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1. Introduction 

*The numerical approximation of eigenvalues 
corresponding to the family of matrices plays a vital 
role in science and engineering. For instance, the 
largest eigenvalue computed by the power method 
corresponding to Leslie matrix describes the long 
term growth rate of population. Besides, the 
vibration frequencies are described with the help of 
eigenvalues of matrices appearing in structural 
mechanics, and the eigenvalues are the measure of 
data variance that can be used for dimensional 
reduction in multivariate data analysis. 

The eigenvalues are roots of the characteristic 
polynomial. The roots are computable by using 
iterative methods. The class of matrices governing 
from real systems possesses uncertainties and the 
computation of properties for such matrices in 𝑁𝑃 −
ℎ𝑎𝑟𝑑 (Nemirovskii, 1993; Braatz et al., 1994). 

The 𝜇 −value is a well known MATLAB Tool 
available in MATLAB Control Tool Box (Doyle, 1982; 
Safonov, 1982; Safonov and Doyle, 1984) and has 
been used to discuss the stability, instability, 
performance, and robustness of feedback system in 
linear control. The numerical methods (Packard et 
al., 1988; Fan and Tits, 1986; Packard and Doyle, 
1993) are used to approximate bounds of 𝜇 −value 
but unfortunately the computation of its exact value 
is 𝑁𝑃 − ℎ𝑎𝑟𝑑 (Braatz et al., 1994). 
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The class of positive matrices like level symmetric 
matrices and Hermitian positive definite matrices 
are widely used in mathematics and in various 
applications of engineering. For instance, computer 
vision (Nemirovskii, 1993), the mechine learning 
(Kishida and Braatz, 2014) and in the area of convex 
optimization (Braatz et al., 1994). The Linear Matrix 
Inequality (LMI) technique based on the positive 
definiteness nature of matrix is widely used to study 
the stability analysis of feedback systems in linear 
control. In control, however, various control systems 
are designed on the top of state-space models, which 
are symmetric in nature; this includes power 
networks and an electrical network (Doyle, 1982). 

The algorithm provides tighter lower bounds for 
𝜇 −values when real uncertainties are under 
consideration (Dailey, 1990). The proposed 
algorithm is based on simple operation of matrix 
algebra, and it iterates with respect to only one 
variable, which returns not only the size of the worst 
case parameter but also its actual values. In 
Karamancıoğlu and Kasimbeyli (2011), a non-linear 
programming technique is introduced to 
approximate the tighter lower bounds of real 
𝜇 −values. The real structured singular value 
problem (RSSV) is formulated as a non-linear 
programming problem, which is then solved by 
making use of the F-modified sub-gradient (F-MSG) 
technique to compute lower bounds of structured 
singular value. The F-MSG algorithm solves a large 
class of non-convex optimization problems without 
making use of differentiability. 

In Kim et al. (2009), a geometrical approach is 
introduced to approximate the lower bounds of 
𝜇 −values for pure real repeated perturbations. The 
problem formulation appears in the sense that the 
resulting parametric search space does not depend 
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on the fact that how many times the parameter is 
repeated in a structured perturbation matrix. 

In Fabrizi et al. (2014), a detailed comparison of 
the developed numerical method is presented. Each 
listed numerical method in Fabrizi et al. (2014) 
approximates and gives improved results for lower 
bounds of 𝜇 −values. 

A Gain-Based lower bound algorithm is presented 
in Seiler et al. (2010); to compute lower bounds of 
𝜇 −values. The Gain-Based lower bound algorithm 
takes both real and mixed perturbation along with 
the given matrix whose 𝜇 −values computations are 
under consideration. The key idea of this algorithm 
is to make use of worst-case gain problems in order 
to approximate the real perturbation, and it uses a 
standard power algorithm to compute the complex 
perturbation. 

In Rehman et al. (2019), the lower bounds of 
𝜇 −values are approximated by making use of low 
rank ODEs based technique. The proposed 
methodology is based on two level algorithm, the 
inner-outer algorithm. The proposed iterative 
method approximated tighter lower bounds of 
𝜇 −values when compared with the well-known 
MATLAB function MUSSV in most cases. 

This manuscript is organized as Section 2 consists 
of mathematical preliminaries, which includes a 
basic definition of the spectrum, pseudo-spectra, and 
𝜇 −values. In Section 3 we present our methodology, 
which consists of the decomposition of uncertainty 
from a set of block diagonal matrices into a block 
diagonal matrices that have identities matrices along 
with principle diagonal. Section 4 summarizes our 
findings.  

2. Mathematical preliminaries 

The real and complex 𝑛 dimensional matrices are 
denoted by K𝑛,𝑛 with K = C (𝑜𝑟 R). The real and 
complex scalars are denoted by 𝐾 = C (𝑜𝑟 R). The 
complex vectors are denoted by Cn. 

For a complex matrix 𝑀, 𝑀∗ denotes the complex 
conjugate transpose. The 𝑛 × 𝑛 identity matrix is 
denoted by 𝐼𝑛 with 𝑛 representing its dimensions. 

The spectrum of a matrix is represented with 
notation Λ(⋅) while Λ𝜖(⋅) represents the 𝜖-
pseudospectrum of a matrix (⋅). The notation ∥⋅∥ 
represents the norm of a matrix or vector. The 
notations 𝐁 and 𝐁∗ denote the set of block diagonal 
matrices having mixed real and complex 
uncertainties and pure complex uncertainties, 
respectively. 𝜌(⋅) denotes the spectral radius of a 
matrix (⋅). 

 
Definition 2.1: The set of eigenvalues of an n-
dimensional complex matrix M ∈ 𝐊n,n with 𝐊 = 𝐂 is 
defined as: 
 
Λ(𝑀) = {𝜆 ∈ 𝐂: 𝑑𝑒𝑡(𝑀 − 𝜆𝐼) = 0}.                                          (1) 
 

Definition 2.2: The ϵ-pseudospectrum of a complex 
valued matrix M ∈ 𝐂𝐧,𝐧 with a small parameter ϵ > 0 
is defined as. 

Λ𝜖(𝑀):= {𝜆 ∈ 𝐂: |
1

(𝑀−𝜆𝐼)
| ≥

1

𝜖
}.                                                (2) 

 

Definition 2.3: For ϵ > 0, a scalar λ ∈ 𝐂(or 𝐑) 
belongs to the ϵ-pseudo-spectrum of M ∈ 𝐂n,n and 
satisfies the following properties. 
 
1. 𝜆 ∈ Λ(𝑀 + 𝐸) where 𝜖 ≥∥ 𝐸 ∥ with 𝐸 representing 
some perturbation to 𝑀.  
2. ∃ 𝑣 ∈ 𝐂𝐧,𝟏 such that ∥ 𝑣 ∥= 1 and 𝜖 ≥∥ 𝑀𝑣 − 𝜆𝑣 ∥.  

3. 𝜆 ∈ 𝜌(𝑀) and 𝜖−1 ≤∥
1

(𝑀−𝜆𝐼)
∥.  

 
Definition 2.4: The set of block diagonal matrices 
with mixed real and complex uncertainties is defined 
by: 
 
𝐁 = {𝑑𝑖𝑎𝑔(𝛿𝑖𝐼𝑖 , Δ𝑗): 𝛿𝑖 ∈ 𝐊, Δ𝑗 ∈ 𝐊𝑚𝑗,𝑚𝑗}.                              (3) 

 
Definition 2.5: The set of block diagonal matrices 
with pure complex uncertainties is defined as: 
 
𝐁∗ = {𝑑𝑖𝑎𝑔(𝛿𝑖𝐼𝑖 , Δ𝑗): 𝛿𝑖 ∈ 𝐂, Δ𝑗 ∈ 𝐂𝑚𝑗,𝑚𝑗}.                             (4) 

 
Definition 2.6: For M ∈ 𝐂𝐧,𝐧 and 𝐁, the μ −value is 
defined as: 

  

𝜇𝐁(𝑀) = {

0    if    𝑑𝑒𝑡(𝐼 − 𝑀Δ) ≠ 0,    ∀ Δ ∈ 𝐁

(𝑚𝑖𝑛{∥ Δ ∥2: 𝑑𝑒𝑡(𝐼 − 𝑀Δ) = 0,    ∀ Δ ∈ 𝐁})−1,    elsewhere,                                          (5) 

  
 

where ∥ Δ ∥2 denotes the largest singular value of an 
admissible perturbation Δ ∈ 𝐁 and 𝑑𝑒𝑡(⋅) denotes 
the determinant of matrix (⋅). 

Definition 2.7: For M ∈ 𝐂n,n and 𝐁∗, the μ −value is 
defined as: 

  

𝜇𝐁∗(𝑀) = {

0    if    𝜌(𝑀Δ) ≠ 1,    ∀ Δ ∈ 𝐁∗

(𝑚𝑖𝑛Δ{∥ Δ ∥2: 𝜌(𝑀Δ) = 1,    ∀ Δ ∈ 𝐁∗})−1, elsewhere.            (6) 

  
 

3. Computing structured singular values 

In this section, we present an analytical approach 
for the computation of lower bounds of 𝜇 −values. 
The proposed methodology is based on the idea of 

factorizing the set of a block of diagonal 
uncertainties into diagonal matrices having identity 
matrices along principal diagonal. Furthermore, the 
proposed methodology involves the computation of 



Rehman et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 125-129 

127 
 

spectral and numerical radii of a given matrix, which 
in turn computes the lower bounds of 𝜇 −values. 
 
Definition 3.1: The modified block diagonal matrix 
is denoted by B and is defined as: 
 
𝐵 = 𝑑𝑖𝑎𝑔(𝐴1, 𝐴2, ⋯ , 𝐴𝑛)𝑑𝑖𝑎𝑔(𝐴1

−1, 𝐴2
−1, ⋯ , 𝐴𝑛

−1)
= 𝑑𝑖𝑎𝑔(𝐼1, 𝐼2, ⋯ , 𝐼𝑛), 

 
with each 𝐼𝑖 ∀ 𝑖 = 1: 𝑛 possess the same dimension.  
Definition 3.2: The spectrum of a matrix M is 
denoted by σ(M) and is defined as: 
 
𝜎(𝑀) = {𝜆𝑖: 𝜆𝑖  isaneigenvalue}.                                                (7) 

 
Definition 3.3: A matrix M is called a Stochastic 
matrix iff bM = b with b being a row vector of once. 
The vector bt is an eigenvector of Mt corresponding 
to an eigenvalue λ ∈ σ(M) with |λ| = 1.  
 

Let Γ𝑛 be a space of 𝑛 dimensional complex 
matrices and let 𝐻𝑛 be a space of 𝑛 dimensional 
Hermitian matrices. Let 𝐶𝑛 be a unit vector. 

 
Definition 3.4: The numerical range W(A) for A ∈
Γn is defined as: 
 
𝑊(𝐴) = {𝑢∗𝐴𝑢: 𝑢 ∈ 𝐂𝑛, ∥ 𝑢 ∥2= 1}.                                         (8) 

 
Definition 3.5: The numerical radius r(A) of A ∈ Γn 
is defined as: 
 
𝑟(𝐴) = 𝑚𝑎𝑥{𝑅𝑒(𝑣∗𝑢∗𝐴𝑢): 𝑣 ∈ 𝐂, ∥ 𝑣 ∥= 1,    ∥ 𝑢 ∥2=
1    for 𝑢 ∈ 𝐂𝑛},                                                                               (9) 

 
where 𝑣 ∈ 𝐂 with ∥ 𝑣 ∥= 1 is a scalar on the unite 
circle �̂�.  

For 𝐵 = 𝑑𝑖𝑎𝑔(𝛿1�̂�1, 𝛿2�̂�2,⋯ , 𝛿𝑛�̂�𝑛) we assume 

that each 𝛿𝑖�̂�𝑖 , ∀ 𝑖 = 1: 𝑛, 𝛿𝑛 ∈ 𝐂 (𝐑), �̂�𝑖 ∈ 𝐂𝐧,𝐧(𝐑𝐧,𝐧) 
are invertible matrices. From here and onwards, we 

shall write 𝛿𝑖�̂�𝑖 = 𝐴𝑖 ∀ 𝑖 = 1: 𝑛. Theorem 3.6 
computes a block diagonal matrix having identity 
matrices along its principal diagonal. This idea helps 
in order to compute the spectral and numerical radii 
for a given matrix rather than computing these 
mathematical quantities for the product of a given 
matrix with admissible perturbation.  

 
Theorem 3.6: Let A and B be n-dimensional square 
matrices which are identically partitioned into block 
diagonal matrices: 
 
𝐴 = 𝑑𝑖𝑎𝑔(𝛿1𝐴1, 𝛿2𝐴2, ⋯ , 𝛿𝑛𝐴𝑛),    𝐵 =
𝑑𝑖𝑎𝑔(𝛿1𝐵1, 𝛿2𝐵2, ⋯ , 𝛿𝑛𝐵𝑛),    𝛿𝑖 ∈ 𝐂(𝐑)    ∀ 𝑖 = 1: 𝑛.        (10) 

 
The product  
 

𝐴𝐵 = 𝑑𝑖𝑎𝑔(𝛿1𝐴1, 𝛿2𝐴2, ⋯ , 𝛿𝑛𝐴𝑛)𝑑𝑖𝑎𝑔(𝛿1𝐵1, 𝛿2𝐵2, ⋯ , 𝛿𝑛𝐵𝑛)  
 

is a block diagonal matrix 𝐶 =
𝑑𝑖𝑎𝑔(𝛿1𝐶1, 𝛿2𝐶2, ⋯ , 𝛿𝑛𝐶𝑛), which is identically 
partitioned to block diagonal matrices. Thus in 𝐶 
each 𝐶𝑘 = 𝐴𝑘𝐵𝑘    ∀ 𝑘 = 1: 𝑛.  

Proof: As block diagonal matrices 𝑑𝑖𝑎𝑔(𝛿𝑖𝐴𝑖) ∀ 𝑖 =
1: 𝑛 and 𝑑𝑖𝑎𝑔(𝛿𝑖𝐵𝑖) ∀ 𝑖 = 1: 𝑛 are identically 
partitioned, which in turn implies that each of these 
block diagonal matrices possesses 𝑘 number of 
columns and 𝑘 number of rows. Partitioning of block 
diagonal matrices can be presented while making 
use of some non-zero vector �⃗�  having the length 𝑘 +
1. In such a situation 𝐴𝑘, 𝐵𝑘 ∀ 𝑘 = 1: 𝑛 possesses 
(𝑢𝑘+1 − 𝑢𝑘) number of non-zero columns and rows. 

Since the 𝑑𝑖𝑎𝑔(𝛿𝑖𝐴𝑖)𝑑𝑖𝑎𝑔(𝛿𝑖𝐵𝑖) =
𝑑𝑖𝑎𝑔(𝛿𝑖𝐶𝑖) ∀ 𝑖 = 1: 𝑛 which means that 
𝑑𝑖𝑎𝑔(𝛿𝑖𝐶𝑖) ∀ 𝑖 = 1: 𝑛 can be described in terms of 
block diagonal matrix, which possesses 𝑘 number of 
non-zero columns and rows. The matrix 𝐶 is 
partitioned as 𝐶 = [𝐶1, 𝐶2, ⋯ , 𝐶𝑘] with 𝐶1, 𝐶2, ⋯ , 𝐶𝑘 
being 𝑘 columns of 𝐶. The submatrices 𝐶𝑘𝛽 in 𝐶, 

takes the form, 
 
𝐶𝑘𝛽 = ∑𝑘

𝑟=1 𝐴𝑘𝑟𝐵𝑟𝛽 .                                                                   (11) 

 
In turn, this implies that, 
 
𝐶𝑘𝛽 = ∑𝑘−1

𝑟=1 𝐴𝑘𝑟𝐵𝑟𝛽 + 𝐴𝑘𝑘𝐵𝑘𝛽 +

∑𝑘
𝑟=𝑘+1 𝐴𝑘𝑟𝐵𝑟𝛽     with    𝑟 ≠ 𝑘.                                                (12) 

 
As 𝐴𝑘𝑟 = 0 is a null-matrix. This is because the 

matrix 𝐴 is a block diagonal matrix. Thus,  
 
𝐶𝑘𝛽 = 𝐴𝑘𝑘𝐵𝑘𝛽 = 0.                                                                     (13) 

 
On the other hand 𝐵𝑘𝛽 = 0 as 𝑘 ≠ 𝛽. This shows 

that, 
 
𝐶𝑘𝑘 = 𝐴𝑘𝑘𝐵𝑘𝛽     or  𝐶𝑘 = 𝐴𝑘𝐵𝑘 ,                                              (14) 

 
it indicates that, 
 
𝑑𝑖𝑎𝑔(𝛿𝑖𝐶𝑖) = 𝑑𝑖𝑔(𝛿𝑖𝐴𝑖)𝑑𝑖𝑎𝑔(𝛿𝑖𝐵𝑖), ∀ 𝑖 = 1: 𝑛.                (15) 

 
We give the following Theorem 3.7 in order to 

compute the spectral radius of a given matrix 𝑀. 
Furthermore, Theorem 3.7 shows that 𝜆 ∈ 𝜎(𝑀) 
attains the maximum value to be exactly equal to 1.  
 
Theorem 3.7: Let M be a positive and diagonalizable 
matrix. Let λ ∈ σ(M) be an eigenvalue of M belonging 
to it’s spectrum, that is, σ(M) of M. Consider |λ| = 1 
and Re(λ) > 0 then spectral radius, ρ(M) = 1.  
 
Proof: We proceed with the proof by contradiction. 
Consider that 𝑅𝑒(𝜆) > 0, that is, non-positive. Take 
𝜖 > 0, a small parameter such that 𝑑𝑖𝑎𝑔(𝑀) > 𝜖. 
Then, the eigenvalue, 
 
|𝜆 − 𝜖| > 1.                                                                                   (16) 

 
Take 𝛿 ∈ (0,1) such that the eigenvalue 𝛿|𝜆 − 𝜖| of 
matrix 𝑀1 = 𝛿(𝑀 − 𝜖𝐼) with 𝐼 being an identity 
matrix such that, 
 
𝛿|𝜆 − 𝜖| > 1                                                                                 (17) 

 
and, 
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𝜌(𝑀1) > 1.                                                                                    (18) 

 
Let 𝑀2 = 𝛿𝑀, then 𝜌(𝑀2) < 1. By making use of 

the fact that,  
 
for    𝜌(𝐴) < 1,    lim

𝑛→∞
∥ 𝐴𝑛 ∥= 0,                                            (19) 

 

and, 
 
for    𝜌(𝐴) > 1,    lim

𝑛→∞
∥ 𝐴𝑛 ∥= ∞,                                          (20) 

 
we have, 
 
lim
𝑛→∞

∥ 𝑀1
𝑛 ∥= ∞,    for    𝜌(𝑀1) > 1                                        (21) 

 
and, 
 
lim
𝑛→∞

∥ 𝑀1
𝑛 ∥= 0,    for    𝜌(𝑀2) < 1.                                        (22) 

 
This indicates that 𝑀1 > 0 and (𝑀1

𝑛)𝑖𝑗 ≤

(𝑀2
𝑛)𝑖𝑗   ∀ 𝑖, 𝑗, 𝑛. This is clearly a contradiction, thus 

𝜌(𝑀) = 1. Theorem 3.8 indicates that the algebraic 
multiplicity of a non-negative real valued Stochastic 
matrix is 1, that is, 𝑎𝑙𝑔𝑚(𝑚𝑎𝑥|𝜆𝑖|) = 1.  
 
Theorem 3.8: Let M be a non-negative real valued 
Stochastic matrix while for some power k, M > 0, 
that is, the matrix M is positive. Then ∃ a unique 
eigenvector w > 0 with, 
 
𝐴𝑤 = 𝑤,                                                                                         (23) 

 
such that 𝜌(𝐴) = 1 and for some vector 𝑏 =
(1,1,⋯ ,1), 𝑏𝑤 = 1.  
 
Proof: Let 𝜆𝑖 ∈ Λ(𝐴) with Λ(𝐴) = {𝜆𝑖: Eigenvalues of 
𝐴} and we aim to show that 𝑎𝑙𝑔𝑚(𝑚𝑎𝑥|𝜆𝑖|) = 1. For 
this, we consider that |𝜆𝑚𝑎𝑥(𝐴)| ∈ Λ(𝐴) is zero. But 
for 𝐴 ≥ 0 one can have 𝐴𝑘 = 0 for some 𝑘. This leads 
to a contradiction and implies that |𝜆𝑚𝑎𝑥(𝐴)| ∈
Λ𝑜(𝐴) with Λ𝑜(𝐴) = {|𝜆𝑖: 𝜆 > 0    ∀ 𝑖|}. As a 
consequence 𝑚𝑎𝑥𝑖|𝜆(𝑖)| = 1. 

Suppose that 𝑎𝑙𝑔𝑚(𝐴) > 1. The Jordan canonical 
form of matrix 𝐴 ≥ 0 implies that ∃      𝑣 ≠ 0 such 
that, 

 
𝐴𝑣 = 𝑣                                                                                            (24) 
 
or, 
 
𝐴𝑣 = 𝑣 + 𝑧     for some 𝑧  corresponding to 𝑚𝑎𝑥𝑖|𝜆(𝑖)| = 1. 
                                                                                                         (25) 

 
Theorem 3.9 shows that an Eigen spectrum of a 

Hermitian matrix contains the maximum eigenvalue 
to be exactly equal to 1, that is, 𝑚𝑎𝑥𝑖|𝜆𝑖(𝐴)| = 1. 
 

Theorem 3.9: Let T: Γn → Hn with T(A) =
1

2
(A + A∗) 

and A ∈ Γn. Then λmax(
1

2
v∗(A + A∗)) = 1 and is 

equivalent to, 
 

𝑑𝑒𝑡(
1

2
𝑣∗(𝐴 + 𝐴∗) − 𝐼) = 0,    ∀ 𝑣 ∈ �̂�,                                   (26) 

where 𝐼 is an identity matrix. 
 
Proof: We proceed with the proof with 
contradiction. Suppose that, 
 

𝑑𝑒𝑡(
1

2
𝑣∗(𝐴 + 𝐴∗) − 𝐼) ⇏ 𝜆𝑚𝑎𝑥(

1

2
𝑣∗(𝐴𝑖 + 𝐴𝑖

∗)) = 1.         (27) 

 

This means that ∃ a sequence of matrices 𝐴𝑖 ∈ Γ𝑛 
and these matrices converge to say �̃� ∈ Γ𝑛, also 
∃ 𝑣𝑖 ∈ �̂� ∀ 𝑖 such that, 
 

�̃� ∈ Λ(
1

2
𝑣𝑖(𝐴𝑖 + 𝐴𝑖

∗)),                                                                  (28) 

 

with �̃� = 1 and Λ(0), the spectrum of (
1

2
𝑣∗(𝐴 + 𝐴∗)). 

But,  
 

�̃� ≠ 𝜆𝑚𝑎𝑥(
1

2
𝑣∗(𝐴 + 𝐴∗)).                                                           (29) 

 
The eigenvalue 𝜆2 is the second largest 

eigenvalue that satisfies the fact, 
 

𝜆2(
1

2
𝑣∗(𝐴 + 𝐴∗)) ≥ �̃�(

1

2
𝑣∗(𝐴𝑖 + 𝐴𝑖

∗))    ∀ 𝑖.                          (30) 

 
But, for the subsequence we take 𝑣𝑖 → 𝑣 ∈ �̂� and, 

 

𝜆2(
1

2
𝑣∗(�̃� + �̃�∗)) ≥ �̃�(

1

2
𝑣∗(𝐴𝑖 + 𝐴𝑖

∗)),                                   (31) 

 
which is a contradiction to our assumption which 

ensures that (
1

2
𝑣∗(𝐴𝑖 + 𝐴𝑖

∗)) possesses an eigenvalue 

�̃� = 1 as the second largest eigenvalue. 
The eigenvector 𝑧 = 𝑣 + 𝛼𝑣 > 0 for some 𝛼 ∈ 𝑅+. 

Thus, 
 
 [𝐴𝑧 ]𝑖 = [𝑧 + 𝑣 + 𝛼𝑣 ]𝑖 > 𝑣 𝑖    ∀𝑖.                                            (32) 

 
This is clearly a contradiction and hence 

𝑎𝑙𝑔𝑚(𝐴) = 1. 
Next, we show that for Stochastic matrix 𝐴 ≥ 0, 

𝑚𝑎𝑥𝑖|𝜆𝑖(𝐴)| → 1 corresponding to an eigenvector �⃗⃗� . 
From eigenvalue problem, 
 
𝐴�⃗⃗� = 𝑚𝑎𝑥𝑖|𝜆𝑖(𝐴)|�⃗⃗� .                                                                 (33) 

 

For �⃗⃗�  such that �⃗� �⃗⃗� = 1 with �⃗� = (1,1,⋯ ,1) we 
have that, 

 

𝑚𝑎𝑥𝑖|𝜆𝑖(𝐴)| = 𝑚𝑎𝑥𝑖|𝜆𝑖(𝐴)|�⃗� �⃗⃗� = �⃗� �⃗⃗� = 1.                         (34) 

 
In turn, this implies that  
 
𝑚𝑎𝑥𝑖|𝜆𝑖(𝐴)| = 1.                                                                        (35) 

4. Conclusion 

An analytical method based on the decomposition 
of an admissible perturbation from a set of block 
diagonal matrices into a block diagonal matrix 
having identity matrices along the principal diagonal 
is presented. The main contribution is the 
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computation of the lower bounds of 𝜇 −values. The 
proposed methodology is based on the idea of 
computing spectral and numerical radii of the 
perturbed matrix. The structured singular value is a 
tool in control to discuss the stability analysis of the 
linear system. The lower bounds of structured 
singular value measure the instability analysis of 
feedback systems in linear control. 

Compliance with ethical standards 

Conflict of interest 

The authors declare that they have no conflict of 
interest. 

References  

Braatz RP, Young PM, Doyle JC, and Morari M (1994). 
Computational complexity of µ calculation. IEEE Transactions 
on Automatic Control, 39(5): 1000-1002.  
https://doi.org/10.1109/9.284879  

Dailey RL (1990). A new algorithm for the real structured singular 
value. In the American Control Conference, IEEE, San Diego, 
USA: 3036-3040.  
https://doi.org/10.23919/ACC.1990.4791276 

Doyle J (1982). Analysis of feedback systems with structured 
uncertainties. IEE Proceedings D-Control Theory and 
Applications, 129(6): 242-250.                  
https://doi.org/10.1049/ip-d.1982.0053 

Fabrizi A, Roos C, and Biannic JM (2014). A detailed comparative 
analysis of μ lower bound algorithms. In the European Control 
Conference, IEEE, Strasbourg, France: 220-226.  
https://doi.org/10.1109/ECC.2014.6862465 

Fan M and Tits A (1986). Characterization and efficient 
computation of the structured singular value. IEEE 
Transactions on Automatic Control, 31(8): 734-743.  
https://doi.org/10.1109/TAC.1986.1104388 

Karamancıoğlu A and Kasimbeyli R (2011). A nonlinear 
programming technique to compute a tight lower bound for 

the real structured singular value. Optimization and 
Engineering, 12(3): 445-458.  
https://doi.org/10.1007/s11081-010-9120-4 

Kim J, Bates DG, and Postlethwaite I (2009). A geometrical 
formulation of the μ-lower bound problem. IET Control 
Theory and Applications, 3(4): 465-472.  
https://doi.org/10.1049/iet-cta.2007.0391 

Kishida M and Braatz RD (2014). Non-existence conditions of local 
bifurcations for rational systems with structured 
uncertainties. In the American Control Conference, IEEE, 
Portland, USA: 5085-5090.  
https://doi.org/10.1109/ACC.2014.6858689 

Nemirovskii A (1993). Several NP-hard problems arising in robust 
stability analysis. Mathematics of Control, Signals and 
Systems, 6(2): 99-105.              
https://doi.org/10.1007/BF01211741 

Packard A and Doyle J (1993). The complex structured singular 
value. Automatica, 29(1): 71-109.  
https://doi.org/10.1016/0005-1098(93)90175-S 

Packard A, Fan MK, and Doyle JC (1988). A power method for the 
structured singular value. In the 27th IEEE Conference on 
Decision and Control, IEEE, Austin, USA.  
https://doi.org/10.1109/CDC.1988.194710  

Rehman MU, Tayyab M, and Anwar MF (2019). Computing μ-
values for real and mixed μ problems. Mathematics, 7(9): 821. 
https://doi.org/10.3390/math7090821  

Safonov MG (1982). Stability margins of diagonally perturbed 
multivariable feedback systems. IEE Proceedings D-Control 
Theory and Applications, 129(6): 251-256.  
https://doi.org/10.1049/ip-d.1982.0054 

Safonov MG and Doyle JC (1984). Minimizing conservativeness of 
robustness singular values. In: Tzafestas SG (Ed.), 
Multivariable Control: 197-207. Springer, Dordrecht, 
Netherlands.                                      
https://doi.org/10.1007/978-94-009-6478-5_11 

Seiler P, Packard A, and Balas GJ (2010). A gain-based lower 
bound algorithm for real and mixed μ problems. Automatica, 
46(3): 493-500.  
https://doi.org/10.1016/j.automatica.2009.12.008 

 

https://doi.org/10.1109/9.284879
https://doi.org/10.23919/ACC.1990.4791276
https://doi.org/10.1049/ip-d.1982.0053
https://doi.org/10.1109/ECC.2014.6862465
https://doi.org/10.1109/TAC.1986.1104388
https://doi.org/10.1007/s11081-010-9120-4
https://doi.org/10.1049/iet-cta.2007.0391
https://doi.org/10.1109/ACC.2014.6858689
https://doi.org/10.1007/BF01211741
https://doi.org/10.1016/0005-1098(93)90175-S
https://doi.org/10.1109/CDC.1988.194710
https://doi.org/10.3390/math7090821
https://doi.org/10.1049/ip-d.1982.0054
https://doi.org/10.1007/978-94-009-6478-5_11
https://doi.org/10.1016/j.automatica.2009.12.008

	An analytical approach to compute lower bounds of 𝝁-values
	1. Introduction
	2. Mathematical preliminaries
	3. Computing structured singular values
	4. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References


