
 International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

53

A secure operating system for data centers: A survey

Sikandar Ejaz 1, *, Muhammad Javed Iqbal 1, Hafsa Bibi 1, Shahbaz Pervez 2, Kawther A. Al-Dhlan 3, Seyed Ebrahim
Hosseini 2

1Computer Science Department, University of Engineering and Technology, Taxila, Pakistan
2Department of Information Technology, Abacus Institute of Studies, Christchurch, New Zealand
3Computer Science and Information Department, College of Computer Science and Engineering, University of Hail, Hail, Saudi
Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 11 March 2019
Received in revised form
25 April 2020
Accepted 2 May 2020

Data centers are now evolving source of computational hardware which have
high potential to bring extraordinary computing capacity to use applications
with resource sharing, fault tolerance, security, and scalability. To deliver the
user with efficient computational power, with the support of data sharing,
resource sharing and abstraction, an operating system-like software stack is
needed for cloud computing hardware platforms. Existing distributed
operating systems are not scalable to handle thousands of machines in
clouds. As a result, current cloud computing environments are more complex
at the user side. This paper surveys the existing data center functional
platforms and discusses their worth and cost, to emphasis on development of
a long-term mechanism with lasting impacts for present and future data
center software infrastructure demands by considering all these factors
which will help the organizations to select the best operating system for
datacenter as per their particular needs and priorities.

Keywords:
Data centers
Operating system
Resource sharing
Security
Scalability
Application development
Cluster
Cloud computing

© 2020 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Commodity servers in data centers are now
capable of providing dominant platforms not only for
handling data-intensive and computational-intensive
applications of enterprises, technical and objective
workload but also for providing prevalent services
such as e-commerce, social media networking, online
communal interactions, gaming, computing resource
provisioning and web search (Bahl et al., 2012). In
these data centers, even one separate application can
engage hundreds of servers, containing multiple
software services. Concerning high stream
performance and networking measurements of these
data centers, the new requirements involve the
development of a comprehensive protection model
that would be able to program and manage the data
center needs all alone. In other words, a complete
operating system like-layer is required (Zaharia et
al., 2011) to control data center applications and
user diversity, and specialized tasks like flexible
resources sharing and utilization, handling of

* Corresponding Author.
Email Address: sikandar.ejaz@students.uettaxila.edu.pk (S. Ejaz)

https://doi.org/10.21833/ijaas.2020.08.007
 Corresponding author's ORCID profile:

https://orcid.org/0000-0003-0232-2356
2313-626X/© 2020 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

substantial number of connections and churn,
optimized solutions for minimizing constraints like
delay and latency, and supervision of software
programming.

Datacenter operating system can be taken as a
software stack layer that can perform the same
functionalities in a data center, as a typical OS
performs in a single machine (Zaharia et al., 2011;
Barroso et al., 2013; Patterson, 2008). In general, an
operating system facilitates users with several
packages and tools like programming languages and
compilers, and an intermediate layer for managing
virtualization of hardware resources. Typically an OS
can carry out quite a lot of essential survival
operations which can be: (i) support a machine for
multitasking and then for interaction among user
tasks by resource sharing, (ii) merger of standalone
application programs through files and pipes to offer
optimized solutions to problems i.e. data sharing
among application programs, (iii) relief in creation of
software applications through programming
abstractions and (iv) extensive monitoring and
debugging utilities for whole system. These crucial
characteristics enable an operating system to
encourage interdependent applications to be
executed in a well-organized environment.

Like computers, data centers also require an OS-
like layer to manage the growing diversity of users
and applications. From application point of view,

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sikandar.ejaz@students.uettaxila.edu.pk
https://doi.org/10.21833/ijaas.2020.08.007
https://orcid.org/0000-0003-0232-2356
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2020.08.007&domain=pdf&

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

54

several cluster computing frameworks like Wang et
al. (2014, 2013), Shvachko et al. (2010), Isard et al.
(2007), Zaharia et al. (2010a), Dean and Ghemawat
(2008) and Malewicz et al. (2010) are in existence.
But they are using case-specific frameworks, no
common interface is there for accessing data and
resources for independent applications. This paper
provides an overview of present frameworks along
with their values and challenges and answers to the
questions: How these frameworks offer some of the
OS services? How can be a common interface for data
centers? How an OS layer can be developed for large-
scale data and computation extensive applications in
single controller environments? By doing this, our
work discusses the main challenges and
requirements of data centers to raise spirits of
researchers, so they look for the implementation of a
software stack for interoperable cloud computing
environments.

The remaining sections of the paper are
structured as follows. Section II focuses on important
data center requirements that an operating system
must care about. Section III is the main part of this
article, which constitute traits and silences of several
cluster computing frameworks. A comparison of
these frameworks has been made in section IV.
Section V discusses the key features that have been
obtained from the survey, followed by future
directions. Finally, section VI concludes the paper.

2. Research problems and objectives

This section describes the problems and
objectives of this research, which comprises of core
concerns for which a datacenter OS is supposed to be
responsible for.

2.1. Resource sharing

Diverse datacenter applications like web
applications, long term services, storage systems,
and batch programming are currently managed by
only a set of nodes on which they execute. Although
corresponding physical or virtual hosts do resource
sharing among these applications at a coarse-grained
level dynamic increase in a number of applications
and their requirements need resource sharing at
some sort of fine-grained level to entertain multiple
computing frameworks. Besides, management of
network sharing between multiple datacenter
application traffic (Greenberg et al., 2008) and
interdependent services, scheduling of resources
with optimized response time, throughput and
energy consumption, and virtualization of computing
resources and then migration of virtual machines are
also needed to be implemented efficiently (Jadeja
and Modi, 2012; Zhang et al., 2010).

2.2. Data sharing

Parallel applications in a data center need
intercommunication for data sharing to maintain the

workflow of steps of single tasks written in multiple
programs. For example, in MapReduce, Map and
Reduce tasks need an exchange of data to complete
an action. Client applications require abstractions
and standard interfaces for data sharing. Existing
distributed filesystems (Wang et al., 2014; Shvachko
et al., 2010) are more interdependent abstractions
because they may take more time in reading and
writing datasets from file systems resulting in a lack
of reliability. Also, these distributed filesystems do
not perform well in the case of streaming data. Batch
query-dependent live data analytics become a
challenge and call for a more refined design
approach.

2.3. Programming abstractions

Data centers involve more multifaceted hardware
and their related issues such as failure detection,
recovery, and miserable performance of nodes.
During an application development phase, data
centers require programming abstractions to cover
the extra hardware complexities for making the
program writing simpler. Several parallel cluster
computing frameworks (Isard et al., 2007; Dean and
Ghemawat, 2008; Malewicz et al., 2010) are
problem-solving approaches, but they lack in a
common abstraction to facilitate the system and
software design. For flawless and time-saving system
and productivity programming, a common
abstraction in the form of data center OS is necessary
to support fundamental primitives such as APIs for
initiation and monitoring of tasks, similar
communication patterns and coordination (Burrows,
2006) in different distributed joins and fault-
tolerance in distributed data structures.

2.4. Debugging and monitoring

Debugging and monitoring of massively
distributed applications is also crucial due to the
requirement of distributed debugging tools in data
center environments. Error correction, pattern
complexities and larger objects in parallel
applications require a single tracking interface-like
software stack so that old systems like Aviram et al.
(2012), Fonseca et al. (2007) and Sakr et al. (2013)
can be re-implemented to handle changing
workloads.

3. Datacenter functional frameworks

From an application point of view, numerous
well-known data center frameworks with their traits
and silences toward the above mentioned
requirements have been discussed in this section.

3.1. Mesos

Mesos permits fined-grained resource sharing
through applications in data centers. Mesos uses an
application control scheduling model called resource

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

55

offer, which is a distributed two-level mechanism.
The main objective of Mesos is to provide a
controlling layer that allows varied arrangements of
cluster computing structures to efficiently allocate
and utilize resources (Hindman et al., 2011).

Mesos defines an optimal interface that
empowers the use of well-organized resource
sharing across cluster structures in data centers, and
then, allows the interface to forward control of task
scheduling and implementation to that structures
due to highly diverse and rapidly evolving assembly
of clusters. Mesos is scalable and robust in achieving
data locality, dealing with faults, evolving solutions
independently and preserving the required change
rate of the system at low frequency. In architectural

terms, Mesos includes a slave process that is a
dependent process and is managed and organized by
a master process running on each cluster node,
which is illustrated in Fig. 1. In operations, master
employs fine-grained sharing of resources by using a
technique, “resource offers” which shows a list of
freely available resources on distributed slaves.
Masters' organizational policy is responsible for
offering a fair share of selected resources to each in
working cluster groups. Mesos components include a
master component which is combined with a
scheduler to deliver resources and an originator
process which is executed on multiple slave nodes to
run the cluster’s tasks. As Fig. 1 is showing the detail
about the architecture.

Fig. 1: Mesos architecture-Hadoop and MPI running (two frameworks)

It is noticed that Mesos works well with
distributed scheduling but has limitations of
fragmentation of resources in heterogeneous
resources demand in uneven distribution of loads
and tasks on small and large nodes, interdependent
framework constraints and more complex
scheduling of resources due to composite scheduling
policies.

3.2. Dryad

Dryad is a general-purpose, parallel distributed
programming system framework, meant for coarse-
grained data-parallel applications. The Dryad
application is aimed to form a data flow graph by
associating computational vertices with
interconnecting channels (Sakr et al., 2013). The
main components and organization of the Dryad
system are depicted in Fig. 2. Dryad implementation

includes the execution of applications containing
vertices of graphs on a set of available computers,
cooperating by message passing through files,
shared-memory FIFOs and TCP pipes. The vertices
are typically written in sequential and consecutive
programs without thread formation or locking in
application program and then executed at the same
time on multiple cores of a single processor inside a
computer or multiple computers in a cluster
efficiently schedule, allocate and utilize available
resources (Isard et al., 2007) and the Fig. 2 is
showing the detail regarding the system
organization in dryad framework.

Dryad is intended to range from dominant multi-
core solitary computers to trivial groups of clusters
of computers, and then data centers containing an
enormous number of machines. Dryad systems are
good in recovering from node or communication
failures and transportation of data among multiple

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

56

vertices, scheduling through resources, enhancing
the degree of concurrency inside an independent

computer, and delivering of data to its required
place.

Fig. 2: System organization in dryad framework

The outstanding operations and results of Dryad
are proved on numerous nontrivial, physical samples
ranging from a single multi-core standalone
computer to some clusters having thousands of
machines, by demonstrating the use of optimum
tools to improve parallelism and data distribution
overhead adjustments. Scaling behavior of Dryad is
demonstrated on trivial clusters, with complete
performance and then to an enterprise database
scheme for a hand-coded read-only query. On the
other hand, network locality is exploited by enabling
automatic execution of jobs having hundreds of
thousands of vertices, on a larger cluster having the
capability to process several TBs of input data in
lesser time (Isard et al., 2007). In addition to this,
Dryad supports developers to develop extensive
distributed applications and do not demand them to
use any concurrency procedures and data
dependencies.

Comparison of Dryad with MapReduce system
shows that this system is less complex in design, as it
doesn’t contain sequential steps of code like
MapReduce, that is, a rigid sequence of the sort, map,
and reduce steps.

3.3. Quincy

To handle the challenge of scheduling along with
both fairness and locality constrictions, a new
influential and reliable structure for scheduling of
concurrent distributed jobs with fine-grained
sharing of computing resources, named Quincy, is
introduced in Isard et al. (2009). Quincy addresses

the problem of concurrent scheduling of jobs in
distributed compute and storage nodes and tries to
settle the resource scheduling issues in several grid
computing environments by extending the systems
like MapReduce, Hadoop and Dryad where
performance depends upon the availability of data
near to their computations. Besides, Quincy is
capable of mapping scheduling tasks to a data
structure of graphs, where masses and edge
dimensions encrypt the challenging loads of fairness,
data locality, and starvation-freedom, and a regular
solver calculates the optimal vacant schedule based
on a defined global cost model. The Fig. 3 is
demonstrating the process of cluster scheduling
architecture.

Fig. 3 shows the cluster architecture of Quincy
that is a queue-based scheduling model in which,
once a worker task is forwarded to the scheduler, it
is moved to the back-end of multiple queues, and
when a resource is computed using scheduling
algorithms, it is removed from the queue. When a
new job is about to start, its root task is delivered to
a random node among the nodes that are not
performing root tasks at current time, and, any
worker task that is presently in execution on that
node, is tending to terminate and return into the
scheduler queues as though it has just been
forwarded. This approach applies the concepts of
simple greedy fairness, fairness with preemption
and flow based-scheduling with the queueing
system, but has difficulties in handling sticky slots.

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

57

Fig. 3: The cluster scheduling architecture

The constraint regarding Quincy’s existing design
is: no explicit attempt is made to share the other
network resources, and fairness is acquired totally
based on a number of processers assigned to a task.
Quincy’s capability to decrease redundant network
traffic enhances whole performance predictability
and subsequently fairness, but on the other hand,
when an application process requires inter-cluster
communication, this constraint didn’t demonstrate
by this system. Quincy is flexible enough to limit the
data transfers only in bottlenecks by taking account
of network congestion, and monitor network traffic
so that Quincy’s cost would be adjusted. Also, one
important property of Quincy is, it increases the
throughput of clusters by a factor of three while
reducing the traffic which is passing directly via the
core switch of the tree-based network.

3.4. DryadLINQ

DryadLINQ is a scheme with an assemblage of
language extensions which is introduced in Fetterly
et al. (2009) which presents a novel programming
paradigm for extensively distributed cluster
computing. It is a comprehensive form of previous
carrying out platforms, more specifically
MapReduce, SQL, and Dryad in the following facets:
By assuming an easy-to-read data representation of
strongly coded .NET objects, and by assisting
general-purpose essential and declarative activities
on datasets inside a conventional best-in-class
programming language. Fig. 4 is showing the LINQ-
Expression implementation in DryadLINQ.in detail.

DryadLINQ scheme is like a sequence-based
program, a collection of LINQ terminologies
practicing secure and random renovations on
datasets and can be generated and debugged by
means of typical .NET development tools. Moreover,
the DryadLINQ scheme can automatically and visibly
interpret the data-parallel sections of an application

program through a distributed execution strategy
which is then delivered to the Dryad application
execution environment.

From the implementation and evaluation point of
view, DryadLINQ is successfully tested on a wide-
ranging set of applications retrieved from areas like
large-scale log mining, web-graph analysis, and
machine learning. Steps for run-to-completion of a
program in DryadLINQ is displayed in Fig. 4. Brilliant
absolute performance of DryadLINQ is achieved on a
general-purpose class of 1012B of data which is
processed in a total time of 319sec on a 240-
computer with 960-disk cluster. A drawback of
DryadLINQ is its irreverent behavior towards many
distributed applications, due to this, lack of
simplification is there in policy choices in both Dryad
and LINQ.

3.5. Delay scheduling

Zaharia et al. (2010a) highlighted the need to
sharing clusters among users in fair scheduling and
data locality aspects. They reported this problem
through an experiment of the development of a fair
scheduler for a Hadoop cluster of 600 nodes at
Facebook. To represent the competition between
fairness and locality, a naive algorithm named delay
scheduling has been offered in Zaharia et al. (2010a),
which is, when the job that is waiting to be scheduled
in next turn according to fairness is not able to
initiate a local task, it would wait for a short amount
of time, leasing other jobs to initiate their remaining
tasks.

Now, the pseudocode for delay scheduling
algorithm (Zaharia et al., 2010a) for the scenario
where we permit to skip a certain job for T times is
given below:

Algorithm 1 Fair Sharing with Simple Delay Scheduling
Initialize i.skipcount to 0 for all jobs j.
When a heartbeat is received from node n:

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

58

if n has a free slot then
Sort jobs in increasing order of number of running tasks
for j in jobs do
if j has unlaunched task t with data on n then
Launch t on n
Set j.skipcount=0
else if j has unlaunched task t then

if j.skipcount≥T then
Launch t on n
else
Set j.skipcount=j.skipcount + 1
end if
end if
end for

Fig. 4: LINQ-expression implementation in DryadLINQ

It is found that scheduled delay can accomplish
approximately ideal data locality even in diverse
workloads and can improve throughput by a factor
of two while maintaining fairness. Besides this, the
straightforwardness of delay scheduling makes it
appropriate even under extensive variations in
scheduling policies away from fair sharing. To
implement fair sharing, two compromises between
consumption and fairness are there to be
considered: (i) either to halt running tasks or allow
them to complete successfully and terminate when
new tasks are ready to execute, (ii) how data locality
can be attained in separate ways. In view of these
two concerns, delay scheduling can achieve both
locality and fairness by providing space for tasks to
complete.

Experiments indicate that two crucial
characteristics of the cluster computing environment
including the brief time of tasks as compared to jobs
and running of tasks on multiple locations support
the delay scheduling to show remarkable
performance. Delay scheduling gives its best
performance in situations where above mentioned
two properties hold, for instance, in Hadoop
environments at Yahoo! and Facebook that supports
multiple job executions in each node. Delay

scheduling have limitations of nodes having larger
job fractions with few slots available and sticky slots
problem like Quincy (Isard et al., 2009) systems.

3.6. IX OS

A data plane operating system named as IX is
presented in Belay et al. (2014), which can give
acceptable I/O performance while maintaining the
primary benefit of strong protection provided by
prevailing kernels. Strong protection of kernels can
be preserved by a data plane operating system IX for
high I/O throughput and performance. Fig. 5
demonstrates the architectural components of IX. IX
is aimed to split the scheduling and administrative
responsibilities of the kernel from network function
in a data plane by using hardware virtualization. The
data plane structural design has been completely
built upon a zero-copy inherited API which provides
the best performance for delays and bandwidth
together to data plane traffic by offering hardware
threads and buffers in network elements. Also, IX
restricts the groups of data traffic to completely
process by reducing coherent traffic and multi-core
management. IX gives better performance in data
plane by reducing end-to-end-latency and improving

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

59

throughput (Comminiello et al., 2016). Fig. 5 is
showing the detail of control and data plan-
separation and protection and Fig. 6 is

demonstrating inclosing of protocol processing and
application execution process.

Fig. 5: Control and data plane-separation and protection

Fig. 6: Inclosing of protocol processing and application execution

IX enhances the data plane framework to service
untrusted, general-purpose applications and satisfy
all requirements, which includes, portioning and
defense of control and data plane, completion and
termination of with adaptive batching execution,
native, zero-copy API along with flow control, flow
consistent, synchronization-free processing, and
finally, implemented resource allocation strategies.
The flow of execution of a thread in the data plane of
IX is represented in Fig. 6. The progress of well-
organized allocation strategies involves
consideration of problematic compromises between
data plane energy consumption, resource sharing

and utilization between interrelated applications
and their returns.

The set-up of the IX implementation model is
proficient enough for the management of events in a
fast and non-blocking style. In its execution,
operations with extended execution delays are likely
to be passed on to contextual threads as compared to
execute within the background of elastic threads.

3.7. Plan9 IX OS

Distributed Cloud/IX operating system is a
derivative of plan9 which was developed for
management and organization of the ARM-based

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

60

server environments. The main characteristics of
this operating system involve naming and
availability of resources are managed by hierarchical
file systems, there is a standard protocol for
retrieving remote and local resources and multiple
services are interconnected together in boundless
hierarchical file namespaces (Leokhin and Panfilov,
2015).

The fundamental values of plan 9 OS are defined
to execute the disseminated processing schemes for
distributed and parallel programming and
computational prototypes using supercomputers,
multi-server environments, and distributed
embedded systems. The key advantage of this
operating system is its simplicity for inter-node
communication. This is done by deploying file
namespaces for the creation and termination of
applications irrespective of their basic system
hardware. By this, they would execute at anyplace on
any computer in the system, on any framework. A
standard protocol called 9P protocol has been built
in plan 9 that is responsible for assigning available
resources to tasks. Plan 9 enables easy program
development by refining the modularity of
information by representing data sets in plain files.

3.8. MapReduce

MapReduce (Sakr et al., 2013) is a programming
paradigm and a supplementary application that is
very responsive to a vast variety of real-world
functions for creating, managing and processing
large datasets. A Map and a Reduce function in which
MapReduce jobs are carried out in key/value pair
input and output functions are used for indication of
user requests and required computations and then
an automated underlying operative system
distributes the large extensive computations to the
number of compute nodes in the cluster. This system

is also responsible for dealing with node failures and
their recovery, intra-cluster communications during
the execution of tasks and effectual use of computing
and storage resources (Dean and Ghemawat, 2008).
An overview of MapReduce's operational flow is
here in Fig. 7. MapReduce fully provides the data
locality, fault tolerance, backups, fine-grained
sharing of resources, and efficient bandwidth
utilization.

Advantages of MapReduce include its simple and
easy usability, flexibility, independence of storage,
fault tolerance, high scalability, simple language,
flexible data flow, and I/O optimization. However,
ensuring increased efficiency, scalability, energy
consumption and fault tolerance is a major challenge
(Lee et al., 2012). The Fig. 7 is showing MapReduce
Execution Overview.

3.9. Spark

Spark framework enhances the functionality of
MapReduce variants while preserving the fault
tolerance and scalability for data-intensive
applications by discouraging iterative data flow
model on commodity clusters (Zaharia et al., 2010b).
Fig. 8 illustrates the spark architecture. Several
machine learning algorithms have been used in
collaborative data exploration tools for processing of
working datasets over multiple parallel distributed
tasks. Spark presented a novel abstraction named
Resilient Distributed Datasets (RDDs) which consists
of distributed and restorable read-only sets of
objects for processing of iterative working datasets
even in node failures. The use of RDDs enhances the
performance by a factor of 10 with a 39 GB dataset
response time in interactive machine learning jobs
as contrasted with Hadoop (Zaharia et al., 2010b;
2012).

Fig. 7: MapReduce execution overview

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

61

RDDs in spark can be constructed by using file
from a distributed file system like Hadoop
Distributed File System (HDFS), partitioning and
parallel scheduling of a driver program to multiple
nodes, transforming of a present RDD having a
specific type of datasets into another RDD with
different datasets, and altering the persistence of
current RDDs by cache or save actions. Spark uses
shared variables such as broadcast variables and
accumulators in closures to implement tasks of the

map, reduce and filter. Broadcast variables make
certain the distribution of large read-only sections of
data just the once in multiple workers' operations
without pushing it with all closures, while
accumulators help in making the system fault-
tolerant due to their add-only property.
Accumulators employ associative operations to
provide parallel sums with a type of data with zero
value and an add operation. Fig. 8 is illustrating the
detail of Spark architecture.

Fig. 8: Spark architecture (Mullender et al., 1990)

3.10. Amoeba

A distributed operating system Amoeba is
intended for high-performance communications
between clients and servers side nodes using the
well-known RPC model in Tanenbaum et al. (1990).
The architecture of the Amoeba system is presented
in Fig. 9, contains hardware components like
workstations, several servers, a processor pool, and
gateways to transparently connect Amoeba systems
over wide-area networks. Amoeba file server is so
fast and its boundaries are only associated with
communication bandwidth.

In an operational point of view, Amoeba exploits
the remote procedure calls to operate on objects
with RPC protocols. One remarkable advantage of
this system is its robust security. To prove the
performance aspects of Amoeba, it has been
compared with SUN RPC. It is found that Amoeba
runs a small RPC 9 times faster, and realized over 3
times the bandwidth for large RPCs. Amoeba also
gives the best services in high load scenarios, by
supporting its fair share of the vacant bandwidth
resources. Fig. 9 is showing the detail of four
components of Amoeba architecture.

Fig. 9: Four components of amoeba architecture

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

62

The bullet file server is the file service of Amoeba.
Bullet ensures the high availability of resources
through duplication. Also, the Amoeba file server is
four times faster for writing large files and two times
faster reading large files than SUN RPC (Van Renesse
et al., 1989). Limitation of this system is its delay in
some read operations.

4. Comparison of various data center framework
based on benchmark parameters

This work has presented a comprehensive
comparison and analysis of various state of art
operating systems for data centers and cloud setups.
The comparison and analysis were carried out using
benchmark parameters which are based on resource
sharing, data sharing, data/network locality,
programming abstraction, debugging and
monitoring, fault tolerance and file system. Table 1
illustrates the comparison between distinctive
frameworks proposed by renowned researchers
based on the mentioned benchmarks parameters.
The discussed frameworks can play a significant role
in cloud and data center environments. Previous
operating systems developed for distributed systems
are not suitable for cloud and data center
environments. The analysis shows that resource
sharing is very critical for part of every framework.

The support for other parameters is less likely. Most
of the frameworks are lacking fault tolerance and file
systems. Most of the cloud computing environments
have high complexity compared to others. Moreover,
the proper employment of these frameworks can
eliminate the need for the stacking of different
software in small or large environments. The next
section highlights various future work directions to
overcome mentioned and related limitations.

5. Key findings and future discussion

In an effort of designing a proper secure
operating system for distributed environments in
data centers, different approaches have been made.
We discussed some of those platforms and their
precise comparison has been made in Table 1.
Findings of Table 1 show that some platforms give
some of the characteristics of an operating system
but lack in providing all the services that an
operating system gives in a machine. Mesos is a
notable effort in this sense because it is originally
intended for resource sharing in data centers. Others
features like abstraction, monitoring and debugging,
file systems and memory management, which are the
typical characteristics of an operating system are
there, but to some extent.

Table 1: Comparison between distinctive characteristics of above-mentioned frameworks based on different benchmarks
parameters

Ref. Frameworks
Resource
Sharing

Data
Sharing

Data/Network
Locality

Programming
Abstraction

Debugging
and

Monitoring

Fault-
tolerance

File
System

1.
Mesos (Hindman et al.,

2011)
 -

2.
Dryad (Isard et al., 2007;

Sakr et al., 2013)
 -

3. Quincy (Isard et al., 2009) - - -

4.
DryadLINQ (Fetterly et

al., 2009)
 - - - -

5.
Delay Scheduling

(Zaharia et al., 2010a)
 - - - -

6.
IX Operating System
(Belay et al., 2014;

Comminiello et al., 2016)
 - - -

7.
Plan9 IX OS (Leokhin and

Panfilov, 2015)
 - -

8.

MapReduce (Sakr et al.,
2013; Dean and

Ghemawat, 2008; Lee et
al., 2012)

 -

9.
Spark (Zaharia et al.

2010b; 2012; Mullender
et al., 1990)

 - - -

10.
Amoeba (Tanenbaum et
al., 1990; Van Renesse et

al., 1989)
- - - -

Dryad is a less complex better approach in

parallel programming having similarity with Hadoop
and MapReduce. It performs well in distributed
systems but does not work in data centers where a
centralized controller is responsible for the
management of the whole network. Similarly,
DryadLINQ, Quincy and Delay schedules are
intended to focus on resource sharing and
programming abstractions. IX operating system and

plan9 based IX OS also contributes to giving some
services of operating system like file servers,
resource sharing and data abstractions but have an
absence of operations in multi-cluster to a data
center like environments. Spark preserves the
output of tasks in fault-prone systems and efficiently
share data in MapReduce (Sakr et al., 2013; Dean and
Ghemawat, 2008), Hadoop (Shvachko et al., 2010),
Pregel (Malewicz et al., 2010) and SQL

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

63

environments. Amoeba gives a file system for
distributed environments but its operational delays
are its limitations. Even though these frameworks
are managing huge workloads but cloud computing
services still need operating system-like software
stack for set-ups.

6. Conclusion

This work presented a comprehensive
comparison and analysis of various state of art
frameworks for cloud and data centers. This work
has an impactful contribution to cloud computing
and the data center domain. As the employment of
data centers grows to keep pace with future
application and user demands, need for an operating
system-like software stack increases to facilitate the
computing environments with traditional kernel
operating system services like resource and data
sharing, abstractions, file systems, access to
debugging tools, fault tolerance and service elasticity
in distributed computations. Some considerable
efforts have been done and different frameworks
have been developed at the ad-hoc level, but it
becomes a challenge in single controller settings.
Although these platforms are dealing with increased
diversity of clusters and workloads interoperable
applications development, storage systems, data
processing frameworks and services still need
operating system-like software stack for inter-data
center and intra-data center operations. In the
future, this work can be extended to deal with
various other functionalities and the detailed
working of these frameworks.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of
interest.

References

Aviram A, Weng SC, Hu S, and Ford B (2012). Efficient system-
enforced deterministic parallelism. Communications of the
ACM, 55(5): 111-119.
https://doi.org/10.1145/2160718.2160742

Bahl P, Han RY, Li LE, and Satyanarayanan M (2012). Advancing
the state of mobile cloud computing. In the 3rd ACM Workshop
on Mobile Cloud Computing and Services, ACM, Low Wood
Bay, Lake District, UK: 21-28.
https://doi.org/10.1145/2307849.2307856

Barroso LA, Clidaras J, and Hölzle U (2013). The datacenter as a
computer: An introduction to the design of warehouse-scale
machines. Synthesis Lectures on Computer Architecture, 8(3):
1-154.
https://doi.org/10.2200/S00516ED2V01Y201306CAC024

Belay A, Prekas G, Klimovic A, Grossman S, Kozyrakis C, and
Bugnion E (2014). {IX}: A protected dataplane operating
system for high throughput and low latency. In the 11th
{USENIX} Symposium on Operating Systems Design and
Implementation, USENIX Association, Broomfield, USA: 49-65.

Burrows M (2006). The Chubby lock service for loosely-coupled
distributed systems. In the 7th Symposium on Operating

Systems Design and Implementation, USENIX Association,
Seattle, USA: 335-350.

Comminiello D, Michele S, Simone S, Raffaele P, and Aurelio U
(2016). Smart innovation, systems and technologies. Springer
Science and Business Media, Berlin, Germany.

Dean J and Ghemawat S (2008). MapReduce: Simplified data
processing on large clusters. Communications of the ACM,
51(1): 107-113.
https://doi.org/10.1145/1327452.1327492

Fetterly YYMID, Budiu M, Erlingsson Ú, and Currey PKGJ (2009).
DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. In the 8th
USENIX Symposium on Operating Systems Design and
Implementation, USENIX Association.

Fonseca R, Porter G, Katz RH, Shenker S, and Stoica I (2007). X-
trace: A pervasive network tracing framework. In the 4th
USENIX Conference on Networked Systems Design and
Implementation, USENIX Association, Cambridge, USA: 20-20.

Greenberg A, Hamilton J, Maltz DA, and Patel P (2008). The cost of
a cloud: research problems in data center networks. ACM
SIGCOMM Computer Communication Review, 39(1): 68-73.
https://doi.org/10.1145/1496091.1496103

Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz
RH, and Stoica I (2011). Mesos: A platform for fine-grained
resource sharing in the data center. In the 8th USENIX
conference on Networked systems design and
implementation: 295-308.

Isard M, Budiu M, Yu Y, Birrell A, and Fetterly D (2007). Dryad:
Distributed data-parallel programs from sequential building
blocks. In the ACM SIGOPS Operating Systems Review, ACM,
Lisbon, Portugal, 41(3): 59-72.
https://doi.org/10.1145/1272998.1273005

Isard M, Prabhakaran V, Currey J, Wieder U, Talwar K, and
Goldberg A (2009). Quincy: Fair scheduling for distributed
computing clusters. In the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, ACM, Big Sky, USA: 261-276.
https://doi.org/10.1145/1629575.1629601

Jadeja Y and Modi K (2012). Cloud computing-concepts,
architecture and challenges. In the International Conference
on Computing, Electronics and Electrical Technologies, IEEE,
Kumaracoil, India: 877-880.
https://doi.org/10.1109/ICCEET.2012.6203873

Lee KH, Lee YJ, Choi H, Chung YD, and Moon B (2012). Parallel
data processing with MapReduce: A survey. ACM SIGMOD
Record, 40(4): 11-20.
https://doi.org/10.1145/2094114.2094118

Leokhin Y and Panfilov P (2015). A study of cloud/IX operating
system for the ARM-based data center server platform.
Procedia Engineering, 100: 1696-1705.
https://doi.org/10.1016/j.proeng.2015.01.545

Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, and
Czajkowski G (2010). Pregel: A system for large-scale graph
processing. In the 2010 ACM SIGMOD International
Conference on Management of Data, ACM, Indianapolis, USA:
135-146.
https://doi.org/10.1145/1807167.1807184

Mullender SJ, Van Rossum G, Tanenbaum AS, Van Renesse R, and
Van Staveren H (1990). Amoeba: A distributed operating
system for the 1990s. Computer, 23(5): 44-53.
https://doi.org/10.1109/2.53354

Patterson DA (2008). The data center is the computer.
Communications of the ACM, 51(1): 105-105.
https://doi.org/10.1145/1327452.1327491

Sakr S, Liu A, and Fayoumi AG (2013). The family of mapreduce
and large-scale data processing systems. ACM Computing
Surveys, 46: 1.
https://doi.org/10.1145/2522968.2522979

https://doi.org/10.1145/2160718.2160742
https://doi.org/10.1145/2307849.2307856
https://doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/1272998.1273005
https://doi.org/10.1145/1629575.1629601
https://doi.org/10.1109/ICCEET.2012.6203873
https://doi.org/10.1145/2094114.2094118
https://doi.org/10.1016/j.proeng.2015.01.545
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/2.53354
https://doi.org/10.1145/1327452.1327491
https://doi.org/10.1145/2522968.2522979

Ejaz et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 53-64

64

Shvachko K, Kuang H, Radia S, and Chansler R (2010). The hadoop
distributed file system. In the Conference of the 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies
(MSST), IEEE, Washington, USA: 1-10.
https://doi.org/10.1109/MSST.2010.5496972

Tanenbaum AS, Van Renesse R, Van Staveren H, Sharp GJ, and
Mullender SJ (1990). Experiences with the amoeba distributed
operating system. Communications of the ACM, 33(12): 46-63.
https://doi.org/10.1145/96267.96281

Van Renesse R, Van Staveren H, and Tanenbaum AS (1989). The
performance of the Amoeba distributed operating system.
Software: Practice and Experience, 19(3): 223-234.
https://doi.org/10.1002/spe.4380190303

Wang L, Tao J, Ranjan R, Marten H, Streit A, Chen J, and Chen D
(2013). G-Hadoop: MapReduce across distributed data centers
for data-intensive computing. Future Generation Computer
Systems, 29(3): 739-750.
https://doi.org/10.1016/j.future.2012.09.001

Wang M, Li B, Zhao Y, and Pu G (2014). Formalizing google file
system. In the IEEE 20th Pacific Rim International Symposium
on Dependable Computing, IEEE, Singapore, Singapore: 190-
191.
https://doi.org/10.1109/PRDC.2014.32

Zaharia M, Borthakur D, Sen Sarma J, Elmeleegy K, Shenker S, and
Stoica I (2010a). Delay scheduling: A simple technique for
achieving locality and fairness in cluster scheduling. In the 5th
European Conference on Computer Systems, ACM, Paris,
France: 265-278.
https://doi.org/10.1145/1755913.1755940

Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, and
Stoica I (2012). Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In the 9th
USENIX Conference on Networked Systems Design and
Implementation, USENIX Association, San Jose, USA.

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, and Stoica I
(2010b). Spark: Cluster computing with working sets.
HotCloud, 10(10-10): 95. Available online at:
https://bit.ly/2zSQieG

Zaharia M, Hindman B, Konwinski A, Ghodsi A, Joseph AD, Katz
RH, and Stoica I (2011). The datacenter needs an operating
system. In HotCloud. Available online at:
https://bit.ly/3eD0UNz

Zhang Q, Cheng L, and Boutaba R (2010). Cloud computing: State-
of-the-art and research challenges. Journal of Internet
Services and Applications, 1(1): 7-18.
https://doi.org/10.1007/s13174-010-0007-6

https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/96267.96281
https://doi.org/10.1002/spe.4380190303
https://doi.org/10.1016/j.future.2012.09.001
https://doi.org/10.1109/PRDC.2014.32
https://doi.org/10.1145/1755913.1755940
https://bit.ly/2zSQieG
https://bit.ly/3eD0UNz
https://doi.org/10.1007/s13174-010-0007-6

	A secure operating system for data centers: A survey
	1. Introduction
	2. Research problems and objectives
	2.1. Resource sharing
	2.2. Data sharing
	2.3. Programming abstractions
	2.4. Debugging and monitoring

	3. Datacenter functional frameworks
	3.1. Mesos
	3.2. Dryad
	3.3. Quincy
	3.4. DryadLINQ
	3.5. Delay scheduling
	3.6. IX OS
	3.7. Plan9 IX OS
	3.8. MapReduce
	3.9. Spark
	3.10. Amoeba

	4. Comparison of various data center framework based on benchmark parameters
	5. Key findings and future discussion
	6. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References

