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Due to the growing concern over the adverse effect and threat posed by 
waste tire all over the world, researchers have over the last two decades 
focused attention on the use of rubber obtained from the waste tire in the 
form of crumb rubber (CR) or powdered rubber (PR) as a construction 
material by incorporating it in cementitious composites. Although there 
exists a lot of research on the use of CR/PR in cementitious composites, the 
only literature reviews available are on rubberized mortars and concrete but 
not on engineered cementitious composites (ECC). This paper aims at 
contributing towards filling this gap by reviewing relevant research works 
on the use of CR/PR in ECC. The effect of the tire rubber addition on the 
properties of the composite in fresh and hardened states have been 
comprehensively reported. The results revealed that the incorporation of tire 
rubber in ECC enhances the tensile ductility but negatively affects the 
compressive strength. 
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1. Introduction 

*The quest for a more ductile cementitious 
material capable of withstanding tensile stresses 
leads to the development of Engineered 
Cementitious Composite (ECC) (Mohammed et al., 
2019; 2018a; Khed et al., 2020). ECC is a special type 
of High-Performance Fiber Reinforced Concrete 
(HPFRC) developed in the 90s (Ma et al., 2015; 
Kamal et al., 2016). Unlike other concretes, ECC has 
an exceptional ductility with a tensile strain capacity 
of 3-5% in contrast to 0.01% of conventional 
concrete and 0.5% of High performance fiber 
reinforced concrete (Mohammed et al., 2018b; 2017; 
Yu et al., 2015b; Khed et al., 2018a; Anwar et al., 
2019). One of the amazing characteristics of ECC is 
its strain hardening ability under tensile stresses due 
to the formation of steady-state micro-cracks, as 
depicted in Fig. 1 (Wu and Li, 2017; Mohammed et 
al., 2014). These multiple tiny cracks have widths in 
the order of less than 100µm (Mohammed et al., 
2018a; Lye et al., 2020). This ability, apart from 
making the ECC very ductile, also ensures its 
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durability due to the reduced permeability as a 
result of the tightly packed micro-cracks (Zhang et 
al., 2015; Yu et al., 2015b). The compressive strength 
of ECC ranges from 35 to 100 MPa and a tensile 
strength of 2 to 7 MPa (Achara et al., 2019). 
Materials used for ECC are the same with those used 
for other concrete with the only exception being that 
coarse aggregate is completely omitted in the mix 
(Chethan et al., 2015). Also the fiber (usually 
Polyvinyl Alcohol Fiber) volume fraction is usually 
kept at or below 2% (Soe et al., 2013; Yu et al., 
2015b; Mohammed et al., 2019; Kamal et al., 2016). 
The design and optimization of ECC to achieve its 
desired properties are done through the use of 
micromechanics principles. That ensures the 
tailoring of the fiber, the matrix, and the fiber-matrix 
interphase at the microscale level to achieve the 
desired ECC behaviors (Chethan et al., 2015). 

Over the past two decades, a lot of research to 
improve the properties and behavior of ECC based 
on micromechanics theories and different materials 
have been and are still being carried out (Meng et al., 
2017; Ma et al., 2015). Several researchers have 
investigated the properties of ECC in a fresh state 
(Yang et al., 2009; Mohammed et al., 2017) and at a 
hardened state (Li et al., 2001; Meng et al., 2017). 
Similarly, the durability performance of ECC has 
been investigated by numerous researchers 
(Mohammed et al., 2015; Liu et al., 2017) as well as 
its behavior at elevated temperatures (Mohammed 
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et al., 2018a; 2019). The use of waste tire rubber in 
ECC has also been investigated by numerous 

researchers (Khed et al., 2018a; Wang et al., 2019; 
Zhang et al., 2019; Mohammed and Azmi, 2014). 

 

 
Fig. 1: Tensile stress-strain curve with tight crack width of a typical ECC (Van Mier et al., 2013) 

 

Solid waste disposal has been one of the biggest 
global environmental problems for a very long time 
(Alaloul et al., 2018). The ever increasing global 
environmental challenge posed by the disposal of 
solid wastes particularly used and discarded tires 
has attracted the interest of researchers to focus on 
finding alternative ways of positively exploiting the 
menace (Chen and Lee, 2019; Sofi, 2018; Li et al., 
2019; Al-Fakih et al., 2019; Mohammed et al., 2012; 
2018c; 2018d; Al-Fakih et al., 2018). The use of 
crumb rubber (CR) obtained from waste tires as a 
sustainable construction material is among the 
feasible ways of safely getting rid of the problem 
(Mohammed, 2010; Mohammed and Adamu, 2018; 
Youssf et al., 2019; Hadzima-Nyarko et al., 2019). 
Discarded waste tires pose a threat to humans due to 
their potential to serve as a breeding place for 
mosquitoes and rodents that are vectors of 
numerous types of diseases (Mohammed et al., 
2016). Some pieces of research on incorporating 
crumb rubber in concrete have been performed with 
interesting outcomes (Mohammed, 2010; Najim and 
Hall, 2012; Chen and Lee, 2019; Adamu et al., 2018). 
In conventional concrete, adding CR has been 
reported to significantly increase the concrete’s 
toughness (Rashad, 2016), energy absorption 
capacity(Guo et al., 2014; Gerges et al., 2018), 
improved strain capacity (Najim and Hall, 2012), 
increased flexural strength (Gupta et al., 2014), 
enhanced durability behavior (Yung et al., 2013) 
better freeze and thawing behavior (Gonen, 2018) 
and application of Artificial Neural Networks to 
model the compressive strength behavior of CR 
concrete (Hadzima-Nyarko et al., 2019) amongst 

others. In the same vein, works on rubberized 
masonry bricks were also carried out (Al-Fakih et al., 
2020; 2019; Mohammed et al., 2012). Also, a lot of 
works exist on the use of CR to produce roller 
compacting concrete with enhanced toughness and 
ductility characteristics (Mohammed et al., 2018c; 
2018d; Mohammed and Adamu, 2018). Similarly, 
improvements in the behavior and properties of ECC 
were also recorded with the incorporation of CR. 
Likewise, there are several reviews on the properties 
of ECC, with none particularly focusing on 
rubberized ECC. This paper is aimed at reviewing the 
research carried out on rubberized ECC (RECC) with 
the view to explaining the effect of CR/PR on the 
properties of the composite in fresh and hardened 
states. 

As stated earlier, for ECC to achieve the strain 
hardening behavior, the principle of micromechanics 
has to be followed (Yu et al., 2018; Mohammed et al., 
2018a; 2017). This ensures that the materials are 
carefully tailored for all conditions of steady-state 
microcracks development to be satisfied (Yu et al., 
2018; Mohammed et al., 2018b). This involves fine-
tuning the properties and choice of the fiber, the 
matrix, and the fiber-matrix interface. Hence, to 
achieve the strain hardening behavior, two 
conditions have to be satisfied: The strength and the 
energy criteria (Eqs. 1 and 2) (Mohammed et al., 
2019; Yu et al., 2018; Zhang and Zhang, 2018). 

 
 Strength criterion: 
 

𝐽𝑡𝑖𝑝 ≤ 𝜎0𝛿0 − ∫ 𝜎(𝛿)𝑑𝛿 ≡ 𝐽𝑏
′𝛿0

0
                                                  (1) 
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 Energy criterion: 
 
𝜎0 > 𝜎𝐶𝑆                                                                                           (2) 

 
where; 𝐽𝑡𝑖𝑝 is the crack tip toughness; 𝐽𝑏

′  is the 

complementary energy; 𝜎0 is maximum fiber 
bridging stress; 𝜎𝐶𝑆 is the cracking strength of the 
matrix; 𝛿0 is the crack width corresponding to 𝜎0. 

The nature of rubber particles having lower 
elastic modulus and specific gravity compared to the 
sand particles make it suitable for tailoring the 
composite to reduce the toughness and induce the 
strain hardening behavior. This justifies the use of 
the rubber particles in ECC, as will be seen in the 
subsequent sections. 

2. Influence of CR/PR on properties of fresh RECC 

Ismail et al. (2018) worked on the properties of 
Self-consolidating ECC (SCECC) modified with 
rubber. They concluded that up to 35% CR 
replacement of fine aggregate could yield a self-
consolidating ECC with adequate flowability and 
passing ability for multiple applications. Similarly, a 
rubberized SCECC can be produced by up to 50% 
powdered rubber (PR) replacement of fine aggregate 
(Ismail et al., 2018). PR gives a better performance 
than CR at the same level of replacement. The 
reduction in the workability of the fresh rubberized 
SCECC with an increase in the rubber percentage 
was attributed to the increase in the inter-particle 
friction, which hindered the free flowability of the 
mixtures under their own weight (Ismail et al., 
2018). Khed et al. (2018c) also investigated the 
effect of different CR sizes (No. 30 mesh and 1 to 
3mm) on the flowability of hybrid fiber reinforced 
ECC. As the amount of the rubber increased, the 
dosage of the plasticizer needed to be reduced 
because of the repelling action of the rubber being 
hydrophobic. Consistent with the previous research 
discussed, the smaller sized (30 mesh) CR gave 
better flowability performance than the bigger sized 
CR. The amount of air content of the rubberized ECC 
in the fresh state has been found to increase with the 
increase in the rubber percentage. As determined by 
(Ismail et al., 2018), replacing 30% of the fine 
aggregate by CR led to an increase in the air content 
from 3.1% to 5.5%. It was discovered that at the 
same percentage replacement level (30%), PR had 
lower air content than CR. From the foregoing, it is 
evident that the inclusion of CR affects the properties 
of ECC in a fresh state. Bigger sized rubber particles 
tend to lower the flowability of the fresh ECC more 
than smaller sized CR particles. 

3. Influence of CR/PR on properties of hardened 
rubberized ECC 

3.1. Density 

Zhang et al. (2015) determined that the density of 
ECC reduces with an increase in CR percentage 

replacement of fine aggregate. They offered two 
possible reasons behind this behavior. First is due to 
the lower specific gravity of the CR compared with 
the fine aggregate. The second is due to the air voids 
trapped on the surface of the CR during mixing. The 
reduction in density is more pronounced when 
smaller sized CR (No 80 mesh) was used as 
compared to the larger sized CR (No 40 mesh). After 
the inclusion of the CR, the density of the ECC was in 
the range of 1600 Kg/m3–1710 Kg/m3 which is 
classified as a lightweight concrete according to ACI 
213 (1987) (Zhang et al., 2015). 

Similarly, Ismail et al. (2018) concluded that the 
incorporation of CR and PR in ECC led to composites 
with lower density ranging from 1827 to 2001 
kg/m3 that are classified as lightweight according to 
CSA A23.3-04 

In the same vein, (Zhang et al., 2019), after 
partially replacing sand with CR, discovered that the 
density reduced from 2053 to 1960 Kg/m3 (4.5% 
reduction). However, the reduction in the density 
with CR substitution was less compared to the 
reduction observed when other materials such as fly 
ash-cenosphere and vermiculite were used as a 
replacement of the fine aggregate, which resulted in 
12% and 15% density reduction respectively (Zhang 
et al., 2019). Similarly, Van Mier et al. (2013) also 
found out that the incorporation of CR in ECC leads 
to a reduction in the density of the composite, as 
shown in Table 1.  

 
Table 1: Density of rubberized concrete (Kg/m3) (Van 

Mier et al., 2013) 
Crumb 
Rubber  

Mix 
ID 

Sand Replacement (% Vol.) 
by CR 

Density 

0CR M1 0 1830 
80CR M2 15 1660 
80CR M3 25 1600 
40CR M4 15 1710 
40CR M5 25 1640 

 

This behavior of density reduction of RECC with 
rubber substitution for fine aggregate is consistent 
from the findings of all researchers with the main 
reason attributed to the lower specific gravity of CR 
compared with either silica sand, river sand, or iron 
ore tailings used as fine aggregates. Another reason 
behind the reduction in density of the matrix is the 
increased porosity due to the air bubbles trapped on 
the surface of the CR particles during mixing. When 
hardened, these trapped air bubbles become voids 
within the matrix, thereby reducing the density. 

3.2. Compressive strength 

High strength is a desirable property of concrete 
because of the advantages it offers, such as reduced 
member size and the consequent increase in safety 
margin (Yu et al., 2015a) and cost reduction in terms 
of time, materials needed for casting and formwork. 
This is not an exception for ECC (Zhang et al., 2019). 
However, common high strength concretes are very 
brittle and have low tensile capacities (Song and 
Hwang, 2004). The use of CR in normal and high 
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strength concretes has been found to enhance the 
deformability and reduce the brittleness significantly 
but with a reduction in compressive strength (Youssf 
et al., 2016; Hadzima-Nyarko et al., 2019). Following 
are findings of research on the use of waste tire 
rubber (CR and PR) in ECC.  

Noorvand et al. (2019) reported a decrease in the 
compressive strength of ECC with a 20% 
replacement of fine aggregate with CR. Their results 
indicated that when compared to normal ECC 
(without rubber), the rubberized ECC exhibited the 
highest loss of compressive strength as fly ash 
replacement level with cement was increased. All the 
rubberized ECC samples had strength less than 
normal concrete (30 MPa). The average compressive 
strength ranged between 15.1 MPa and 23.0 MPa. 
They attributed the loss in the strength to the lower 
elastic modulus of the CR particles, thereby acting as 
a defect within the hardened matrix. Furthermore, 
the increase in the porosity of the composite due to 
the CR incorporation was cited as another possible 
reason. In the same vein, (Ma et al., 2015) found that 
there was a gradual decrease in the compressive 
strength with an increase in the CR at percentages of 
15, 25, and 35 of sand. They attributed the strength 
reduction to the poor bonding between the CR and 
the hydration products and also to the increased 
porosity due to the CR. Similarly, Zhang et al. (2015) 
reported a 35% decrease in compressive strength 
when two different sizes of CR (No 80 and No 40 
sieves) were incorporated in ECC, as shown in Fig. 2. 
However, there was no significant difference in the 
compressive strengths between different CR sizes at 
the replacement ratios considered. The compressive 
strength loss was attributed to the porosity due to 
the CR and also as a result of the separation between 
the CR and the hydration products under 
compression.  

 
Fig. 2: Compressive strength of rubberized ECC samples 

(Zhang et al., 2015) 

 
Amador et al. (2018) incorporated 20% CR 

replacement of fine aggregate in two different types 
of ECC (long PVA fiber ECC with coarse and with fine 
sand and short PVA fiber ECC with coarse and with 
fine sand respectively; both types having different 
percentage replacements of cement with fly ash). 
The result revealed that for both the long and short 
PVA fiber ECC, the compressive strengths at all the 
fly ash replacement levels decreased with 
incorporation of CR, as can be seen from Fig. 3 and 
Fig. 4. For the long fiber ECC, the incorporation of CR 
led to the compressive strengths for both types of 
sands to fall below normal strength concrete 
recommended by ACI (Fig. 3b). For the short PVA 
fiber ECC, only the ECC with 69% fly ash 
replacement of cement has compressive strength 
below the recommended value for normal concrete, 
as depicted in Fig. 4b. These results indicated that 
the inclusion of CR negatively affected the 
compressive strength of the ECC. This behavior is 
attributed to the lower stiffness of the CR as 
compared to the cement paste and the poor bonding 
between the CR and the cement hydration products 
(Amador et al., 2018). 

 

 
 

(a) (b) 

Fig. 3: Compressive strength of long Fiber-RECC (a) without CR (b) with CR (Amador et al., 2018) 
 

The influence of CR and PR on the compressive 
strength of ECC has been investigated by Ismail et al. 
(2018). Results indicated that a 30% replacement of 
CR in ECC lead to 26.7% and 30.2% reduction in the 
7 and 28 days compressive strengths, respectively. 
The reduction was 18.1% and 22.7% for 18 and 28 
days compressive strengths respectively at 30% PR 
replacement; these values are lower compared to 

those of CR. Khed et al. (2018c), in similar research, 
investigated the influence of different CR sizes (30 
mesh and 1 to 3 mm) on the flowability and 
compressive strength of ECC. Reported results 
indicated a reduction in the compressive strength 
with CR rubber replacement with the smaller sized 
CR (30 mesh) exhibiting lesser compressive strength 
reduction. 
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(a) 

 
(b) 

Fig 4: Compressive strength of short Fiber-RECC (a) without CR (b) with CR (Amador et al., 2018) 
 

A correlation between the compressive strength 
and the pull out strength of hybrid fiber (PVA and 
tire wire) ECC was determined by Khed et al. 
(2018b) at an R2 value of 0.879, as shown in Fig. 5. 
In similar research by Khed et al. (2018a), a 
correlation of 93% (coefficient of determination, R2 
of 0.93) was established between the compressive 
strength of a hybrid fiber (PVA and tire wire) ECC 
and the modulus of elasticity as shown in Fig. 6. This 
indicated a strong relationship between the 
compressive strength and the modulus of elasticity. 

 

 
Fig. 5: Correlation between pull-out strength and 

compressive strength of CRECC (Khed et al., 2018b) 

 
Fig. 6: Correlation between pull-out strength and 

compressive strength of CRECC (Khed et al., 2018a) 
 

Wang et al. (2019) reported a decrease in 
compressive strength of rubberized ECC 
incorporating 40CR and 80CR (No 40 mesh and No 
80 mesh) by 21.9% and 20.8% by increasing the CR 
dosage from 13% to 30% respectively. Better 
performance in terms of compressive strength was 
obtained using a finer CR (80CR), as can be observed 
in Fig. 7. The reduction in the strength was 
attributed to the increased porosity of the ECC as a 
result of CR by repelling water and trapping air 
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bubbles on their surface, as shown in Fig. 8 (Zhang et 
al., 2015). 

 

 
Fig. 7: Finer CR (80CR) shows a better performance in 

terms of compressive strength (Wang et al., 2019) 
 

Zhang et al. (2019) recorded a general decrease 
in compressive strength with a 30% replacement of 
silica sand with CR. However, despite the decrease, 
the sample exhibited a compressive strength of 
about 75 MPa, which is classified as a high strength 
concrete. This is in sharp contrast to the findings of 
the previous researchers. 

 

 
Fig. 8: Air bubble trapped on the surface of CR (Zhang et 

al., 2015) 

3.3. Tensile behavior of rubberized ECC 

The popularity of ECC is owed to its outstanding 
tensile strain capacity of up to 3-5%, which is 300 to 
500 times that of normal concrete (Zhang et al., 
2019; Şahmaran and Li, 2009). The effect of CR on 
the tensile behavior of ECC has been investigated by 
numerous researchers. This behavior of ECC is 
usually determined by conducting a uniaxial tensile 
test, as shown in Fig. 9. 

A 181% and 434% improvement in the tensile 
ductility of ECC was reported for 20% CR 
replacement with fine and coarse sand, respectively 
(Noorvand et al., 2019). However, there was a 
significant decrease in the tensile strength with the 
CR replacement. For the coarse and fine sand, 
respectively, there was a 26% (4.6 to 3.39 MPa) and 
21% (4.47 to 3.53 MPa) decrease in the tensile 
strength with CR replacement. Huang et al. (2013) 

reported that ECC samples with CR had a tensile 
capacity of 2–3%. The presence of tire rubber proves 
beneficial in terms of tensile ductility as the higher 
the content, the more ductile the ECC. As can be 
observed from Fig. 10, with an increase in rubber 
content, there is a reduction in the first cracking 
strength, which is attributed to the decrease in the 
matrix fracture toughness by about 50%. The dip in 
the matrix toughness is as a result of the increased 
porosity caused by the CR. Similar conclusions were 
drawn by Van Mier et al. (2013) and Zhang et al. 
(2015). 

 

 
Fig. 9: Uniaxial tensile test set up (Ma et al., 2015) 

 

The deformation capacity of the ECC increases 
with an increase in the CR content from 10 to 15% 
(Zhang and Qian, 2013). However, the toughness of 
the matrix decreases with an increase in CR, leading 
to a reduction in the first cracking strength of the 
samples. This is caused by the lower modulus of 
elasticity of the CR as compared to the cement paste 
(Zhang and Qian, 2013). Ma et al. (2015) reported 
that the tensile strain capacity increased to 7% with 
35% silica sand replacement by CR. They concluded 
that the addition of CR significantly enhances the 
tensile ductility, although the ultimate strength is 
negatively affected.  

As shown in Fig. 11a, Ma et al. (2015) recorded an 
increase in the tensile strain capacity of WW-ECC 
from 1.5% to 7% upon the incorporation of 35% CR 
as a replacement to silica sand when they 
experimented with ECC having two different types of 
locally made PVA fibers (WW and BHL). However, 
there was a reduction in the tensile strength of BHL-
ECC from 5.5 MPa to 3.5 MPa with no change in the 
tensile strain capacity, as shown in Fig. 11b. This 
shows that the influence of fiber type is also 
significant on the tensile strain enhancement, not 
only the CR. 

Amador et al. (2018) also found that among other 
factors, CR addition enhances the tensile ductility of 
ECC. The results indicated that for ECC having 62% 
cement replacement with fly ash, 434% and 181% 
increase in tensile strain was recorded by 20% CR 
replacement of coarse and fine sand, respectively. 
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Fig. 10: Tensile stress-strain curves for different percentage replacements of sand with CR (Huang et al., 2013) 

 

Similarly, for ECC with 69% fly ash replacement 
of cement, incorporation of 20% CR replacement 
with coarse and fine sand lead to 110% and 38% 
improvement in the tensile ductility, respectively. 
The authors attributed this behavior to the CR 
addition effect on the pseudo strain hardening (PSH) 
indicators, which are the strength (𝜎0/𝜎𝑐𝑠) and 
energy (𝐽′𝑏/ 𝐽𝑡𝑖𝑝). The CR inclusion lead to a rise in the 
complimentary energy (𝐽′𝑏) and the reduction in the 
crack tip toughness (𝐽𝑡𝑖𝑝) leading to improved 
ductility owing to the increase in the PHS energy 
(𝐽′𝑏/ 𝐽𝑡𝑖𝑝) (Amador et al., 2018). 

Wang et al. (2019), in an attempt to use green 
supplementary materials for a more ductile ECC, 
utilized CR as one of the materials. They observed 
that all the ECC incorporating CR and Recycled 

Powder (RP) from construction works exhibited a 
tensile capacity between 7-12% in contrast to the 
ECC without CR and RP, whose strain capacity was 
between 3-5%. The increased tensile strain was 
attributed to the microcracks propagation and tight 
crack widths development induced by the CR and the 
RP (Wang et al., 2019). 

A similar conclusion was drawn by Zhang et al. 
(2019) when they described that the CR acted as a 
flaw within the matrix and also increases the 
porosity by trapping air voids due to its 
hydrophobicity and that led to decreased toughness 
of the composite. The reduced toughness caused the 
propagation of the multiple micro-cracks, as sown in 
Fig. 12 and thus, the strain hardening.  
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(b) 

Fig. 11: Influence of CR on the ECC tensile strain capacity for (a) WW fiber type ECC (b) BHL fiber type ECC (Ma et al., 2015) 
 

 
Fig. 12: Saturated micro-cracks of RECC (Zhang et al., 

2019) 
 

The elastic modulus (EM) of CR ECC was 
determined by Huang et al. (2013) using Eq. 3. 

 
𝐸𝑀 = 0.043𝑑1.5𝑓0.5EM                                                                  (3) 

 
where, EM is the elastic modulus (MPa), d is the 
density (kg/m3), and f is the compressive strength 
(MPa) at 28 days. The EM of the rubberized ECC at 
different percentage replacements of CR ranged 
between 7 to 11 GPa indicating a downward 
reduction with an increase in CR. This reduction was 
attributed to the lower modulus of CR as compared 
to the iron ore tailing (used as fine aggregates) and 
also to the increased porosity due to the 
incorporation of the air voids by the CR (Huang et al., 
2013). 
Ismail et al. (2018) followed a different approach in 
determining the tensile behavior of the REC by 
conducting a splitting tensile strength (STS) test. The 
results indicated that there was a 28.1% and 23.4% 
decrease in the 7 and 28 days splitting tensile 
strength, respectively, with an increase in the CR 
from 0 to 30%. Powdered rubber seemed to have a 
lesser negative effect on the STS than CR with 19.3% 
and 17.1% reduction in the 7 and 28 days strength, 
respectively, at 30% PR dosage, which is clearly less 
than in the case of CR. The reduction in the STS with 
an increase in the rubber was ascribed to the nature 

of the CR being softer than the surrounding cement 
paste behaving as a weak point within the matrix. 
Furthermore, the inclusion of CR increased the 
number of air voids in the mix leading to higher 
porosity and weakness under applied stresses. 

3.4. Flexural behavior of RECC 

A four-point bending test is mostly employed in 
the determination of the flexural behavior of ECC. 
The test set up is shown in Fig. 13. The first cracking 
strength, load-deflection behavior, and toughness of 
the composite can be determined using this test. The 
large deformation of the ECC in flexure due to the 
development of saturated microcracks at the tensile 
zone earned it the name bendable concrete (Li, 
2008). 

 

 
Fig. 13: An RECC four-point bending test set up (Zhang et 

al., 2015) 
 

Using the third point bending test, (Noorvand et 
al., 2019) determined the influence of 20% fine and 
coarse sand replacement with CR in ECC having 
varying levels of cement replacement with fly ash. 
The results indicated a significant enhancement in 
the deflection capacity of the ECC with CR 
replacement. There was a 133% and 95% increase in 
deflection capacity for 62% and 69% cement 
replacement with fly ash, respectively, as compared 
with the same mix without CR. Similarly, 42% and 
40% improvement in deflection capacity was noticed 
for fine and coarse sand ECC mixes, respectively, 
when 20% CR replacement of the sand was used as 
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compared to the same mixes without the CR. This 
behavior of increased deflection capacity due to the 
CR was explained to be caused by the increase in the 
strain hardening behavior of the composite as a 
result of the enhanced energy criterion (Jb’/Jtip). 

Van Mier et al. (2013) conducted a four-point test 
on 300 mm long ECC samples having different CR 
sizes (80CR and 40CR) at a loading rate of 0.75 
mm/min. Results indicated that an increase in the CR 
leads to a lower first cracking strength due to 
reduced matrix toughness. This behavior is 
attributed to the weaker bonding between the CR 
with the matrix as compared to the replaced silica 
sand. However, there was a significant improvement 
(1.5 to 2.9 times) in the deformation capacity of the 
ECC with the addition of the CR. The deformation 
capacity was noticed to be higher for 80CR. 

In the same vein, Zhang and Qian (2013) also 
performed a four-point bending test to investigate 
the flexural behavior of ECC containing different 
sized CR (450μm and 200μm in average). It was 
observed that the first cracking strength of the ECC 
reduces with an increase in the CR due to the weaker 
bonding between the CR and the matrix. An increase 
in the deformability with the addition of CR was 
explained to result from the rubber particles acting 
as small flaws leading to the development of 
microcracks and increased deformability of the 
composite (Van Mier et al., 2013; Zhang and Qian, 
2013). 

In a separate paper, Zhang et al. (2015) 
determined the flexural properties of ECC having 
different sized CR using a four-point bending test at 
60 days of curing. It was observed that the first 
cracking strength decreased with an increase in the 
CR content. On the contrary, the deflection capacity 
increases with an increase in the CR and also with a 
decrease in the CR size. The reduced flexural 
strength observed is explained to be caused by the 
increase in the CR content, which reduced the fiber 
bridging capacity (Zhang et al., 2015). 

Amador et al. (2018) found out that the 
incorporation of CR in ECC negatively affected the 
flexural strength like other mechanical strength. But 
in line with the findings of other researchers, there 
was a remarkable improvement in the tensile 
ductility and the deflection capacity of the 
composite. Following a similar trend, (Ismail et al., 
2018) carried out a four-point bending test on 
rubberized ECC samples to determine the flexural 
strength. Results showed that the addition of CR 
negatively affected the flexural strength (FS). The 
severity of the FS reduction increased with 
increasing rubber dosage. However, the 
deformability of the RECC is significantly increased 
with increased rubber percentage due to the 
propagation of multiple saturated cracks leading to 
the noticed strain hardening behavior. 

4. Conclusion 

The use of waste tire rubber in the form of CR or 
PR in ECC is a relatively new area of research with 

very few literature available. This is so when 
compared with the available kinds of literature on 
rubberized mortar and concrete. The first available 
literature discussing the results of incorporating tire 
rubber in ECC was published in 2013. This is in 
contrast to works on the use of tire rubber in 
concrete and mortar that have been carried out for 
over two decades. 

Interestingly, from the available research works 
reviewed, incorporation of tire rubber has negative 
as well as beneficial effects on the properties of ECC. 
The fresh properties are negatively affected, so is the 
density. Similarly, the compressive and the flexural 
strengths experience a significant loss with an 
increase in the CR or PR substitution of fine 
aggregate. The severity in the loss of mechanical 
properties is lesser for finer CR (PR) than that 
experienced with larger sized CR. 

The use of tire rubber has a positive influence on 
the ductility of ECC. There is a consistent outcome 
from all the researchers regarding the increase in the 
tensile capacity of ECC with tire rubber percentage. 
In the same vein, the ECC exhibits a better strain-
hardening behavior due to the matrix fracture 
toughness lowering effect of the rubber leading to 
propagation of saturated micro-cracks. 

Based on the works of literature covered, an 
improvement in the ductility properties of the ECC of 
up to 434% with CR/PR incorporation was reported. 
Similarly, the deflection capacity enhancement of 
133% was also recorded. On the other hand, a 
reduction or loss of compressive strength to the 
order of 35% has been reported. In the same vein, 
reduction in matrix toughness by 50% due to rubber 
replacement has also been observed.  

In summary, the use of CR/PR in ECC is found to 
be beneficial in ECC due to the enhancement of the 
strain-hardening property that the ECC is known for. 
But that comes at the cost of the mechanical strength 
of the composite. The authors are presently working 
on research aimed at recovering the mechanical 
strength loss using a nano-material. 
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