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Clustering is a fundamental technique in data mining and machine learning. 
Recently, many researchers are interested in the problem of clustering 
categorical data and several new approaches have been proposed. One of the 
successful and pioneering clustering algorithms is the Minimum-Minimum 
Roughness algorithm (MMR) which is a top-down hierarchical clustering 
algorithm and can handle the uncertainty in clustering categorical data. 
However, MMR tends to choose the category with less value leaf node with 
more objects, leading to undesirable clustering results. To overcome such 
shortcomings, this paper proposes an improved version of the MMR 
algorithm for clustering categorical data, called IMMR (Improved Minimum-
Minimum Roughness). Experimental results on actual data sets taken from 
UCI show that the IMMR algorithm outperforms MMR in clustering 
categorical data. 
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1. Introduction 

*Clustering is a fundamental technique in data 
mining and machine learning. It is actually the 
finding of groups of objects such that objects in the 
same group have high similarity, and those in 
different groups have low similarity (Han and 
Kamber, 2006). Clustering has been widely deployed 
in several fields such as data mining, machine 
learning, pattern recognition, bioinformatics, etc. 
Literally, many clustering techniques have been 
proposed and generally classified into two types: 
partial and hierarchical. Most of the clustering 
techniques focus on numeric data sets, where each 
category describing the objects has a value domain 
that is a continuous interval of real values, and each 
data object number is treated as a point in a 
multidimensional metric space with a metric that 
measures distances between objects, such as the 
Euclidean metric or the Mahalanobis metric. 
However, practical applications often encounter data 
sets classified as categories whose values are finite 
and unordered; for example, hair color, nationality, 
etc. fail to be defined with a distance function 
spontaneously. 
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Recently, clustering categorical data has attracted 
special attention from several researchers in data 
mining areas and several clustering algorithms have 
been proposed (Khandelwal and Sharma, 2015; Cao 
et al., 2009; Guha et al., 2000; Gibson et al., 2000; 
Huang, 1998; Kim et al., 2004; Mesakar and 
Chaudhari, 2012). Although these algorithms make 
important contributions to the problem of clustering 
categorical data, they still fail to handle uncertainty 
in the clustering process. Handling uncertainty 
during clustering is an important issue because in 
many practical applications there are often no clear 
boundaries between clusters. To handle the 
uncertainty in the clustering of categorical data, 
recently Huang (1998), and Kim et al. (2004) 
proposed two algorithms that apply fuzzy set theory, 
However, these algorithms require many runs to 
establish a stable value needed for the parameter 
used to control the degree of fuzzy membership. A 
popular approach to dealing with uncertainty is to 
use Rough Set Theory (RST), proposed by Pawlak 
(1991). The RST is an effective tool for machine 
learning and data mining from information systems 
with category values (Pawlak, 1991). It has been 
successfully applied in many fields (Zhang et al., 
2016; Bello and Falcon, 2017) because it can 
effectively deal with data that require neither 
thresholds nor domain-specific expertise (Jensen 
and Shen, 2008). 

Recently, some authors have proposed a new 
approach to solve the problem of clustering 
categorical data by using RST and divisive technique 
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(Hassanein and Elmelegy, 2014; Herawan et al., 
2010; Jyoti, 2013; Mazlack et al., 2000; Parmar et al., 
2007). Its key principle is to choose the best category 
from many candidate categories to gradually divide 
the objects into clusters in each run. Specifically, 
Mazlack et al. (2000) proposed an algorithm that 
uses an index Total Roughness (TR) in RST to 
determine the clustering quality of the selected 
category, i.e., larger TR is better. Herawan et al. 
(2010) proposed another technique called Maximum 
Dependency Categories (MDA) which uses the 
dependency between categories in RST. Qin et al. 
(2012) argued that TR and MDA values are both 
determined mainly based on the number of elements 
in the lower approximation of a category for other 
categories; so, they often choose the same category 
as the clustering category in most cases. 

One of the most successful and pioneering 
clustering algorithms based on RST is the Minimum-
Minimum Roughness algorithm (MMR) proposed by 
Parmar et al. (2007). MMR, a top-down hierarchical 
clustering algorithm, uses Min-Roughness as the 
criterion to determine the clustering category at 
each iteration step. MMR allows handling 
uncertainty during the clustering of categorical data. 
However, MMR tends to choose the category with 
fewer values (Qin et al., 2012), i.e., if a category has 
only a single value, it is selected as a clustering 
category, resulting in the termination of clustering. 
Moreover, MMR chooses a leaf node that has more 
objects to split further, thus producing undesirable 
clustering results. 

In this paper, we propose an improved MMR 
algorithm called IMMR (Improved Minimum-
Minimum Roughness) to overcome the mentioned 
shortcomings. Besides the advantages of MMR, our 
proposed IMMR algorithm not only ignores all 
single-valued categories but also determines the 
next split node by considering the sum entropy of all 
categories on the nodes. Experimental results on 
actual data sets taken from UCI databases show that 
the IMMR algorithm can be used successfully in 
clustering analysis of categorical data with better 
clustering results. 

2. Related concepts 

A categorical data set can be represented as a 
table, where each row represents an object, case, or 
event, and each column represents a category, 
property, or a scale to be measured on each object. In 
RST, such a data table is called an information 
system. Formally, an information system is defined 
as follows. 

 
Definition 1: An information system is a quadruple 
tuple 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓), where 𝑈 is a non-empty finite 
set of objects, 𝐴 is a nonempty finite set of categories, 
𝑉 = ⋃ 𝑉𝑎𝑎∈𝐴  where 𝑉𝑎  is a set of all values of category 
𝑎, and 𝑓: 𝑈 × 𝐴 → 𝑉 is a function, called information 
function, that assigns value a 𝑓(𝑢, 𝑎) ∈ 𝑉𝑎  for every 
(𝑢, 𝑎) ∈ 𝑈 × 𝐴. 
 

Definition 2 Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information 
system, 𝐵 ⊆ 𝐴. Two elements 𝑥, 𝑦 ∈ 𝑈 is said to be 𝐵-
indiscernible in 𝑆 if and only if 𝑓(𝑥, 𝑎) = 𝑓(𝑦, 𝑎), for 
every 𝑎 ∈ 𝐵. 

 
We denote the indiscernibility relation induced 

by the set of categories 𝐵 by 𝐼𝑁𝐷(𝐵). Obviously, 
𝐼𝑁𝐷(𝐵) is an equivalence relation and it induces a 
unique partition (clustering) of 𝑈. The partition of 𝑈 
induced by 𝐼𝑁𝐷(𝐵) in 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) denoted by 𝑃𝐵  
and the equivalence class in the partition 𝑃𝐵  
containing 𝑥 ∈ 𝑈, denoted by [𝑥]𝐵 . 
 
Definition 3: Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information 
system, 𝐵 ⊆ 𝐴, and 𝑋 ⊆ 𝑈. The 𝐵-lower 
approximation of 𝑋, denoted by 𝐵(𝑋) and 𝐵-upper 

approximation of 𝑋, denoted by 𝐵(𝑋), respectively, 
are defined by:  
 
𝐵(𝑋) = {𝑥 ∈ 𝑈| [𝑥]𝐵 ⊆ 𝑋} 

 

and, 
 

𝐵(𝑋) = {𝑥 ∈ 𝑈| [𝑥]𝐵 ∩ 𝑋 ≠ ∅}.                                                 (1) 
 

These definitions state that object 𝑥 ∈ 𝐵𝑋 

certainly belongs to 𝑋, whereas object 𝑥 ∈ 𝐵𝑋 could 

belong to 𝑋. Obviously, there is 𝐵𝑋 ⊆ 𝑋 ⊆ 𝐵𝑋 and 𝑋 

is said to be definable if 𝐵𝑋 = 𝐵𝑋. Otherwise, 𝑋 is 

said to be rough with B-boundary 𝐵𝑁𝐵(𝑋) = 𝐵𝑋 −
𝐵𝑋. 

 
Definition 4: Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information 
system, 𝐵 ⊆ 𝐴, and 𝑋 ⊆ 𝑈. The accuracy of 
approximation of 𝑋 with respect to 𝐵 is defined as: 
 

𝛼𝐵(𝑋) =
|𝐵𝑋|

|𝐵𝑋|
                                                                                   (2) 

 

Throughout the paper, |𝑋| denotes the 
cardinality of 𝑋. 

Obviously, 0 ≤ 𝛼𝐵(𝑋) ≤ 1. If 𝛼𝐵(𝑋) = 1, then 

𝐵𝑋 = 𝐵𝑋. The 𝐵-boundary of 𝑋 is empty, and 𝑋 is 

crisp with respect to 𝐵. If 𝛼𝐵(𝑋) < 1, then 𝐵𝑋 ⊂ 𝐵𝑋. 
The 𝐵-boundary of 𝑋 is not empty, and 𝑋 is rough 
with respect to 𝐵.  
 
Definition 5: Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information 
system, 𝐵 ⊆ 𝐴, and 𝑋 ⊆ 𝑈. The roughness of 𝑋 with 
respect to 𝐵 is defined as: 
 

𝜌𝐵(𝑋) = 1 −
|𝐵(𝑋)|

|𝐵(𝑋)|
                                                                         (3) 

 

Definition 6: Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information 
system. For 𝑃, 𝑄 ⊆ 𝐴, it is said that 𝑄 depends on 𝑃 
in a degree 𝑘 (0 ≤ 𝑘 ≤ 1), denoted by 𝑃 ⟹𝑘 𝑄, if: 
 

𝑘 =
∑ |𝑃(𝑋)|𝑋∈𝑄

|𝑈|
                                                                                  (4) 

 

Definition 7: Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information 
system, 𝑋 ⊆ 𝐴 and 𝑃𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑚}. The entropy 
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of a partition 𝑃𝑋 is defined as: 
 
𝐸(𝑃𝑋) = − ∑ 𝑃(𝑋𝑖)log2𝑃(𝑋𝑖)𝑚

𝑖=1                                                (5) 
 

where 𝑃(𝑋𝑖) = |𝑋𝑖| |𝑈|⁄ , and we define 0log20 = 0. 
Entropy is a measure of the degree of confusion 
(uncertainty) about the value of a category 𝑎 in an 
information system S. The smallest possible value of 
entropy is 0, which occurs when all the column 
vector components corresponding to the category a 
in S are the same, i.e., Pr(𝑎 = 𝑖) = 1 and Pr(𝑎 = 𝑗) =
0 for all 𝑗 ≠ 𝑖. In other words, there is no disturbance 
in this column vector. The larger the value of 
entropy, the more disordered the column vector 
associated with a The maximum possible value of 
entropy is 𝑙𝑜𝑔2|𝑉𝑎|, which is obtained when Pr(𝑎) is 
uniformly distributed, i.e., Pr(𝑎 = 𝑖) = 1/𝑚 for all 
𝑖 ∈ 𝑉𝑎 . Entropy depends only on probability and not 
on the specific value of a. 

For the above reason, entropy has been used by 
many authors to determine how good a clustering 
operation is Ienco et al. (2012), Jyoti (2013), Parmar 
et al. (2007), and UCI (2013). Value entropy of a 
cluster of smaller extent smaller disturbances in 
clusters, i.e., clusters uniformity in increasingly large 
over. However, McCaffrey (2013) argued that it is 
uneasy to modify the entropy definition of a vector 
to apply to a cluster and a clustering result 
(essentially a set of tables or matrices). To evaluate 
the quality of a clustering, McCaffrey (2013) used the 
following definition. 

 
Definition 8: Given the clustered data set in the 
form of an information system 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓), a 
clustering operation 𝜋𝑎 = {𝑋1, 𝑋2, … , 𝑋𝑚} of the 
objects contained in U. The entropy of a cluster 𝑋𝑖  is 
determined by the sum of the entropy of each of the 
above categories 𝑋𝑖 . The entropy of clustering 𝜋𝑎  is 
defined as the weighted sum of the entropies of each 
cluster, where the weight of each cluster is its 
probability and equals Pr(𝑋𝑖) = |𝑋𝑖| |𝑈|⁄ . 

 
The lower the entropy of the clustering, the 

higher the clustering quality, in the sense that the 
similarity of objects in the same cluster is high and 
the similarity between clusters is low. 

3. MMR algorithm and its improved version 
IMMR 

3.1. MMR algorithm 

MMR is a top-down hierarchical clustering 
algorithm (Parmar et al., 2007). It is an iterative non-
inverting process that progressively dichotomizes 
the original set U of objects with the goal of 
achieving a better clustering result. The algorithm 
takes the number of clusters to collect 
predetermined k as input and will terminate when 
this number of clusters k is reached. At each 
iteration, the two basic tasks that a top-down 
hierarchical clustering algorithm must perform 
include: 

(1) Choose the best category from all candidate 
categories to partition the node to further bifurcate 
into equivalent classes. 
(2) Among the obtained equivalent classes, 
determine a class that becomes a cluster (leaf node), 
merge all remaining classes into a node for 
bifurcation in the next step. 
 

To perform the above two tasks, the MMR 
algorithm uses the roughness concept in the RST as 
presented in the following definitions. 

 
Definition 9: Mean-Roughness: Given a clustered 
data set in the form of an information system 𝑆 =
(𝑈, 𝐴, 𝑉, 𝑓), two categories 𝑎𝑖  and 𝑎𝑗  of A, 𝑎𝑗 ≠ 𝑎𝑖 . The 

category mean rawness for the category 𝑎𝑖  against 
the category 𝑎𝑗 , denoted by 𝑅𝑜𝑢𝑔ℎ𝑎𝑗

(𝑎𝑖), is defined 

as follows (Parmar et al., 2007): 
 

𝑅𝑜𝑢𝑔ℎ𝑎𝑗
(𝑎𝑖) =

∑ 𝜌𝑎𝑗
(𝑋)𝑋∈𝑈 𝐼𝑛𝑑{𝑎𝑖}⁄

|𝑈 𝐼𝑛𝑑{𝑎𝑖}⁄ |
                                                (6) 

 

Which |𝑈 𝐼𝑛𝑑{𝑎𝑖}⁄ | is the equivalent class in the 
partition 𝑈 𝐼𝑛𝑑{𝑎𝑖}⁄ , 𝜌𝑎𝑗

(𝑋) is the roughness of each 

class X in 𝑈 𝐼𝑛𝑑{𝑎𝑖}⁄  for category 𝑎𝑗  is determined 

with formula 3, specifically: 
 

𝜌𝑎𝑗
(𝑋) = 1 − 𝛼𝑎𝑗

(𝑋) = 1 −
|𝑎𝑗𝑋|

|𝑎𝑗𝑋|
.       

 

The 𝑅𝑜𝑢𝑔ℎ𝑎𝑗
(𝑎𝑖) smaller the value, the higher the 

similarity degree of the category 𝑎𝑗  among the 

objects generated by 𝑎𝑖  in each class. 
 
Definition 10: Min-Mean-Roughness: Given the 
clustered data set in the form of information system 
𝑆 = (𝑈, 𝐴, 𝑉, 𝑓), category 𝑎𝑖 ∈ 𝐴. The minimum 
mean-roughness of the category 𝑎𝑖  for each category 
𝑎𝑗 ∈ 𝐴, 𝑎𝑗 ≠ 𝑎𝑖 , denoted by 𝑀𝑅(𝑎𝑖), is determined by 

(Parmar et al., 2007): 
 

𝑀𝑅(𝑎𝑖) = min
𝑎𝑗∈𝐴∧𝑎𝑗≠𝑎𝑖

{𝑅𝑜𝑢𝑔ℎ𝑎𝑗
(𝑎𝑖)}                                        (7) 

 

Definition 11: Min-Min-Mean-Roughness: Given the 
clustered data set in the form of an information 
system 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓). The minimum value of the 
mean minimum roughness, denoted MMR, is defined 
as follows (Bello and Falcon, 2017): 
 
𝑀𝑀𝑅 = min

𝑎𝑖∈𝐴
{𝑀𝑅(𝑎𝑖)}.                                                                 (8) 

 
In each iteration, the MMR algorithm chooses the 

category 𝑎 ∈ 𝐴 for the smallest MR as the partition 
category, specifically, 
 

𝑎 = argmin𝑎𝑗∈𝐴{𝑀𝑅(𝑎𝑗)} 

 

After the partition category, a is determined, X is 
then dichotomized as follows: 
 
 Identify partition of X on a by solving 
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𝑋 𝐼𝑛𝑑(𝑎) = {𝑋1, … , 𝑋𝑠},⁄  
 For each equivalent class 𝑋𝑟 , sum the roughness 

for each category 𝑎𝑗 ∈ 𝐴, 𝑎𝑗 ≠ 𝑎 by: 
 

𝐴𝜌(𝑋𝑟) = ∑ 𝜌𝑎𝑗
(𝑋𝑟)

𝑎𝑗∈𝐴∧𝑎𝑗≠𝑎

 

 

 Take the class with the smallest value 𝐴𝜌 as a 
cluster (leaf) and the union of the remaining 
classes as a node for bifurcation in the next step. 

 
Though MMR is considered as one of the 

successful and pioneering RST clustering algorithms, 
it still has certain shortcomings as mentioned in the 
previous section; specifically, (1) MMR tends to 
choose the category with fewer values (Qin et al., 
2012), and (2) MMR chooses a leaf node that has 
more objects to split further, thus producing 
undesirable clustering results. To overcome the 
above limitations, it can be further improved as 
follows.  

3.2. Improved algorithm IMMR  

To overcome the first limitation, at each step of 
the iterative process, before performing the 
computations to determine the best dichotomous 
category, we need to remove all the single-valued 
categories, i.e., remove all categories for the node 
partition to be split consisting of only a single class. 
And, to deal with the second one, we need to 
determine which node to be further dichotomized by 
considering the sum of the entropy of all the 
categories on each node as presented in Definition 8. 
The following example is used as an illustration. 
 
Example: Consider the information system in Table 
1 and we need to group these into 3 clusters (k=3). 

 
Table 1: Information systems 

U a1 a2 
1 Medium F 
2 Small F 
3 Small T 
4 Small T 
5 Small T 
6 Big T 

 

At the first step, both MMR and IMMR algorithms 
take all internal objects U as nodes to 
be dichotomized, and determine the best partition 
category as the one that gives the smallest MR value 
(Definition 11); we have: 
 

𝑈 𝑎1⁄ = {{1}, {2,3,4,5}, {6}} ;  𝑈 𝑎2⁄ = {{1,2}, {3,4,5,6}} ;  

𝑅𝑜𝑢𝑔ℎa2(𝑎1) = 1, 𝑀𝑅(𝑎1) = 1,  𝑀𝑀𝑅(𝑎1) = 1;  
𝑅𝑜𝑢𝑔ℎa1(a2) = 4 5⁄ , 𝑀𝑅(𝑎2) = 4 5⁄ ,  𝑀𝑀𝑅(𝑎2) = 4 5⁄ .  
 

Since 𝑀𝑀𝑅(𝑎2) < 𝑀𝑀𝑅(𝑎1), category a2 is taken 
by both algorithms as the first partition category. 
Thus, two nodes 𝑋1 = {𝑢 ∈ 𝑈|𝑎2 = 𝐹} = {1,2} and 
𝑋2 = {𝑢 ∈ 𝑈|𝑎2 = 𝑇} = {3,4,5,6} are created. Then, 
because the leaf node MMR algorithm has more 
objects to further dichotomized, the next bifurcation 

node chosen by the MMR is 𝑋2 = {3,4,5,6}. 
In the second step, the selected partition category 

is a1. The final clustering result of MMR can be 
represented as a tree in Fig. 1. 

 

U

{1,2} {3,4,5,6}

a2 = F a2 = T

{3,4,5} {6}

a1 = Small a1 = Big

 
Fig. 1: Clustering result by MMR algorithm 

 

Now, we determine the bifurcation node in the 
second step by IMMR, i.e., we consider the sum of the 
entropy of all categories on the nodes, denoted by 
TENT: 
 
TENT(𝑋1) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑡𝑡1 | 𝑋1) + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑡𝑡2 | 𝑋1) 

= − (
1

2
× 𝑙𝑜𝑔2

1

2
+

1

2
× 𝑙𝑜𝑔2

1

2
) − (1 × 𝑙𝑜𝑔21) = 1.  

TENT(𝑋2) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑡𝑡1 | 𝑋2) + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑡𝑡2 | 𝑋2) 

= − (
3

4
× 𝑙𝑜𝑔2

3

4
+

1

4
× 𝑙𝑜𝑔2

1

4
) − (1 × 𝑙𝑜𝑔21) = 0.8113. 

 

The node 𝑋1 = {1,2} has a greater value of 
TENT, so it is selected as the node to be 
dichotomized. Thus, dichotomizing X1 according to 
a1 gives the final clustering result presented in the 
form of a tree in Fig. 2. 

 

U

{1,2} {3,4,5,6}

a2 = F a2 = T

{1} {2}

a1 = Medium a1 = Small

 
Fig. 2: Clustering result by IMMR algorithm 
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Let's evaluate the performance of the two 
clustering algorithms according to Definition 8. 

With k=3, MMR results in clusters {{1,2}, {3,4,5}, 
{6}}. The total entropy of the category of each cluster 
is: 
 
𝑇𝐸𝑁𝑇({1,2}) = 1,  

𝑇𝐸𝑁𝑇({3,4,5}) = −((1 × 𝑙𝑜𝑔21) + (1 × 𝑙𝑜𝑔21)) = 0, 

𝑇𝐸𝑁𝑇({6}) = −((1 × 𝑙𝑜𝑔21) + (1 × 𝑙𝑜𝑔21)) = 0.  

 

The WSTENT-weighted sum of the entropies of 
the 3 clusters is determined by: 
 

𝑊𝑆𝑇𝐸𝑁𝑇({1,2}, {3,4,5}, {6}) =  
1

3
𝑇𝐸𝑁𝑇({1,2}) +

1

2
+

 𝑇𝐸𝑁𝑇({3,4,5}) +
1

6
𝑇𝐸𝑁𝑇({6}) =

1

3
.  

 

Three clusters by IMMR as shown in Fig. 2 is 
{{3,4,5,6}, {1}, {2}}. The total entropy of the category 
of each cluster and the weighted sum of the 
entropies of the 3 clusters are respectively 
determined by: 
 
𝑇𝐸𝑁𝑇{1} = 0, 𝑇𝐸𝑁𝑇{2} = 0, 𝑇𝐸𝑁𝑇{3,4,5,6} =  0.3113  

𝑊𝑆𝑇𝐸𝑁𝑇({1}, {2}, {3,4,5,6}) =
1

6
𝑇𝐸𝑁𝑇{1} + 

1

6
𝑇𝐸𝑁𝑇{2} +

4

6
𝑇𝐸𝑁𝑇{3,4,5,6} =  0.2075.  

 

Based on the values of 𝑊𝑆𝑇𝐸𝑁𝑇, we can conclude 
that the clustering of IMMR is better than that of 
MMR. 

Generally, the proposed IMMR algorithm can be 
coded as the following: 
 
Procedure IMMR(U,k) 
Begin 
set current number of cluster 𝐶𝑁𝐶 = 1 //number of 
existing clusters 
set 𝐶𝑁𝑜𝑑𝑒 = 𝑈//CNnode denotes numbers of nodes to 
be dichotomized 
while (𝐶𝑁𝐶 < 𝑘) do 
B=A 
for each 𝑎𝑖 ∈ 𝐴 
Partition 𝐶𝑁𝑜𝑑𝑒 𝐼𝑛𝑑{𝑎𝑖}⁄  
If |𝐶𝑁𝑜𝑑𝑒 𝐼𝑛𝑑{𝑎𝑖}⁄ | = 1//every instance in CNode has 
the same value of 𝑎𝑖 
B=B-𝑎𝑖// remove category 𝑎𝑖 
end if 
end 
//Proceed to partition the node CNode 
For each 𝑎𝑖 ∈ 𝐵 
Calculate 𝐶𝑁𝑜𝑑𝑒 𝐼𝑛𝑑{𝑎𝑖}⁄  
end 
For each 𝑎𝑗 ∈ 𝐵 

Calculate 𝑅𝑜𝑢𝑔ℎ𝑎𝑗
(𝑎𝑖) 

end 

Determine 𝑀𝑅(𝑎𝑖) =  𝑀𝑖𝑛𝑎𝑗∈𝐴 {𝑅𝑜𝑢𝑔ℎ𝑎𝑗
(𝑎𝑖)} 

Determine category 𝑎 ∈ 𝐵 satisfying 𝑎 =
𝑎𝑟𝑔𝑚𝑖𝑛𝑎𝑗∈𝐴{𝑀𝑅(𝑎𝑗)} 

Partition based on the category a 
CNC=CNC+1 
If CNC<k then 
CNode=leaf node with the smallest total entropy of the 
categories 
end if 
end while 
end 
 

Assuming that the given data set has n objects, m 
categories, k is an assigned number of clusters and l 
is the maximum value of the possible category 
domains, then, to group objects into k clusters, the 
MMR algorithm needs to perform k-1 iterations. At 
each iteration, the time to find the partition of the 
categories is mn, the time to calculate the mean 
roughness is m2l, the time to calculate the MR and 
MMR is 2m, the time to compute the entropy of the 
categories is m. Therefore, the time complexity of 
IMMR is polynomial and is determined with 
O(knm+km2l). 

3.3. Performance evaluation 

Evaluation of clustering quality is often a difficult 
and subjective task (Ienco et al., 2012; Parmar et al., 
2007). In this paper, we use the index called Overall 
purity proposed by Parmar et al. (2007) as it is an 
external criterion, a simple and easily accepted 
evaluation criterion (Ienco et al., 2012). It evaluates 
the clustering quality of a clustering result against 
the actual data set, where each object is preceded by 
a particular class label. Using information about the 
actual class labels and information about the cluster 
labels to which the objects are clustered by the 
algorithm, it evaluates how well the clustering 
results match with the initially given classes. 

Assuming that a data set includes an actual object 
that needs to be classified into k classes {c1, c2, …, 
ck} and k clusters {ω1, ω2, …, ωk}. Let ni denote the 
number of objects that have been grouped into the 
cluster ωi, nij denotes the number of objects 
belonging to the cluster ωi with class labels cj in the 
set of known class labels. 

Cluster purity ω𝑖  is defined as the ratio between 
the number of objects ω𝑖  in the dominant class label 
and the number of objects 𝑛𝑖: 
 

𝑃𝑢𝑟𝑖𝑡𝑦(ω𝑖) =
1

𝑛𝑖
𝑚𝑎𝑥𝑗(𝑛𝑖𝑗) 

 

Overall purity is defined as the proportion of 
properly classified objects among all the objects 
present in the data set, i.e., 
 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑝𝑢𝑟𝑖𝑡𝑦 =  
∑ 𝑚𝑎𝑥𝑗(𝑛𝑖𝑗)𝑘

𝑖=1

𝑛
 

 

The Overall purity has a range of [0,1]. The higher 
the Overall purity, the better the quality of the 
clustering result. A perfect clustering gives an 
Overall purity value of 1. The Overall purity 
increases as the number of clusters increases. In 
particular, the Overall purity is 1 if each cluster 
consists of only one object. 

To calculate the Overall purity, we first create a 
confusion matrix as shown in Table 2, by browsing 
through each phrase ωi and count how many objects 
belong to each class cj. Then, from each row for each 
cluster ωi, we select the maximum value, sum them 
together and finally get the total divided by the 
number of all objects in the data set. 
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Table 2: Confusion matrix 

 
𝑐1 𝑐2 … 𝑐𝑘 

 
𝜔1 𝑛11 𝑛12 … 𝑛1𝑘 𝑛1 
𝜔2 𝑛21 𝑛22 

 
𝑛2𝑘 𝑛2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
𝜔𝑘 𝑛𝑘1 𝑛𝑘2 

 
𝑛𝑘𝑘 𝑛𝑘 

4. Experimental results 

4.1. Computational environment  

All necessary experimental calculations were 
performed on an Intel computer with Intel core 2, 
Quad@2.4 GHz, 2GB RAM, 160GB HDD. IMMR and 
MMR algorithms are developed in the R environment 
with the support of the RoughSets package. 

4.2. Experimental data sets of calculation results 

We conducted an IMMR test with real datasets, 
including Zoo, Mushroom, and Car Evaluation taken 

from the UCI machine learning dataset (UCI, 2013) 
and compared the clustering results obtained against 
the results given by MMR. Information about these 
datasets and the calculation results is as follows: 

Zoo dataset 
The Zoo dataset contains 101 objects; each object 

belongs to an animal species, described by 18 
taxonomic categories. Subjects were pre-classified 
into seven classes (mammals, birds, etc.). Since each 
animal belongs to one of the seven classes, Parmar et 
al. (2007) tested for MMR the number of clusters to 
collect 𝑘 = 7. The clustering results given by MMR 
on the Zoo dataset are summarized in Table 3. 
Out of 101 objects, there are 3+39+1+13+10+6 
+20=92 clustering objects with majority class labels, 
so the Overall purity of the clustering result is given 
by the MMR algorithm is 92/101=91%. 

Also with the Zoo dataset, the clustering result 
with our proposed IMMR is shown in Table 4. 

 
Table 3: Results of clustering by MMR for Zoo dataset 

Clusters 
found 

Allocate objects in classes 
Purity 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 
Cluster 1 0 0 3 0 3 0 0 0.50 
Cluster 2 39 0 0 0 0 0 0 1.00 
Cluster 3 0 0 1 0 1 0 0 0.50 
Cluster 4 0 0 1 13 0 0 0 0.93 
Cluster 5 0 0 0 0 0 2 10 0.83 
Cluster 6 2 0 0 0 0 6 0 0.75 
Cluster 7 20 0 0 0 0 0 0 1.00 

 
Table 4: Results of clustering by IMMR for Zoo dataset 

Clusters 
found 

Allocate objects in classes 
Purity 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 
Cluster 1 41 0 0 0 0 0 0 1.00 
Cluster 2 0 20 0 0 0 0 0 1.00 
Cluster 3 0 0 0 0 0 8 3 0.73 
Cluster 4 0 0 0 0 0 0 7 1.00 
Cluster 5 0 0 1 13 0 0 0 0.93 
Cluster 6 0 0 3 0 4 0 0 0.57 
Cluster 7 0 0 1 0 0 0 0 1.00 

 

With IMMR, out of 101 objects, there are 
41+20+8+7+13+4+1=94 objects clustered with 
majority class labels, so the overall purity of the 
clustering results given by IMMR is 94/101=93%. 
Thus, the Overall purity by IMMR is 2% higher than 
that by MMR. 

Mushrooms dataset 
The Mushroom dataset contains 8124 objects, 

where each object contains information about a 
mushroom. Mushroom has 22 taxonomic properties, 
each corresponding to a physical characteristic of the 
fungus. Each subject belonged to one of two types 
of mushrooms: Edible (4208 subjects) and 
poisonous (3916 subjects). Parmar et al. (2007) 
tested the MMR algorithm on the Mushroom dataset 
with 20 clusters (k=20). Their test resulted in an 
overall purity of 84%. Table 5 briefly shows the 
clustering results by our proposed IMMR.  

Out of 8124 objects, there are 7386 objects 
belonging to the majority class label. Therefore, the 
Overall purity of clustering by IMMR is 

7386/8124=91%, indicating that the Overall purity 
by IMMR is 7% higher than that by MMR. 

Car evaluation dataset 
The Car evaluation dataset has 1728 objects. Each 

object is described by 6 categorical categories and 
can belong to four classes: unacc (1210 objects), acc 
(384 objects), good (69 objects, and v-good (65 
objects). The MMR algorithm results in an overall 
purity of 70%, whereas our proposed IMMR results 
in an overall purity of 72% as shown in Table 6. 

The experimental results on the above actual 
data sets show that the IMMR algorithm gives better 
clustering results than the MMR algorithm.  

5. Conclusion 

Most algorithms clustering categorical data fail to 
handle the uncertainty in the data sets. To overcome 
such shortcomings, we propose an improved version 
of the MMR algorithm by removing all the single-
valued categories before clustering and considering 
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the sum of the entropy of all the categories on each 
node to determine which node needs further 
dichotomized. The experimental results with actual 
datasets show that our proposed algorithm IMMR 

gives better clustering results than the MMR 
algorithm, indicating that IMMR can be used 
successfully in the clustering of categorical data. 

 
Table 5: IMMR clustering results for the Mushroom dataset 

Clusters 
found 

Allocate instances in classes 
Purity 

Class 1 Class 2 
Cluster 1 192 18 0.9143 
Cluster 2 0 8 1.000 
Cluster 3 0 18 1.000 
Cluster 4 528 72 0.8800 
Cluster 5 2528 552 0.8210 
Cluster 6 816 96 0.8947 
Cluster 7 0 1296 1.000 
Cluster 8 0 1728 1.000 
Cluster 9 0 32 1.000 

Cluster 10 0 96 1.000 
Cluster 11 48 0 1.000 
Cluster 12 32 0 1.000 
Cluster 13 32 0 1.000 
Cluster 14 16 0 1.000 
Cluster 15 4 0 1.000 
Cluster 16 4 0 1.000 
Cluster 17 4 0 1.000 
Cluster 18 2 0 1.000 
Cluster 19 1 0 1.000 
Cluster 20 0 1 1.000 

 
Table 6: IMMR clustering results for the Car Evaluation 

dataset 
Clusters 

found 
Allocate objects in classes 

Purity 
Class 1 Class 2 Class 3 Class 4 

Cluster 1 0 0 576 0 1.00 
Cluster 2 198 36 312 30 0.54 
Cluster 3 45 9 138 0 0.72 
Cluster 4 141 24 219 0 0.66 
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