity. The E-CRM system helps my effectiveness	(Vella and	Self-Efficacy	I could complete the job using the system independently. I feel comfortable using the E-CRM system on my own. I can easily use any of the functions in the E-CRM system. Experts will be available at any time for help when required. In the beginning, help is needed to complete the job	(Venkatesh, 2000; Kwon et al., 2007)
Usefulness What are the oth	E-CRM system increases the quality of the work I do. The E-CRM system allows me to do tasks more correctly. E-CRM system increases the efficiency at work. er challenges Experienced by E-	Caruana, 2012)	Employee Satisfaction	I am satisfied with the E-CRM system because: The E-CRM system meets my information processing needs. Data provided by the E-CRM system is quickly updated. The E-CRM system achieves tasks successfully.	(Avlonitis and Panagopoulos, 2005; Tam and Oliveira, 2016)

5.6. Descriptive statistics

Qualitative analysis can be demonstrated statistically as the likelihood of approval and disapproval (Reimann et al., 2010). Sekaran and Bougie (2003) mentioned descriptive statistics illustrated by the standardized of important propensity and frequency for any indicator dependent on the characteristic of data gathered. The current study has been adopted to explain the new study outcomes statistically. There are descriptive statistics evaluated for every element (System Quality, Service Quality, Information Quality, Top Management Support, Training, Ease of Use, Skills, Experience, Self-Efficacy, Employee Satisfaction, Perceived Usefulness, and Individual Performance). Table 7 displays the descriptive statistics, Skewness ≤ 2 and Kurtosis ≤ 2 , Corrected item-total Correlation ≥ 0.30 , Cronbach's Alpha if Item deleted ≥ 0.70 for each set of factors among employees. The employers were asked to present their viewpoints which have been calculated on a 5-point Likert scale range from 1 for strongly disagree to 8 for strongly agree. Table 8 shows cross Loading and Fig. 4 shows outer loading of formative measurement loading.

Table 7: Descriptive statistics

L C	р. I.,	м	Standard	р I	Skewness	Kurtosis	Corrected Item-Total	Cronbach's Alpha if Item
Items of	Respondents	меап	Deviation	Rank	≤2	≤2	Correlation ≥ 0.30	Deleted≥0.70
				Svs	stem Ouality	(SO)		
S01	300	3.24	.971	5	049	273	.577	.826
S02	300	3.40	.789	4	675	.472	.665	.801
S03	300	3.82	.823	1	345	.185	.674	.798
S04	300	3.59	.948	3	166	667	.721	.782
S05	300	3.73	.890	2	397	117	.590	.820
Overall Me	ean Score	3.55	0.88	-	Ove	erall Reliabilit	v (Cronbach's Alpha)	.838
				Inf	ormation Ou	ality	, (
101	300	3.50	1.120	6	431	426	.728	.874
102	300	3.62	1.098	5	- 530	- 506	769	867
103	300	3.82	1.050	2	- 549	- 606	835	856
104	300	3 78	1.000	3	- 665	220	714	876
105	300	3 77	971	4	- 446	- 461	655	884
106	300	3.07	873	1	- 390	- 189	598	892
Overall M	aan Score	3.72	1 019	1	3 70	arall Reliabilit	v (Cronhach's Alpha)	894
overall bit		5.755	1.017		Service Qualit		y (cronbach s rupha)	.074
SEDO1	300	3 50	021	5	- 426	247	570	921
SERQ1	200	2 50	700	1	420	.347	.570	.021
SERQ2	200	2.64	./ 55	2	.031	494	.307	.023
SERQS	200	3.04	.052	3 1	250	500	.592	.019
SERQ4	300	3.03	.040	1	390	232	.495	.052
SERQ5	300	3.47	1.203	6	488	612	.628	.815
SERQ6	300	3.42	1.16/	/	529	448	./1/	./9/
SERQ/	300	3./1	.891	Z	318	592	.616	.815
Overall Me	ean Score	3.594	0.955		Ove	erall Rehabilit	y (Cronbach's Alpha)	.840
m) (4	000	2.24	000	Top M	lanagement S	upport	100	075
TM1	300	3.36	.898	6	.119	750	.498	.875
TMZ	300	3.71	.849	4	340	419	.740	.835
TM3	300	3.69	1.092	5	578	322	.684	.847
TM4	300	3.94	.925	1	486	653	.681	.844
TM5	300	3.72	.847	3	295	141	.700	.842
TM6	300	3.78	.803	2	250	386	.743	.836
Overall Me	ean Score	3.70	0.902		Ove	erall Reliabilit	y (Cronbach's Alpha)	.869
					Training			
T1	300	3.66	1.001	3	357	594	.504	.844
T2	300	3.79	.918	2	852	.654	.782	.541
T3	300	3.86	.938	1	372	468	.613	.724
Overall Me	ean Score	3.77	0.952		Ove	erall Reliabilit	y (Cronbach's Alpha)	.786
					Ease of Use			
EOU1	300	3.64	1.056	6	613	.179	.618	.861
EOU2	300	3.81	.869	4	400	449	.769	.830
EOU3	300	3.84	.849	3	355	467	.762	.831
EOU4	300	3.86	.830	2	121	818	.662	.849
EOU5	300	3.79	.880	5	435	435	.557	.866

Anaam et al/International Journa	l of Advanced	l and Applied Sciences,	8(10) 2021,	Pages: 116-130
----------------------------------	---------------	-------------------------	-------------	----------------

EOU6	300	3.86	.790	1	230	457	.680	.846
Overall Me	ean Score	3.80	0.879		Ov	erall Reliability	(Cronbach's Alpha)	.869
					Skills			
SK1	300	3.48	1.061	4	589	.016	.761	.769
SK2	300	3.75	1.058	3	588	.047	.790	.754
SK3	300	3.77	.770	1	.021	633	.585	.844
SK4	300	3.75	.825	2	.020	784	.631	.826
Overall Me	an Score	3.687	0.9285		Ov	erall Reliability	(Cronbach's Alpha)	.846
Computer							(File File File File File File File File	
Experience								
CE1	300	3.63	.971	5	459	140	.490	.765
CE2	300	3.63	746	4	- 295	648	665	721
CE3	300	3 71	895	2	- 802	617	661	710
CE4	300	3 70	1 011	3	- 948	781	457	777
CES	300	3.70	1.011	1	-1.039	511	583	737
Overall Me	S00	2.60	0.040	1	-1.050	.JII orall Poliability	(Crophach's Alpha)	702
Over all Me	all score	5.00	0.949		Solf Efficace		(cronbach s Aiplia)	.765
CCE1	200	2 (7	040	4	Self-Efficacy	(17	(02	000
CSEI	300	3.67	.940	4	645	.047	.083	.880
CSEZ	300	3.92	.923	1	055	.027	.//2	.861
CSE3	300	3.76	.977	3	-1.144	1.516	.838	.845
CSE4	300	3.66	1.030	5	825	.757	.836	.844
CSE1	300	3.78	1.055	2	847	.362	.573	.907
Overall Me	ean Score	3.758	0.985	_	Ov	erall Reliability	(Cronbach's Alpha)	.892
				Per	ceived Usefu	lness		
PU1	300	3.78	.968	6	520	084	.517	.834
PU2	300	3.83	.839	1	355	.086	.552	.828
PU3	300	3.73	.839	7	625	1.090	.567	.826
PU4	300	3.81	.934	3	-1.019	1.322	.620	.818
PU5	300	3.80	.971	4	869	.885	.698	.805
PU6	300	3.80	.977	5	485	451	.604	.820
PU7	300	3.83	.965	2	553	.160	.630	.816
Overall Me	an Score	3.79	0.985		Ov	erall Reliability	(Cronbach's Alpha)	.843
				Emj	ployee Satisfa	action		
ES1D	300	3.67	.983	4	867	.544	.681	.870
ES1	300	3.62	.905	6	120	518	.728	.862
ES1A	300	3.69	.961	3	346	319	.702	.866
ES1B	300	3.78	.942	1	393	397	.730	.862
ES1C)	300	3.77	.894	2	491	.353	.821	.848
ES2	300	3.66	1.063	5	- 508	- 361	568	890
Overall Me	an Score	3.69	0.958	0	00	erall Reliability	(Cronhach's Alnha)	886
over all the		5.07	0.750	Indix	vidual Perfor	mance	(cronbach s rupha)	.000
ID1	300	3 60	847	5	- 217	- 527	671	796
102	200	2.00	.047	2	217	527	.071	901
117 4	200	2.50	.077	2	337	202	.035	700
115	200	3.03	./05	3 1	400	.034	./01	./90
124	300	3.95	.854	1	/14	.504	.603	.815
122	300	3./9	.872	4	807	1.321	.5/9	.822
Overall Me	an Score	3.836	0.843		Ov	erall Reliability	(Cronbach's Alpha)	.837

Table 8: Cross loading

	CSE)	(EOU)	(ES)	(IQ)	(PU)	(SK)	(CE)	(IF)	(IP)	(OF)	SERQ)	(SQ)	(TF)	(TMS)	(T)
CE1	0.500	0.432	0.455	0.481	0.424	0.584	0.791	0.614	0.369	0.518	0.269	0.436	0.463	0.468	0.525
CE2	0.456	0.314	0.380	0.284	0.381	0.591	0.840	0.544	0.258	0.447	0.158	0.476	0.352	0.413	0.560
CE3	0.476	0.228	0.328	0.234	0.381	0.628	0.891	0.602	0.371	0.370	0.087	0.410	0.277	0.329	0.507
CE4	0.559	0.282	0.412	0.326	0.497	0.714	0.904	0.689	0.515	0.416	0.162	0.427	0.352	0.353	0.479
CE5	0.561	0.371	0.596	0.353	0.540	0.590	0.756	0.707	0.558	0.568	0.426	0.567	0.491	0.480	0.600
IF1Y	0.561	0.371	0.596	0.353	0.540	0.590	0.756	0.797	0.558	0.568	0.426	0.567	0.491	0.480	0.600
CSE1	0.720	0.464	0.556	0.495	0.508	0.504	0.463	0.713	0.449	0.455	0.281	0.459	0.487	0.399	0.444
IF2Y	0.720	0.464	0.556	0.495	0.508	0.504	0.463	0.743	0.449	0.455	0.281	0.459	0.487	0.399	0.444
CSE2	0.813	0.592	0.559	0.584	0.663	0.495	0.452	0.618	0.588	0.495	0.410	0.444	0.548	0.463	0.479
CSE3	0.778	0.480	0.459	0.539	0.541	0.510	0.427	0.663	0.601	0.298	0.325	0.382	0.480	0.282	0.290
IF3Y	0.578	0.480	0.459	0.539	0.541	0.510	0.427	0.663	0.601	0.298	0.325	0.382	0.480	0.282	0.290
CSE4	0.605	0.400	0.426	0.506	0.455	0.350	0.205	0.458	0.421	0.124	0.277	0.402	0.471	0.067	0.121
CSE5	0.777	0.430	0.579	0.541	0.693	0.672	0.672	0.694	0.547	0.536	0.332	0.504	0.540	0.497	0.527
EC1D	0.664	0.499	0.866	0.590	0.689	0.492	0.408	0.653	0.738	0.592	0.412	0.541	0.599	0.531	0.433
EOU1	0.479	0.751	0.415	0.406	0.366	0.262	0.297	0.418	0.312	0.387	0.427	0.353	0.458	0.320	0.493
EOU2	0.512	0.849	0.492	0.611	0.388	0.303	0.346	0.439	0.331	0.420	0.526	0.458	0.635	0.403	0.475
EOU3	0.517	0.849	0.441	0.496	0.449	0.270	0.312	0.431	0.405	0.394	0.408	0.342	0.479	0.368	0.450
EOU4	0.470	0.766	0.486	0.587	0.519	0.391	0.304	0.406	0.421	0.480	0.508	0.480	0.615	0.476	0.417
EOU5	0.432	0.686	0.402	0.475	0.441	0.239	0.202	0.338	0.446	0.285	0.426	0.326	0.496	0.322	0.173
EOU6	0.575	0.793	0.520	0.622	0.521	0.330	0.366	0.464	0.536	0.444	0.403	0.342	0.572	0.433	0.341
ES1	0.489	0.452	0.816	0.458	0.621	0.513	0.505	0.547	0.581	0.622	0.499	0.484	0.558	0.540	0.472
ES1A	0.613	0.528	0.875	0.503	0.598	0.473	0.488	0.625	0.643	0.517	0.520	0.618	0.622	0.462	0.382
ES1C	0.622	0.532	0.866	0.613	0.664	0.497	0.433	0.605	0.590	0.607	0.472	0.581	0.630	0.539	0.495
IP1	0.573	0.472	0.614	0.447	0.610	0.507	0.488	0.574	0.813	0.548	0.473	0.434	0.506	0.524	0.367
IP2	0.529	0.339	0.578	0.396	0.563	0.429	0.378	0.511	0.799	0.490	0.344	0.438	0.445	0.445	0.345
IP3	0.615	0.473	0.650	0.422	0.631	0.527	0.388	0.587	0.829	0.431	0.430	0.550	0.458	0.402	0.327
IP4	0.513	0.384	0.483	0.408	0.432	0.499	0.334	0.576	0.729	0.348	0.362	0.482	0.452	0.287	0.427
IP5	0.511	0.347	0.574	0.458	0.470	0.410	0.408	0.546	0.727	0.483	0.437	0.460	0.509	0.460	0.387
IQ1	0.696	0.669	0.594	0.830	0.543	0.341	0.372	0.567	0.526	0.527	0.624	0.556	0.824	0.502	0.412
TF1Y	0.696	0.669	0.594	0.810	0.543	0.341	0.372	0.567	0.526	0.527	0.624	0.556	0.824	0.502	0.412
IQ2	0.692	0.648	0.538	0.855	0.580	0.412	0.324	0.547	0.582	0.451	0.632	0.515	0.783	0.441	0.376
IQ3	0.611	0.614	0.589	0.899	0.569	0.454	0.414	0.556	0.481	0.621	0.577	0.526	0.850	0.583	0.487
TF2Y	0.611	0.614	0.589	0.839	0.569	0.454	0.414	0.556	0.481	0.621	0.577	0.526	0.850	0.583	0.487
IQ4	0.501	0.476	0.400	0.803	0.420	0.319	0.316	0.421	0.390	0.436	0.444	0.379	0.682	0.391	0.410
TF3Y	0.501	0.476	0.400	0.503	0.420	0.319	0.316	0.421	0.390	0.436	0.444	0.379	0.682	0.391	0.410
IQ5	0.499	0.464	0.481	0.759	0.463	0.396	0.254	0.388	0.292	0.439	0.470	0.389	0.678	0.390	0.358
IQ6	0.417	0.380	0.449	0.692	0.394	0.403	0.266	0.442	0.320	0.447	0.375	0.448	0.557	0.357	0.366
PU1	0.542	0.431	0.469	0.377	0.701	0.374	0.369	0.468	0.406	0.447	0.242	0.244	0.337	0.430	0.384
PU2	0.502	0.332	0.557	0.422	0.726	0.372	0.333	0.414	0.509	0.360	0.298	0.325	0.420	0.353	0.204

PU3 0.562 0.328 0.473 0.358 0.725 0.477 0.375 0.474 0.477 0.352 0.475 0.391 0.482 0.442 PU4 0.571 0.333 0.620 0.521 0.759 0.500 0.595 0.569 0.531 0.534 0.634 0.636 0.528 0.426 PU6 0.623 0.567 0.584 0.431 0.332 0.290 0.307 0.544 0.434 0.430 0.518 0.473 0.573 0.406 0.384 SERQ2 0.297 0.361 0.374 0.417 0.499 0.435 0.290 0.233 0.291 0.360 0.514 0.417 0.499 0.425 0.430 0.518 0.477 0.430 0.518 0.373 0.331 0.445 0.220 0.361 0.273 0.373 0.417 0.499 0.361 0.273 0.371 0.411 0.457 0.429 0.361 0.573 0.440 0.351 0.373																
PU6 0.571 0.393 0.620 0.521 0.759 0.500 0.490 0.556 0.564 0.531 0.634 0.636 0.566 0.531 0.531 0.636 0.566 0.531 0.571 0.429 0.382 0.566 0.543 0.434 0.326 0.498 0.556 0.412 0.531 SERQ1 0.278 0.301 0.358 0.437 0.332 0.290 0.337 0.344 0.441 0.689 0.430 0.518 0.475 0.374 SERQ3 0.269 0.329 0.471 0.435 0.220 0.233 0.291 0.316 0.273 0.377 0.332 0.594 0.229 0.205 0.229 0.215 0.265 0.273 0.371 0.447 0.447 0.477 0.303 0.351 0.55 0.229 0.261 S55 0.279 0.303 0.285 0.429 0.361 0.513 0.737 0.332 0.445 0.238 0.578 0.473 0.353	PU3	0.562	0.328	0.473	0.358	0.725	0.477	0.375	0.474	0.494	0.477	0.352	0.475	0.391	0.482	0.402
PU6 0.623 0.567 0.584 0.511 0.429 0.382 0.564 0.434 0.326 0.448 0.556 0.312 SERQ1 0.291 0.346 0.358 0.413 0.332 0.290 0.307 0.354 0.441 0.699 0.473 0.573 0.406 0.384 SERQ2 0.278 0.301 0.358 0.387 0.381 0.441 0.699 0.430 0.518 0.475 0.374 SERQ4 0.207 0.286 0.4425 0.410 0.304 0.168 0.071 0.181 0.374 0.617 0.447 0.497 0.333 0.301 SERQ5 0.346 0.468 0.300 0.526 0.220 0.361 0.513 0.451 0.530 0.382 0.249 0.311 0.411 0.447 0.497 0.332 0.275 0.808 0.471 0.375 0.413 0.484 0.455 SK1 0.559 0.302 0.453 0.331 <td< td=""><td>PU4</td><td>0.571</td><td>0.393</td><td>0.620</td><td>0.521</td><td>0.759</td><td>0.500</td><td>0.490</td><td>0.595</td><td>0.569</td><td>0.531</td><td>0.534</td><td>0.634</td><td>0.636</td><td>0.528</td><td>0.426</td></td<>	PU4	0.571	0.393	0.620	0.521	0.759	0.500	0.490	0.595	0.569	0.531	0.534	0.634	0.636	0.528	0.426
SERQ1 0.291 0.346 0.358 0.413 0.332 0.290 0.307 0.384 0.417 0.669 0.473 0.573 0.406 0.384 SERQ2 0.278 0.301 0.358 0.387 0.395 0.186 0.218 0.230 0.344 0.441 0.669 0.473 0.573 0.406 0.374 SERQ3 0.269 0.322 0.471 0.499 0.435 0.290 0.231 0.211 0.360 0.514 0.447 0.497 0.303 0.301 SERQ5 0.346 0.468 0.300 0.526 0.262 0.290 0.394 0.472 0.371 0.811 0.457 0.708 0.229 0.216 SERQ6 0.411 0.513 0.451 0.501 0.359 0.303 0.285 0.479 0.361 0.273 0.737 0.313 0.443 0.448 0.445 SK1 0.559 0.302 0.450 0.352 0.900 0.725 0.808 0.545 0.445 0.258 0.578 0.473 0.359 0.502	PU6	0.623	0.567	0.584	0.531	0.715	0.429	0.382	0.566	0.543	0.434	0.326	0.498	0.556	0.412	0.312
SERQ2 0.278 0.301 0.358 0.387 0.395 0.186 0.218 0.230 0.334 0.441 0.689 0.430 0.518 0.475 0.374 SERQ3 0.269 0.392 0.471 0.499 0.435 0.290 0.233 0.291 0.360 0.504 0.724 0.499 0.621 0.502 0.426 SERQ4 0.207 0.286 0.4425 0.410 0.304 0.168 0.071 0.184 0.537 0.373 0.332 0.594 0.229 0.261 SERQ6 0.441 0.513 0.451 0.530 0.380 0.263 0.209 0.394 0.472 0.513 0.473 0.332 0.454 0.425 SERQ7 0.367 0.522 0.420 0.501 0.359 0.302 0.465 0.442 0.513 0.735 0.413 0.668 0.445 0.445 0.238 0.578 0.473 0.359 0.502 SK4 0.588 0.309 0.533 0.454 0.452 0.468 0.445 0.445 0.458	SERQ1	0.291	0.346	0.358	0.413	0.332	0.290	0.307	0.354	0.384	0.417	0.699	0.473	0.573	0.406	0.384
SERQ3 0.269 0.392 0.471 0.499 0.493 0.290 0.233 0.291 0.360 0.504 0.724 0.499 0.621 0.502 0.425 SERQ4 0.207 0.286 0.425 0.410 0.304 0.168 0.071 0.184 0.358 0.374 0.617 0.447 0.497 0.303 0.301 SERQ5 0.346 0.446 0.300 0.526 0.292 0.195 0.065 0.226 0.361 0.513 0.451 0.504 0.229 0.261 SERQ6 0.411 0.513 0.451 0.530 0.380 0.263 0.209 0.394 0.472 0.371 0.811 0.457 0.708 0.375 0.279 SERQ7 0.367 0.522 0.420 0.511 0.353 0.454 0.532 0.900 0.725 0.808 0.445 0.445 0.413 0.473 0.359 0.502 IF44 0.588 0.309 0.533 0.454 0.532 0.410 0.420 0.425 0.436 0.357 0.357	SERQ2	0.278	0.301	0.358	0.387	0.395	0.186	0.218	0.230	0.334	0.441	0.689	0.430	0.518	0.475	0.374
SERQ4 0.207 0.286 0.425 0.410 0.304 0.168 0.071 0.184 0.358 0.374 0.617 0.4477 0.497 0.303 0.301 SERQ5 0.346 0.468 0.300 0.526 0.292 0.195 0.065 0.226 0.361 0.273 0.737 0.332 0.594 0.229 0.261 SERQ6 0.411 0.513 0.451 0.530 0.330 0.228 0.429 0.361 0.513 0.737 0.332 0.443 0.648 0.473 0.359 0.229 0.261 SK1 0.559 0.302 0.453 0.331 0.484 0.532 0.900 0.725 0.808 0.545 0.445 0.258 0.578 0.473 0.359 0.502 SK4 0.567 0.470 0.332 0.456 0.754 0.493 0.461 0.409 0.298 0.516 0.381 0.443 0.516 0.381 0.431 0.467 0.381 0.443 0.251 0.394 0.467 0.381 0.431 0.461 0.409	SERQ3	0.269	0.392	0.471	0.499	0.435	0.290	0.233	0.291	0.360	0.504	0.724	0.499	0.621	0.502	0.426
SERQ5 0.346 0.468 0.300 0.526 0.229 0.195 0.065 0.226 0.361 0.273 0.737 0.332 0.594 0.229 0.261 SERQ6 0.411 0.513 0.451 0.530 0.330 0.263 0.209 0.347 0.472 0.371 0.811 0.457 0.708 0.375 0.279 SK1 0.559 0.302 0.453 0.331 0.485 0.822 0.666 0.688 0.471 0.375 0.232 0.382 0.350 0.317 0.445 SK2 0.588 0.309 0.533 0.454 0.532 0.700 0.725 0.808 0.545 0.445 0.258 0.578 0.473 0.359 0.502 SK3 0.555 0.255 0.470 0.332 0.456 0.754 0.493 0.645 0.441 0.409 0.298 0.516 0.387 0.361 0.357 SK4 0.607 0.413 0.449 0.462 0.509 0.777 0.569 0.618 0.538 0.427 0.357	SERQ4	0.207	0.286	0.425	0.410	0.304	0.168	0.071	0.184	0.358	0.374	0.617	0.447	0.497	0.303	0.301
SERQ6 0.411 0.513 0.451 0.530 0.380 0.263 0.209 0.394 0.472 0.371 0.811 0.457 0.708 0.375 0.279 SERQ7 0.367 0.522 0.420 0.501 0.359 0.303 0.285 0.429 0.361 0.513 0.735 0.413 0.608 0.548 0.405 SK1 0.559 0.302 0.453 0.311 0.485 0.872 0.666 0.688 0.471 0.375 0.222 0.382 0.350 0.317 0.445 SK2 0.588 0.309 0.533 0.454 0.532 0.700 0.725 0.808 0.545 0.445 0.258 0.578 0.473 0.359 0.502 SK4 0.607 0.413 0.449 0.462 0.509 0.777 0.569 0.618 0.538 0.427 0.357 0.394 0.467 0.381 0.443 SQ1 0.406 0.415 0.463 0.425 0.446 0.367 0.347 0.446 0.352 0.349 0.613	SERQ5	0.346	0.468	0.300	0.526	0.292	0.195	0.065	0.226	0.361	0.273	0.737	0.332	0.594	0.229	0.261
SERQ7 0.367 0.522 0.420 0.501 0.359 0.303 0.285 0.429 0.361 0.513 0.735 0.413 0.608 0.548 0.405 SK1 0.559 0.302 0.453 0.331 0.485 0.872 0.666 0.668 0.471 0.375 0.232 0.382 0.350 0.317 0.445 SK2 0.588 0.309 0.533 0.454 0.532 0.700 0.725 0.808 0.545 0.445 0.258 0.578 0.473 0.359 0.502 SK4 0.607 0.413 0.449 0.462 0.509 0.777 0.569 0.618 0.538 0.427 0.357 0.344 0.467 0.381 0.443 SQ1 0.406 0.415 0.463 0.425 0.467 0.442 0.401 0.320 0.412 0.786 0.531 0.291 0.364 SQ2 0.432 0.408 0.447 0.346 0.441 0.320 0.412 0.786 0.531 0.291 0.364 SQ2 0.	SERQ6	0.411	0.513	0.451	0.530	0.380	0.263	0.209	0.394	0.472	0.371	0.811	0.457	0.708	0.375	0.279
SK1 0.559 0.302 0.453 0.331 0.485 0.872 0.666 0.688 0.471 0.375 0.232 0.382 0.350 0.317 0.445 SK2 0.588 0.309 0.533 0.454 0.532 0.700 0.725 0.808 0.545 0.445 0.258 0.578 0.473 0.359 0.502 SK3 0.555 0.255 0.470 0.332 0.454 0.522 0.700 0.725 0.808 0.545 0.445 0.258 0.578 0.473 0.359 0.502 SK4 0.607 0.413 0.449 0.462 0.509 0.777 0.569 0.618 0.538 0.427 0.357 0.394 0.467 0.381 0.443 SQ1 0.406 0.415 0.463 0.425 0.436 0.367 0.347 0.446 0.320 0.412 0.786 0.511 0.221 0.364 SQ2 0.432 0.448 0.547 0.446 0.527 0.548 0.611 0.554 0.541 0.857 0.734	SERQ7	0.367	0.522	0.420	0.501	0.359	0.303	0.285	0.429	0.361	0.513	0.735	0.413	0.608	0.548	0.405
SK2 0.588 0.309 0.533 0.454 0.532 0.900 0.725 0.808 0.545 0.445 0.258 0.578 0.473 0.359 0.502 SK3 0.555 0.255 0.470 0.332 0.456 0.774 0.493 0.645 0.445 0.258 0.578 0.473 0.359 0.502 SK4 0.607 0.413 0.449 0.452 0.493 0.645 0.441 0.409 0.298 0.516 0.387 0.361 0.357 SQ1 0.406 0.415 0.463 0.425 0.436 0.367 0.347 0.446 0.352 0.349 0.613 0.769 0.682 0.362 0.432 SQ2 0.432 0.408 0.487 0.386 0.470 0.405 0.467 0.482 0.401 0.320 0.412 0.786 0.531 0.291 0.364 SQ2 0.432 0.410 0.397 0.772 0.506 0.484 0.596 0.504 0.541 0.857 0.734 0.499 0.356 SQ	SK1	0.559	0.302	0.453	0.331	0.485	0.872	0.666	0.688	0.471	0.375	0.232	0.382	0.350	0.317	0.445
IF4Y0.5880.3090.5330.4540.5320.7000.7250.8080.5450.4450.2580.5780.4730.3590.502SK30.5550.2550.4700.3320.4560.7540.4930.6450.4610.4090.2980.5160.3870.3610.357SK40.6070.4130.4490.4620.5090.7770.5690.6180.5380.4270.3570.3940.4670.3810.443SQ10.4060.4150.4630.4250.4360.3670.3470.4460.3520.3490.6130.7660.5310.2910.364SQ20.4320.4080.4870.3860.4700.4050.4670.4820.4010.3200.4120.7860.5310.2910.364SQ30.5230.3190.5970.4750.5150.5830.4380.6000.5410.5440.3970.7720.5060.4850.502SQ40.5040.4440.5970.5280.5650.4840.5960.5960.5040.5410.3550.7740.4990.356SQ50.4630.2900.3840.4600.5240.5480.6110.5580.7770.4930.4650.5640.5280.611T10.5560.4620.5780.5480.4150.5650.5000.2800.6450.3180.4310.3970.5800.910<	SK2	0.588	0.309	0.533	0.454	0.532	0.900	0.725	0.808	0.545	0.445	0.258	0.578	0.473	0.359	0.502
SK3 0.555 0.255 0.470 0.332 0.456 0.754 0.493 0.645 0.461 0.409 0.298 0.516 0.387 0.361 0.357 SK4 0.607 0.413 0.449 0.462 0.509 0.777 0.569 0.618 0.538 0.427 0.357 0.394 0.467 0.381 0.443 SQ1 0.406 0.415 0.463 0.425 0.436 0.367 0.347 0.446 0.352 0.349 0.613 0.769 0.682 0.420 0.432 SQ2 0.432 0.448 0.447 0.386 0.470 0.405 0.467 0.482 0.401 0.320 0.412 0.768 0.531 0.291 0.364 SQ3 0.523 0.319 0.597 0.475 0.515 0.583 0.438 0.600 0.541 0.541 0.857 0.734 0.499 0.356 SQ4 0.504 0.444 0.597 0.528 0.565 0.449 0.460 0.544 0.596 0.504 0.541 0.857	IF4Y	0.588	0.309	0.533	0.454	0.532	0.700	0.725	0.808	0.545	0.445	0.258	0.578	0.473	0.359	0.502
SK4 0.607 0.413 0.449 0.462 0.509 0.777 0.569 0.618 0.538 0.427 0.357 0.394 0.467 0.381 0.443 SQ1 0.406 0.415 0.463 0.425 0.436 0.367 0.347 0.446 0.352 0.349 0.613 0.769 0.682 0.362 0.432 SQ2 0.523 0.319 0.597 0.475 0.515 0.583 0.438 0.600 0.541 0.544 0.397 0.772 0.506 0.485 0.502 SQ4 0.504 0.444 0.597 0.528 0.565 0.484 0.544 0.596 0.504 0.541 0.857 0.734 0.499 0.356 SQ5 0.463 0.290 0.384 0.459 0.430 0.411 0.395 0.469 0.476 0.441 0.335 0.716 0.495 0.416 0.339 T1 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0	SK3	0.555	0.255	0.470	0.332	0.456	0.754	0.493	0.645	0.461	0.409	0.298	0.516	0.387	0.361	0.357
SQ1 0.406 0.415 0.463 0.425 0.436 0.367 0.347 0.446 0.352 0.349 0.613 0.769 0.682 0.362 0.432 SQ2 0.432 0.408 0.487 0.386 0.470 0.405 0.467 0.482 0.401 0.320 0.412 0.786 0.531 0.291 0.364 SQ3 0.523 0.319 0.577 0.475 0.515 0.583 0.448 0.600 0.541 0.544 0.397 0.772 0.506 0.448 0.597 0.778 0.499 0.356 SQ4 0.544 0.444 0.597 0.555 0.484 0.544 0.596 0.504 0.541 0.857 0.774 0.499 0.356 SQ5 0.463 0.290 0.384 0.459 0.430 0.411 0.395 0.469 0.476 0.441 0.335 0.716 0.495 0.416 0.339 T1 0.556 0.462 0.578 0.548 0.461 0.558 0.707 0.493 0.465 0.564 0	SK4	0.607	0.413	0.449	0.462	0.509	0.777	0.569	0.618	0.538	0.427	0.357	0.394	0.467	0.381	0.443
SQ2 0.432 0.408 0.487 0.386 0.470 0.405 0.467 0.482 0.401 0.320 0.412 0.786 0.531 0.291 0.364 SQ3 0.523 0.319 0.597 0.475 0.515 0.583 0.438 0.600 0.541 0.544 0.397 0.772 0.506 0.485 0.502 SQ4 0.504 0.444 0.597 0.455 0.463 0.490 0.356 0.541 0.541 0.337 0.772 0.506 0.485 0.499 0.356 SQ5 0.463 0.290 0.384 0.459 0.411 0.395 0.469 0.476 0.441 0.335 0.716 0.495 0.416 0.339 T1 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.811 T2 0.387 0.356 0.355 0.368 0.364 0.415 0.565 0.500 0.280 0.645 0.318 0.431 0.	SQ1	0.406	0.415	0.463	0.425	0.436	0.367	0.347	0.446	0.352	0.349	0.613	0.769	0.682	0.362	0.432
SQ3 0.523 0.319 0.597 0.475 0.515 0.583 0.438 0.600 0.541 0.544 0.397 0.772 0.506 0.4485 0.502 SQ4 0.504 0.444 0.597 0.528 0.565 0.484 0.544 0.596 0.504 0.541 0.857 0.734 0.499 0.356 SQ5 0.463 0.290 0.384 0.459 0.430 0.411 0.395 0.469 0.476 0.441 0.335 0.716 0.495 0.416 0.339 T1 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.811 OF1Y 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.811 T2 0.387 0.355 0.368 0.346 0.419 0.524 0.548 0.611 0.558 0.707 0.493 0.465	SQ2	0.432	0.408	0.487	0.386	0.470	0.405	0.467	0.482	0.401	0.320	0.412	0.786	0.531	0.291	0.364
SQ4 0.504 0.444 0.597 0.528 0.565 0.484 0.544 0.596 0.504 0.541 0.887 0.734 0.499 0.336 SQ5 0.463 0.290 0.384 0.459 0.430 0.411 0.395 0.469 0.476 0.441 0.335 0.716 0.495 0.416 0.339 T1 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.611 T2 0.387 0.356 0.355 0.368 0.364 0.415 0.565 0.500 0.280 0.645 0.318 0.431 0.397 0.580 0.910 T3 0.345 0.465 0.347 0.303 0.375 0.378 0.503 0.402 0.308 0.509 0.390 0.364 0.390 0.491 0.796 TM1 0.414 0.348 0.320 0.387 0.419 0.333 0.388 0.407 0.416 0.549 0.430 0.367 0.4	SQ3	0.523	0.319	0.597	0.475	0.515	0.583	0.438	0.600	0.541	0.544	0.397	0.772	0.506	0.485	0.502
SQ5 0.463 0.290 0.384 0.459 0.430 0.411 0.395 0.469 0.476 0.441 0.335 0.716 0.495 0.416 0.339 T1 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.811 OF1Y 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.611 T2 0.387 0.356 0.355 0.368 0.415 0.565 0.500 0.280 0.645 0.318 0.431 0.397 0.580 0.910 T3 0.345 0.465 0.347 0.303 0.375 0.378 0.503 0.402 0.308 0.509 0.390 0.364 0.390 0.491 0.796 TM1 0.414 0.348 0.320 0.387 0.419 0.333 0.388 0.407 0.416 0.549 0.430 0.367 0.	SQ4	0.504	0.444	0.597	0.528	0.565	0.484	0.544	0.596	0.596	0.504	0.541	0.857	0.734	0.499	0.356
T1 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.811 OF1Y 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.611 T2 0.387 0.356 0.355 0.368 0.415 0.565 0.500 0.280 0.645 0.318 0.431 0.397 0.580 0.910 T3 0.345 0.465 0.347 0.303 0.375 0.378 0.503 0.402 0.308 0.509 0.390 0.364 0.390 0.491 0.796 TM1 0.414 0.348 0.320 0.387 0.419 0.333 0.388 0.407 0.416 0.599 0.364 0.390 0.491 0.796 TM2 0.375 0.386 0.419 0.424 0.486 0.272 0.288 0.316 0.355 0.670 0.446 0.391 0.496 0.	SQ5	0.463	0.290	0.384	0.459	0.430	0.411	0.395	0.469	0.476	0.441	0.335	0.716	0.495	0.416	0.339
OF1Y 0.556 0.462 0.578 0.548 0.460 0.524 0.548 0.611 0.558 0.707 0.493 0.465 0.564 0.528 0.611 T2 0.387 0.356 0.355 0.368 0.364 0.415 0.565 0.500 0.280 0.645 0.318 0.431 0.397 0.580 0.910 T3 0.345 0.465 0.347 0.303 0.375 0.378 0.503 0.402 0.308 0.509 0.390 0.364 0.390 0.491 0.796 TM1 0.414 0.348 0.320 0.387 0.419 0.333 0.388 0.407 0.416 0.549 0.430 0.367 0.422 0.609 0.486 TM2 0.375 0.386 0.419 0.424 0.486 0.272 0.288 0.316 0.355 0.670 0.446 0.391 0.496 0.803 0.426 TM3 0.470 0.505 0.558 0.545 <td>T1</td> <td>0.556</td> <td>0.462</td> <td>0.578</td> <td>0.548</td> <td>0.460</td> <td>0.524</td> <td>0.548</td> <td>0.611</td> <td>0.558</td> <td>0.707</td> <td>0.493</td> <td>0.465</td> <td>0.564</td> <td>0.528</td> <td>0.811</td>	T1	0.556	0.462	0.578	0.548	0.460	0.524	0.548	0.611	0.558	0.707	0.493	0.465	0.564	0.528	0.811
T2 0.387 0.356 0.355 0.368 0.364 0.415 0.565 0.500 0.280 0.645 0.318 0.431 0.397 0.580 0.910 T3 0.345 0.465 0.347 0.303 0.375 0.378 0.503 0.402 0.308 0.509 0.390 0.364 0.390 0.491 0.796 TM1 0.414 0.348 0.320 0.387 0.419 0.333 0.388 0.407 0.416 0.549 0.430 0.367 0.422 0.609 0.486 TM2 0.375 0.386 0.419 0.424 0.486 0.272 0.288 0.316 0.355 0.670 0.446 0.391 0.496 0.803 0.426 TM3 0.470 0.505 0.558 0.545 0.532 0.384 0.328 0.434 0.492 0.759 0.554 0.481 0.604 0.781 0.487 OF2Y 0.470 0.505 0.558 0.545 0.532 0.384 0.422 0.759 0.554 0.481 0.604 0	OF1Y	0.556	0.462	0.578	0.548	0.460	0.524	0.548	0.611	0.558	0.707	0.493	0.465	0.564	0.528	0.611
T3 0.345 0.465 0.347 0.303 0.375 0.378 0.503 0.402 0.308 0.509 0.390 0.364 0.390 0.491 0.796 TM1 0.414 0.348 0.320 0.387 0.419 0.333 0.388 0.407 0.416 0.549 0.430 0.367 0.422 0.609 0.486 TM2 0.375 0.386 0.419 0.424 0.486 0.272 0.288 0.316 0.355 0.670 0.446 0.391 0.496 0.803 0.426 TM3 0.470 0.505 0.558 0.545 0.532 0.384 0.328 0.434 0.492 0.759 0.554 0.481 0.604 0.781 0.487 OF2Y 0.470 0.505 0.558 0.545 0.532 0.384 0.328 0.434 0.492 0.759 0.554 0.481 0.604 0.711 0.487 TM4 0.385 0.448 0.494 0.451 0.466 0.353 0.408 0.417 0.507 0.738 0.491	T2	0.387	0.356	0.355	0.368	0.364	0.415	0.565	0.500	0.280	0.645	0.318	0.431	0.397	0.580	0.910
TM10.4140.3480.3200.3870.4190.3330.3880.4070.4160.5490.4300.3670.4220.6090.486TM20.3750.3860.4190.4240.4860.2720.2880.3160.3550.6700.4460.3910.4960.8030.426TM30.4700.5050.5580.5450.5320.3840.3280.4340.4920.7590.5540.4810.6040.7810.487OF2Y0.4700.5050.5580.5450.5320.3840.3280.4340.4920.7590.5540.4810.6040.7810.487TM40.3850.4480.4940.4510.4660.3530.4080.4170.5070.7380.4910.4560.5500.8010.529TM50.3410.3270.5120.4360.5290.3610.4360.4210.4550.8460.3880.3960.4630.8330.531TM60.3290.3390.5110.3870.4530.3100.4690.3920.3680.8490.3790.3960.4300.8570.543	Т3	0.345	0.465	0.347	0.303	0.375	0.378	0.503	0.402	0.308	0.509	0.390	0.364	0.390	0.491	0.796
TM2 0.375 0.386 0.419 0.424 0.486 0.272 0.288 0.316 0.355 0.670 0.446 0.391 0.496 0.803 0.426 TM3 0.470 0.505 0.558 0.545 0.532 0.384 0.328 0.434 0.492 0.759 0.554 0.481 0.604 0.781 0.487 OF2Y 0.470 0.505 0.558 0.545 0.532 0.384 0.328 0.434 0.492 0.759 0.554 0.481 0.604 0.781 0.487 TM4 0.385 0.448 0.494 0.451 0.466 0.353 0.408 0.417 0.507 0.738 0.491 0.456 0.550 0.801 0.529 TM5 0.341 0.327 0.512 0.436 0.529 0.361 0.436 0.421 0.455 0.846 0.388 0.396 0.463 0.833 0.531 TM6 0.329 0.339 0.511 0.387 </td <td>TM1</td> <td>0.414</td> <td>0.348</td> <td>0.320</td> <td>0.387</td> <td>0.419</td> <td>0.333</td> <td>0.388</td> <td>0.407</td> <td>0.416</td> <td>0.549</td> <td>0.430</td> <td>0.367</td> <td>0.422</td> <td>0.609</td> <td>0.486</td>	TM1	0.414	0.348	0.320	0.387	0.419	0.333	0.388	0.407	0.416	0.549	0.430	0.367	0.422	0.609	0.486
TM3 0.470 0.505 0.558 0.545 0.532 0.384 0.328 0.434 0.492 0.759 0.554 0.481 0.604 0.781 0.487 OF2Y 0.470 0.505 0.558 0.545 0.532 0.384 0.328 0.434 0.492 0.759 0.554 0.481 0.604 0.781 0.487 TM4 0.385 0.448 0.494 0.451 0.466 0.353 0.408 0.417 0.507 0.738 0.491 0.456 0.550 0.801 0.529 TM5 0.341 0.327 0.512 0.436 0.423 0.455 0.846 0.388 0.491 0.456 0.550 0.801 0.529 TM5 0.341 0.327 0.512 0.463 0.529 0.361 0.469 0.392 0.368 0.849 0.379 0.396 0.463 0.833 0.531 TM6 0.329 0.339 0.511 0.387 0.453 0.310 </td <td>TM2</td> <td>0.375</td> <td>0.386</td> <td>0.419</td> <td>0.424</td> <td>0.486</td> <td>0.272</td> <td>0.288</td> <td>0.316</td> <td>0.355</td> <td>0.670</td> <td>0.446</td> <td>0.391</td> <td>0.496</td> <td>0.803</td> <td>0.426</td>	TM2	0.375	0.386	0.419	0.424	0.486	0.272	0.288	0.316	0.355	0.670	0.446	0.391	0.496	0.803	0.426
OF2Y 0.470 0.505 0.558 0.545 0.532 0.384 0.328 0.434 0.492 0.759 0.554 0.481 0.604 0.711 0.487 TM4 0.385 0.448 0.494 0.451 0.466 0.353 0.408 0.417 0.507 0.738 0.491 0.456 0.550 0.801 0.529 TM5 0.341 0.327 0.512 0.436 0.529 0.361 0.436 0.421 0.455 0.846 0.388 0.396 0.463 0.833 0.531 TM6 0.329 0.339 0.511 0.387 0.453 0.310 0.469 0.392 0.368 0.849 0.379 0.396 0.430 0.857 0.543	TM3	0.470	0.505	0.558	0.545	0.532	0.384	0.328	0.434	0.492	0.759	0.554	0.481	0.604	0.781	0.487
TM4 0.385 0.448 0.494 0.451 0.466 0.353 0.408 0.417 0.507 0.738 0.491 0.456 0.550 0.801 0.529 TM5 0.341 0.327 0.512 0.436 0.529 0.361 0.436 0.421 0.455 0.846 0.388 0.396 0.463 0.833 0.531 TM6 0.329 0.339 0.511 0.387 0.453 0.310 0.469 0.392 0.368 0.849 0.379 0.396 0.430 0.857 0.543	OF2Y	0.470	0.505	0.558	0.545	0.532	0.384	0.328	0.434	0.492	0.759	0.554	0.481	0.604	0.711	0.487
TM5 0.341 0.327 0.512 0.436 0.529 0.361 0.436 0.421 0.455 0.846 0.388 0.396 0.463 0.833 0.531 TM6 0.329 0.339 0.511 0.387 0.453 0.310 0.469 0.392 0.368 0.849 0.379 0.396 0.430 0.857 0.543	TM4	0.385	0.448	0.494	0.451	0.466	0.353	0.408	0.417	0.507	0.738	0.491	0.456	0.550	0.801	0.529
<u>TM6</u> 0.329 0.339 0.511 0.387 0.453 0.310 0.469 0.392 0.368 0.849 0.379 0.396 0.430 0.857 0.543	TM5	0.341	0.327	0.512	0.436	0.529	0.361	0.436	0.421	0.455	0.846	0.388	0.396	0.463	0.833	0.531
	TM6	0.329	0.339	0.511	0.387	0.453	0.310	0.469	0.392	0.368	0.849	0.379	0.396	0.430	0.857	0.543

5.7. Cross loadings

The Cross Loading approach is to identify those that have high loadings on the same construct and those that load highly on multiple constructs. To have adequate discriminant validity, the loading of any assessed item on its equivalent construct should be maximum than its loading on another construct. This provides the measuring objects of a construct are scaling their construct. This standard's satisfaction with each of the measure items load highly on their constructs but not as high on the other construct. The loading detached any potential factor, as hypothesized in the conceptual model. Thus, the cross-loading finding specific that the calculation of the measurement system integrand reliability had been assured. The Cross-Loading review emphasizes which the complete elements for the same construct are poorer than other constructs in the model and stronger about its corresponding construct. The instances of this study are shown in Table 8. In the first instance, CE1, CE2, CE3, CE4, and CE5 load in height on its corresponding construct: Computer Experience (CE) but much lesser on other theories. The second instance is that IF1, IF2, IF3, and IF4 load high on its analogous construct: Individual Factors (IF) but much lower on other constructs. The third example is the EOU1, EOU2, EOU3, EOU4, EOU5, and EOU6 load high on their representative construct EOU (Ease of Use) but much lower on other constructs. As presented in Table 8, the cross-loading criterion meets the requirements due to the indicator's external loadings on construct are higher than all its cross-loadings with other constructs (in bold). In other words, analysis of cross-loading in the current research confirms that the discriminant validity for the hypothesized model has been established and satisfied.

5.8. Outer loading of formative measurement loading

The first G factor is the Technology Factors with sub-factors such as System Quality (SQ), Information Quality (IQ), and Service Quality (SERQ). The second G factor is the Organization Factors with sub-factors, namely: Top Management Support (TM) and Training (T). The third G factor is the Individual Factors with four subfactors: Easy to Use (EOU), Skills (SK), Computer Experience (CE), and Computer Self-Efficacy (CSE). Fig. 4 verifies the firstparameters order frameworks' that are concentrating on loadings, STDEV, T-Values, P-Values, and assuredness intervals bias-corrected. Every construction with its particular components is referred to in the first order. The importance of loading or relationships is presented as T-Values ~1.964 and T-Values 0.05. Confidence intervals (CI) bias-corrected is often used to assist the significance of the loading. The lower limit (LL) of CI and the upper boundary (UL) confirms that the loading value or the correlation is significant if either positive or negative (LL-UL) boundary is found. If one of them is helpful, whereas the other is negative, the relationship is not statistically significant. The second/hierarchical/higher-order constructions in Fig. 4 prove statistically significant since they are located in the same positives on T-Values=1.964, T-Values 0.05, Lower Limit (LL), and Upper Limit=UL.

6. Discussion

This systematic review aims to define and identify critical key factors (CSF) that have highly and significantly influenced successful E-CRM adoption. It also investigates, analyzes, and measures the CSFs. The paper does the coverage of many academic researchers in the field. An inclusive initial list of Critical Success Factors was improved by utilizing the information extracted from the previous literature review. Moreover, a comprehensive major

challenge and reason for the high failure percentage in E-CRM adoption were established.

The initial E-CRM key factors list was improved to include five factors that have a significant influence on the E-CRM successful adoption in telecommunication companies. The classification for E-CRM key factors was categorized into thirty dimensions of CSFs: Technology Factors (Information Quality, System Quality, and Service Quality), Organization Factors (Top Management Support and Training), and finally Individual Factors (Skills, Ease of Use, Experience, and Self-Efficacy). The results of analysis using Descriptive Statistics,

Cross Loadings, and Outer Loading of Formative Measurement Loading supported that those factors significantly contribute to success E-CRM adoption.

7. Conclusion

This study attempts to identify the Critical Success Factors of E-CRM adoption. It also discovers the obstacles and the reason for the failure of the E-CRM system by focusing on the Critical Success Factors. This paper starts with determining the major challenges behind the successful E-CRM adaption. This study identifies the challenges and key Critical Success Factors on telecommunication companies under Technology, Organization, and Individual factors with regards to Employee Satisfaction. Based on the critical analysis of the previous related works, this study developed the questionnaires and examined the relationship between those factors. Finally, the findings of this study are discussed to highlight the key Critical Success Factors to accomplish a successful E-CRM system for telecommunication companies.

Acknowledgment

This research is carried out under the Network and Communication Technology Lab, Center for Cyber Security (CYBER), www.ftsm.ukm.my/ cybersecurity, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

- Abdullateef AO, Muktar SSM, Yusoff RZ, and Ahmad ISB (2014). Effects of customer relationship management strategy on call centre's employee intention to quit: Evidence from Malaysia call centers. Procedia-Social and Behavioral Sciences, 130: 305-315. https://doi.org/10.1016/j.sbspro.2014.04.036
- Ahmad K, Madhoushi Z, and Yusof MM (2011). Dominant success factors for Knowledge Management in academic institution. Journal of Theoretical and Applied Information Technology, 32(2): 152-159.
- Akinnuwesi BA, Uzoka FM, Olabiyisi SO, Omidiora EO, and Fiddi P (2013). An empirical analysis of end-user participation in software development projects in a developing country context. The Electronic Journal of Information Systems in Developing Countries, 58(1): 1-25. https://doi.org/10.1002/j.1681-4835.2013.tb00413.x
- Alanezi MA, Mahmood AK, and Basri S (2012). E-government service quality: A qualitative evaluation in the case of Saudi Arabia. The Electronic Journal of Information Systems in Developing Countries, 54(1): 1-20. https://doi.org/10.1002/j.1681-4835.2012.tb00382.x
- Aldaihani FM and Ali NA (2018). Effect of electronic customer relationship management on electronic service quality provided by the commercial banks in Kuwait. International Journal of Academic Research in Accounting, Finance and Management Sciences, 8(2): 143-154. https://doi.org/10.6007/IJARAFMS/v8-i2/4239
- ALHussan F, AL-Husan F, and Fletcher-Chen C (2014). Environmental factors influencing the management of key accounts in an Arab Middle Eastern context. Industrial Marketing Management, 43(4): 592-602. https://doi.org/10.1016/j.indmarman.2014.02.008
- Alim S and Ozuem W (2014). The influences of e-CRM on customer satisfaction and loyalty in the UK mobile industry.

Journal of Applied Business and Finance Researches, 3(2): 47-54.

- Allozi A, Alryalat H, and Hadi WE (2016). Applying electronic customer processes to electronic customer retention (field study in Jordanian telecommunication sector). International Journal of Business and Management, 11: 152-163. https://doi.org/10.5539/ijbm.v11n1p152
- Al-Weshah GA, Al-Manasrah E, and Al-Qatawneh M (2019). Customer relationship management systems and organizational performance: Quantitative evidence from the Jordanian telecommunication industry. Journal of Marketing Communications, 25(8): 799-819. https://doi.org/10.1080/13527266.2018.1449007
- Alzaghal Q and Mukhtar M (2017). Factors affecting the success of incubators and the moderating role of information and communication technologies. International Journal on Advanced Science, Engineering and Information Technology, 7(2): 538-545. https://doi.org/10.18517/ijaseit.7.2.1678
- Anaam EA, Bakar KAA, and Satar NSM (2020b). A model of electronic customer relationship management system adoption in telecommunication companies. Amazonia Investiga, 9(35): 61-73. https://doi.org/10.34069/AI/2020.35.11.5
- Anaam EA, Bakar KAA, Satar NSM, and Ma'arif MY (2020a). Investigating the electronic customer relationship management success key factors in the telecommunication companies: A pilot study. Journal of Computational and Theoretical Nanoscience, 17(2-3): 1460-1463. https://doi.org/10.1166/jctn.2020.8825
- Anaam EA, Khairul A, Abu Bakar NS, and Mohd S (2018). A theoretical review of conceptual model for E-CRM success in telecommunication companies. International Journal of Engineering and Technology, 7(4): 6381-6390.
- Avlonitis G and Panagopoulos N (2005). Antecedents and consequences of CRM technology acceptance in the sales force. Industrial Marketing Management, 34(4): 355-368. https://doi.org/10.1016/j.indmarman.2004.09.021
- Bataineh AQ (2015). The effect of eCRM practices on eWOM on banks' SNSs: The mediating role of customer satisfaction. International Business Research, 8(5): 230-243. https://doi.org/10.5539/ibr.v8n5p230
- Benitto JJ and Kumar JS (2015). Impact of e-CRM on customer satisfaction, loyalty and retention: Case of Le Meridian, Coimbatore. International Journal of Business and Administration Research Review, 3(11): 124–129.
- Bhanu F and Magiswary D (2010). Electronic customer relationship management systems (E-CRM): A knowledge management perspective. In the International Conference on Education and Management Technology, IEEE, Cairo, Egypt: 409-413. https://doi.org/10.1109/ICEMT.2010.5657629
- Bohling T, Bowman D, LaValle S, Mittal V, Narayandas D, Ramani G, and Varadarajan R (2006). CRM implementation: Effectiveness issues and insights. Journal of Service Research, 9(2): 184-194. https://doi.org/10.1177/1094670506293573
- Chang CH and Thai VV (2016). Do port security quality and service quality influence customer satisfaction and loyalty? Maritime Policy and Management, 43(6): 720-736. https://doi.org/10.1080/03088839.2016.1151086
- Chang HH, Wong KH, and Fang PW (2014). The effects of customer relationship management relational information processes on customer-based performance. Decision Support Systems, 66: 146-159. https://doi.org/10.1016/j.dss.2014.06.010
- Chang I, Hwang HG, Hung MC, Lin MH, and Yen DC (2007). Factors affecting the adoption of perspective of hospital electronic signature: Executives' information department. Decision Support Systems, 44(1): 350-359. https://doi.org/10.1016/j.dss.2007.04.006 PMid:32287564 PMCid:PMC7114195

- Chang TM, Liao LL, and Hsiao WF (2005). An empirical study on the e-CRM performance influence model for service sectors in Taiwan. In the IEEE International Conference on e-Technology, e-Commerce and e-Service, IEEE, Hong Kong, China: 240-245. https://doi.org/10.1109/EEE.2005.33
- Chavoshi M, Tze A, and Jee MH (2015). A CRM adoption model for Malaysian telecommunication and finance companies. Journal of Information Systems Research and Innovation, 9(2): 119– 125.
- Chen CF and Chen FS (2010). Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists. Tourism Management, 31(1): 29-35. https://doi.org/10.1016/j.tourman.2009.02.008
- Chen H, Li L, and Chen Y (2021). Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics, 8(1): 36-68. https://doi.org/10.1080/23270012.2020.1852895
- Chuang S and Lin H (2013). The roles of infrastructure capability and customer orientation in enhancing customer information quality in CRM systems: Empirical evidence from Taiwan. International Journal of Information Management, 33(2): 271-281. https://doi.org/10.1016/j.ijinfomgt.2012.12.003
- Chuchuen C and Chanvarasuth P (2011). The adoption factors of E-CRM in service sector of Thai SMEs. In the 2nd International Proceedings of Networking and Information Technology IPCSIT, 17: 350-355.
- Croteau AM and Li P (2003). Critical success factors of CRM technological initiatives. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l'Administration, 20(1): 21-34. https://doi.org/10.1111/j.1936-4490.2003.tb00303.x
- D'ambra J and Wilson CS (2004). Use of the World Wide Web for international travel: integrating the construct of uncertainty in information seeking and the task-technology fit (TTF) model. Journal of the American Society for Information Science and Technology, 55(8): 731-742. https://doi.org/10.1002/asi.20017
- Dubey A and Srivastava AK (2016). Impact of service quality on customer loyalty-A study on telecom sector in India. IOSR Journal of Business and Management, 18(2): 45-55.
- Dubihlela J and Molise-Khosa P (2014). Impact of e-CRM implementation on customer loyalty, customer retention and customer profitability for hoteliers along the Vaal Meander of South Africa. Mediterranean Journal of Social Sciences, 5(16): 175–183. https://doi.org/10.5901/mjss.2014.v5n16p175
- Fjermestad J and Romano NC (2003). Electronic customer relationship management: Revisiting the general principles of usability and resistance–An integrative implementation framework. Business Process Management Journal, 9(5): 572-591. https://doi.org/10.1108/14637150310496695
- Grandhi S and Chugh R (2012). Strategic value of mobile CRM applications: A review of mobile CRM at dow corning and DirecTV. International Proceedings of Computer Science and Information Technology, 36(2): 388-393.
- Gruen TW, Summers JO, and Acito F (2000). Relationship marketing activities, commitment, and membership behaviors in professional associations. Journal of Marketing, 64(3): 34-49. https://doi.org/10.1509/jmkg.64.3.34.18030
- Hannachi R (2015). Information quality in customer relationship management. Global Journal of Management and Business Research, 15: 6E.
- Hart S, Hogg G, and Banerjee M (2004). Does the level of experience have an effect on CRM programs? Exploratory research findings. Industrial Marketing Management, 33(6): 549-560. https://doi.org/10.1016/j.indmarman.2004.01.007
- Hosseini SY, Zadeh MB, and Bideh AZ (2013). Providing a multidimensional measurement model for assessing mobile telecommunication service quality (MS-Qual). Iranian Journal of Management Studies, 6(2): 7-29.

- Hosseinianzadeh M (2015). A framework for e-CRM implementation in health service industry of a developing country. International Journal of Engineering and Innovative Technology, 4(8): 20–26.
- Hsiao J, Wu W, and Chen R (2013). Factors of accepting pain management decision support systems by nurse anesthetists. BMC Medical Informatics and Decision Making, 13: 16. https://doi.org/10.1186/1472-6947-13-16
 PMid:23360305 PMCid:PMC3563435
- Ishmael NA (2015). A framework for post implementation evaluation of ECRM in telecommunication sector: The case of Orange Kenya. International Academic Journal of Information Systems and Technology, 1(5): 18-39.
- Ismail NAB and Hussin HB (2016). The effect of E-CRM features on customers satisfaction for airline e-ticket services in Malaysia. In the 6th International Conference on Information and Communication Technology for the Muslim World (ICT4M), IEEE, Jakarta, Indonesia: 336-343. https://doi.org/10.1109/ICT4M.2016.074
- John W (2017). Measuring organizational capital in CRM context: An EFA approach. FIIB Business Review, 6(4): 39-47. https://doi.org/10.1177/2455265820170407
- Joshi V and Sharma R (2015). CRM in telecommunication industry: Issues and challenges in Indian context. International Journal of Research in Management Issue, 5(2): 90–113.
- Junglas I, Abraham C, and Watson RT (2008). Task-technology fit for mobile locatable information systems. Decision Support Systems, 45(4): 1046-1057. https://doi.org/10.1016/j.dss.2008.02.007
- Kabak Y and Dogac A (2010). A survey and analysis of electronic business document standards. ACM Computing Surveys, 42(3): 1-31. https://doi.org/10.1145/1670679.1670681
- Kassahun A (2012). The effect of business process reengineering (BPR) on public sector organization performance in a developing economy context. Ph.D. Dissertation, RMIT University, Melbourne, Australia.
- Kassim NM (2006). Telecommunication industry in Malaysia: Demographics effect on customer expectations, performance, satisfaction and retention. Asia Pacific Business Review, 12(4): 437-463. https://doi.org/10.1080/13602380600571401
- Keramati A and Shapouri F (2016). Multidimensional appraisal of customer relationship management: Integrating balanced scorecard and multi criteria decision making approaches. Information Systems and e-Business Management, 14(2): 217-251. https://doi.org/10.1007/s10257-015-0281-8
- Khalifa M and Shen KN (2009). Modelling electronic customer relationship management success: Functional and temporal considerations. Behaviour and Information Technology, 28(4): 373-387. https://doi.org/10.1080/01449290802030373
- Khaligh AA, Miremadi A, and Aminilari M (2012). The impact of eCRM on loyalty and retention of customers in Iranian telecommunication sector. International Journal of Business and Management, 7(2): 150-162.
 - https://doi.org/10.5539/ijbm.v7n2p150
- Kim MK, Park MC, and Jeong DH (2004). The effects of customer satisfaction and switching barrier on customer loyalty in Korean mobile telecommunication services. Telecommunications Policy, 28(2): 145-159. https://doi.org/10.1016/j.telpol.2003.12.003
- Kwon O, Choi K, and Kim M (2007). User acceptance of contextaware services: Self-efficacy, user innovativeness and perceived sensitivity on contextual pressure. Behaviour and Information Technology, 26(6): 483-498. https://doi.org/10.1080/01449290600709111
- Law AK, Ennew CT, and Mitussis D (2013). Adoption of customer relationship management in the service sector and its impact

on performance. Journal of Relationship Marketing, 12(4): 301-330. https://doi.org/10.1080/15332667.2013.846204

- Leong LY, Ooi KB, Chong AYL, and Lin B (2013). Modeling the stimulators of the behavioral intention to use mobile entertainment: Does gender really matter? Computers in Human Behavior, 29(5): 2109-2121. https://doi.org/10.1016/j.chb.2013.04.004
- Li L and Mao JY (2012). The effect of CRM use on internal sales management control: An alternative mechanism to realize CRM benefits. Information and Management, 49(6): 269-277. https://doi.org/10.1016/j.im.2012.09.005
- Liang TP, Chen HY, and Turban E (2009). Effect of personalization on the perceived usefulness of online customer services: A dual-core theory. In the 11th International Conference on Electronic Commerce, Association for Computing Machinery, Taipei, Taiwan: 279-288. https://doi.org/10.1145/1593254.1593296
- Liu C and Arnett KP (2000). Exploring the factors associated with Web site success in the context of electronic commerce. Information and Management, 38(1): 23-33. https://doi.org/10.1016/S0378-7206(00)00049-5
- Maillet É, Mathieu L, and Sicotte C (2015). Modeling factors explaining the acceptance, actual use and satisfaction of nurses using an electronic patient record in acute care settings: An extension of the UTAUT. International Journal of Medical Informatics, 84(1): 36-47. https://doi.org/10.1016/j.ijmedinf.2014.09.004 PMid:25288192
- Mang'unyi EE, Khabala OT, and Govender KK (2017). The relationship between e-CRM and customer loyalty: A Kenyan Commercial Bank case study. Banks and Bank Systems, 12(2): 106-115. https://doi.org/10.21511/bbs.12(2).2017.11
- Marjani AB and Sadeghi H (2016). Surveying the influence of customer relationship management on organizational performance. Journal of Administrative Management, Education and Training, 12(4): 205-211.
- Mohamadali NAK (2013). Exploring new factors and the question of 'which' in user acceptance studies of healthcare software. Ph.D. Dissertation, University of Nottingham, Nottingham, UK.
- Nasri W and Charfeddine L (2012). Factors affecting the adoption of Internet banking in Tunisia: An integration theory of acceptance model and theory of planned behavior. The Journal of High Technology Management Research, 23(1): 1-14. https://doi.org/10.1016/j.hitech.2012.03.001
- Nguyen T and Pham CH (2016). The critical success factors for implementation of electric customer relationship management in the commercial bank of Viet Nam. International Journal of Financial Research, 7(5): 124-139. https://doi.org/10.5430/ijfr.v7n5p124
- Nguyen TH and Waring TS (2013). The adoption of customer relationship management (CRM) technology in SMEs: An empirical study. Journal of Small Business and Enterprise Development, 20(4): 824-848. https://doi.org/10.1108/JSBED-01-2012-0013
- Olupot C, Kituyi MG, and Noguera J (2014). Factors affecting the adoption of electronic customer relationship management information systems in SMEs. Journal of Studies in Social Sciences. 7(2): 25–45.
- Oumar TK, Mang'Unyi EE, Govender KK, and Rajkaran S (2017). Exploring the e-CRM-e-customer-e-loyalty nexus: A Kenyan commercial bank case study. Management and Marketing. Challenges for the Knowledge Society, 12(4): 674-696. https://doi.org/10.1515/mmcks-2017-0039
- Petter S, DeLone W, and McLean E (2008). Measuring information systems success: Models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3): 236-263. https://doi.org/10.1057/ejis.2008.15
- Petter S, deLone W, and McLean ER (2013). Information systems success: The quest for the independent variables. Journal of

Management Information Systems, 29(4): 7-62. https://doi.org/10.2753/MIS0742-1222290401

- Reimann M, Schilke O, and Thomas JS (2010). Customer relationship management and firm performance: The mediating role of business strategy. Journal of the Academy of Marketing Science, 38(3): 326-346. https://doi.org/10.1007/s11747-009-0164-y
- Salehi S, Kheyrmand M, and Faraghian H (2015). Evaluation of the effects of e-CRM on customer loyalty (Case study: Esfahan Branch's of Sepah Bank). In the 9th International Conference on e-Commerce in Developing Countries: With Focus on e-Business (ECDC), IEEE, Isfahan, Iran: 1-8. https://doi.org/10.1109/ECDC.2015.7156314
- Seddon PB (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3): 240-253. https://doi.org/10.1287/isre.8.3.240
- Sekaran U and Bougie R (2003). Research methods for business, a skill building approach. John Willey and Sons, New York, USA.
- Shoniregun CA, Omoegun A, Brown-West D, and Logvynovskiy O (2004). Can eCRM and trust improve eC customer base? In the International Conference on e-Commerce Technology, IEEE, San Diego, USA: 303-310. https://doi.org/10.1109/ICECT.2004.1319748
- Siegel D (2008). Accepting technology and overcoming resistance to change using the motivation and acceptance model. Ph.D. Dissertation, University of Central Florida, Orlando, USA.
- Sivaraks P, Krairit D, and Tang JC (2011). Effects of e-CRM on customer-bank relationship quality and outcomes: The case of Thailand. The Journal of High Technology Management Research, 22(2): 141-157. https://doi.org/10.1016/j.hitech.2011.09.006
- Soltani Z and Navimipour NJ (2016). Customer relationship management mechanisms: A systematic review of the state of the art literature and recommendations for future research. Computers in Human Behavior, 61: 667-688. https://doi.org/10.1016/j.chb.2016.03.008
- Sunny EE and Abolaji OS (2016). Electronic customer relationship management (E-CRM) and marketing performance: Empirical evidence from Nigeria telecom sector. Journal of Economics, Management and Trade, 11(1): 1-14. https://doi.org/10.9734/BJEMT/2016/19924
- Tam C and Oliveira T (2016). Understanding the impact of mbanking on individual performance: DeLone and McLean and TTF perspective. Computers in Human Behavior, 61: 233-244. https://doi.org/10.1016/j.chb.2016.03.016
- Tan TL and Trang DTD (2017). Successful factors of implementation electronic customer relationship management (e-CRM) on e-commerce company. American Journal of Software Engineering and Applications, 6(5): 121-127. https://doi.org/10.11648/j.ajsea.20170605.12
- Toyese AY (2014). Customer relationship management and customer loyalty in Nigerian telecommunication industry. The Business and Management Review, 4(3): 43–50.
- Urbach N, Smolnik S, and Riempp G (2010). An empirical investigation of employee portal success. The Journal of Strategic Information Systems, 19(3): 184-206. https://doi.org/10.1016/j.jsis.2010.06.002
- Vella J and Caruana A (2012). Encouraging CRM systems usage: A study among bank managers. Management Research News, 35(2): 121-133. https://doi.org/10.1108/01409171211195152
- Venkatesh V (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation and emotion into the technology acceptance model. Information Systems Research, 11(4): 342–365. https://doi.org/10.1287/isre.11.4.342.11872

- Vujic D, Stanujkić D, Urošević S, and Karabašević D (2016). An approach to leader selection in the mining industry based on the use of weighted sum preferred levels of the performances method. Mining and Metallurgy Engineering Bor, (4): 53-62. https://doi.org/10.5937/mmeb1604053V
- Wang S, Cavusoglu H, and Deng Z (2016). Early mover advantage in e-commerce platforms with low entry barriers: The role of customer relationship management capabilities. Information and Management, 53(2): 197-206. https://doi.org/10.1016/j.im.2015.09.011
- Yang Z, Jun M, and Peterson RT (2010). Measuring customer perceived online service quality: Scale development and managerial implications. International Journal of Operations and Production Management, 24(11): 1149-1174. https://doi.org/10.1108/01443570410563278
- Yazdani M, Chatterjee P, Montero-Simo MJ, and Araque-Padilla RA (2019). An integrated multi-attribute model for evaluation of sustainable mobile phone. Sustainability, 11(13): 3704. https://doi.org/10.3390/su11133704
- Yee RW, Yeung AC, and Cheng TE (2008). The impact of employee satisfaction on quality and profitability in high-contact service industries. Journal of Operations Management, 26(5): 651-668. https://doi.org/10.1016/j.jom.2008.01.001
- Zhou T, Lu Y, and Wang B (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4): 760-767. https://doi.org/10.1016/j.chb.2010.01.013