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In this paper, we present an explicit formula to find square roots of a 
tridiagonal Toeplitz matrix, and we show that these square roots have the 
form of a persymmetric matrix with examples to illustrate. 
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1. Introduction 

*The tridiagonal Toeplitz matrix 𝐴 is illustrated 
below: 
 

𝐴 =

(

 
 

𝑏 𝑎
𝑐 𝑏 𝑎

⋱ ⋱ ⋱
𝑐 𝑏 𝑎

𝑐 𝑏 )

 
 

𝑛×𝑛

𝑤𝑖𝑡ℎ    𝑎 ≠ 0  𝑎𝑛𝑑  𝑐 ≠ 0  

                                                                                                        (1.1) 
 

This type of matrix is used in several different 
fields of applications, such as a solution of ordinary 
and partial differential equations, time series 
analysis, and regularization matrices in Tikhonov 
regularization for the solution of discrete ill-posed 
problems. It is, therefore, important to understand 
the properties of this type of matrix (Noschese et al., 
2013). 

Yuttanan and Nilrat (2005) gave an answer to the 
question of which matrices have an 𝑛𝑡ℎ root for any 
positive integer 𝑛 and which have an 𝑛𝑡ℎ root only 
for some positive integer 𝑛. As a special case the 
diagonalizable matrices always have the 𝑛𝑡ℎ roots. 

In Section 2 and through the work of Salkuyeh 
(2006) about positive integer powers of the 
tridiagonal Toeplitz matrices, we give a method to 
calculate square roots of this type of matrix with 
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proof the form of the square root in section 3 with 
examples to illustrate. 

2. The square root of tridiagonal Toeplitz 
matrices 

In this section, we will give an explicit statement 
to the square root of the tridiagonal Toeplitz matrix, 
and we start with present some important results. 

 
Theorem 1: Let B be a complex matrix of order m. If 
B is diagonalizable, then B has an 𝑛𝑡ℎ root for any 
positive integer n. 

 
Proof: see Yuttanan and Nilrat (2005). 
 

As a special case, the matrix 𝐵 has a square root, 
i.e., there exists a matrix 𝑅 such that: 𝑅2 = 𝐵 
(Yuttanan and Nilrat, 2005). 
 
Lemma 1: Let A be a tridiagonal Toeplitz matrix 
defined in (1.1), the eigenvalues and eigenvectors of 
A are given by, 
 

𝜆𝑗 = 𝑏 + 2𝑎√
𝑐

𝑎
cos (

𝑗𝜋

𝑛+1
)                                                         (2.1) 

 
and, 
 

𝑥𝑗 =

(

 
 
 
 
 
 
 
(
𝑐

𝑎
)

1

2
𝑠𝑖𝑛 (

1𝑗𝜋

𝑛+1
)

(
𝑐

𝑎
)

2

2
𝑠𝑖𝑛 (

2𝑗𝜋

𝑛+1
)

(
𝑐

𝑎
)

3

2
𝑠𝑖𝑛 (

3𝑗𝜋

𝑛+1
)

⋮

(
𝑐

𝑎
)

𝑛

2
𝑠𝑖𝑛 (

𝑛𝑗𝜋

𝑛+1
))

 
 
 
 
 
 
 

                                                             (2.2) 
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Moreover, the matrix 𝐴 is diagonalizable, i.e., 
there exists an invertible matrix 𝑃 such that: 
 
𝐴 = 𝑃𝐷𝑃−1                                                                                 (2.3) 
 

with, 
 
𝑃 = (𝑥1 𝑥2 ⋯ 𝑥𝑛)    𝑎𝑛𝑑    𝐷 = 𝑑𝑖𝑎𝑔(𝜆1 𝜆2 ⋯ 𝜆𝑛) 
                                                                                                        (2.4) 

 
Proof: See Meyer (2000). 
 

Using (2.1), (2.2), (2.3), and theorem (1), we can 
give an explicit expression for a square root of the 
matrix defined in (1.1) (Meyer, 2000). 

From the work of Salkuyeh (2006), we have: 
 
𝑃−1 = 𝑃̃−1𝐷̃−1                                                                            (2.5) 

𝑃̃−1 =
2

𝑛+1
𝑃̃                                                                                 (2.6) 

 
with 
 

𝐷̃ = 𝑑𝑖𝑎𝑔 ((
𝑐

𝑎
)

1

2
(
𝑐

𝑎
)

2

2
⋯ (

𝑐

𝑎
)

𝑛

2), 𝑃̃ = (𝑥̃1 𝑥̃2 ⋯ 𝑥̃𝑛)   

 
in which 
 

𝐷̃ = 𝑑𝑖𝑎𝑔 ((
𝑐

𝑎
)

1
2
 , (
𝑐

𝑎
)

2
2
, ⋯ (

𝑐

𝑎
)

𝑛
2
 ) 

𝑥̃𝑗 =

(

 
 
 
 
 

𝑠𝑖𝑛 (
1𝑗𝜋

𝑛+1
)

𝑠𝑖𝑛 (
2𝑗𝜋

𝑛+1
)

𝑠𝑖𝑛 (
3𝑗𝜋

𝑛+1
)

⋮

𝑠𝑖𝑛 (
𝑛𝑗𝜋

𝑛+1
))

 
 
 
 
 

                                                                      (2.7) 

For more details, See Salkuyeh (2006). 
 
Theorem 2: Let A be a tridiagonal Toeplitz matrix 

defined in (1.1), then a square root R = (ri j) of A is 

given by, 
 

𝑟𝑖 𝑗 =
2

𝑛+1
(
𝑐

𝑎
)

𝑖−𝑗

2 ∑ √𝜆𝑘
𝑛
𝑘=1 sin

𝑖𝑘𝜋

𝑛+1
sin

𝑗𝑘𝜋

𝑛+1
            (2.8) 

 

where 
 

𝜆𝑗 = 𝑏 + 2𝑎√
𝑐

𝑎
cos (

𝑗𝜋

𝑛+1
). 

 

Proof: From (2.3), the matrix 𝐴 defined in (1.1) is 
diagonalizable. From theorem (1), there exists a 
matrix 𝑅 such that: 𝑅2 = 𝐴. 

Let: 
 

√𝐷 = 𝑑𝑖𝑎𝑔(√𝜆1 √𝜆2 ⋯ √𝜆𝑛).                                     (2.9) 

 

Therefore, we have: 
 

𝑅 = 𝑃√𝐷𝑃−1                                                                            (2.10) 
 

where 𝑃 and 𝑃−1 were defined in (2.4) and (2.5). 
Hence, 
 

𝑅2 = 𝑃√𝐷𝑃−1𝑃√𝐷𝑃−1 = 𝑃𝐷𝑃−1 = 𝐴 
 

and, 
 
 

  

R = 𝑃√𝐷𝑃−1

    = 𝑃√𝐷𝑃̃−1𝐷̃−1               𝑢𝑠𝑖𝑛𝑔 (2.5)

    =
2

𝑛 + 1
𝑃√𝐷𝑃̃𝐷̃−1        𝑢𝑠𝑖𝑛𝑔 (2.6)

    =
2

𝑛 + 1
𝑃 𝑑𝑖𝑎𝑔(√𝜆1 √𝜆2 ⋯ √𝜆𝑛) 𝑃̃ 𝑑𝑖𝑎𝑔((

𝑐

𝑎
)
−
1
2
(
𝑐

𝑎
)
−
2
2
⋯ (

𝑐

𝑎
)
−
𝑛
2)

 

  
using (2.2) and (2.7), the relation (2.8) is obtained.  
 
Example 1: Let: 

 

𝐴 = (
2 1 0
2 2 1
0 2 2

) 

 

be a tridiagonal Toeplitz matrix with 𝑎 = 1, 𝑏 = 2, 
𝑐 = 2. By using lemma (1) and (2.1), we have 𝜆1 = 4, 
𝜆2 = 2, 𝜆3 = 0. Then from theorem (2), we have: 
 

𝑟𝑖 𝑗 = (2)
𝑖−𝑗−2
2 ∑ √𝜆𝑘

𝑛

𝑘=1
sin

𝑖𝑘𝜋

𝑛 + 1
sin

𝑗𝑘𝜋

𝑛 + 1
,        𝑖, 𝑗 = 1,2,3 

 
then we have: 
 

𝑅 =

(

 
 
 
 

1 + √2

2

1

2

1 − √2

4

1 1
1

2

1 − √2 1
1 + √2

2 )

 
 
 
 

 

3. Structure of square root of tridiagonal Toeplitz 
matrices 

In this section, we prove that the square root of 
the tridiagonal Toeplitz matrix defined in (2.8) takes 
the form of a persymmetric matrix. 

Let’s start with the definition of a persymmetric 
matrix. 

 
Definition 1: Let: A = (ai j) be an n × n matrix. A is 

said to be a persymmetric matrix if it is symmetric 
across its lower-left to upper-right diagonal: 



Krim et al/International Journal of Advanced and Applied Sciences, 7(7) 2020, Pages: 92-94 

94 
 

𝑎𝑖 𝑗 = 𝑎𝑛−𝑗+1 𝑛−𝑖+1      𝑓𝑜𝑟    𝑖, 𝑗 = 1,⋯ , 𝑛. 

 

For example, 6-by-6 persymmetric matrices are 
of the form: 
 

𝐴 =

(

  
 

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 𝑎15
𝑎31 𝑎32 𝑎33 𝑎34 𝑎24 𝑎14
𝑎41 𝑎42 𝑎43 𝑎33 𝑎23 𝑎13
𝑎51 𝑎52 𝑎42 𝑎32 𝑎22 𝑎12
𝑎61 𝑎51 𝑎41 𝑎31 𝑎21 𝑎11)

  
 

 

 

Theorem 3: The square root R = (ri j) of tridiagonal 

Toeplitz matrices defined in (2.8) is a persymmetric 
matrix:  
 
𝑟𝑖 𝑗 = 𝑟𝑛−𝑗+1 𝑛−𝑖+1    𝑓𝑜𝑟  𝑖, 𝑗 ∈ {1,2,⋯ , 𝑛}                          (3.1) 

 

Proof: To prove (3.1), you must note the following: 

sin(𝑘𝜋 − 𝜃)
= {
sin(𝜃)    𝑖𝑓    𝑘 = 2𝑝 + 1

−sin(𝜃)    𝑖𝑓    𝑘 = 2𝑝

= (−1)𝑘+1sin(𝜃) ∀𝑘 ∈ ℕ

     (3.2) 

 
Now by using (2.8), we have: 

  

𝑟𝑛−𝑗+1 𝑛−𝑖+1 =
2

𝑛+1
(
𝑐

𝑎
)

𝑛−𝑗+1−𝑛+𝑖−1

2
𝑘
[

= 1]𝑛∑ √𝜆𝑘sin (
(𝑛−𝑗+1)𝑘𝜋

𝑛+1
) sin (

(𝑛−𝑖+1)𝑘𝜋

𝑛+1
)

                        =
2

𝑛+1
(
𝑐

𝑎
)

𝑖−𝑗

2 ∑ √𝜆𝑘
𝑛
𝑘=1 sin (𝑘𝜋 −

𝑗𝑘𝜋

𝑛+1
) sin (𝑘𝜋 −

𝑖𝑘𝜋

𝑛+1
)

                        =
2

𝑛+1
(
𝑐

𝑎
)

𝑖−𝑗

2 ∑ √𝜆𝑘
𝑛
𝑘=1 (−1)𝑘+1sin (

𝑗𝑘𝜋

𝑛+1
) (−1)𝑘+1sin (

𝑖𝑘𝜋

𝑛+1
) 𝑢𝑠𝑖𝑛𝑔  (3.2)

                        = 𝑟𝑖 𝑗

  

  
Example 2: Let: 
 

𝐵 = (

3 1
2 3 1

2 3 1
2 3

)  

 

By using (2.8), we have: 
 

𝑅 ≈ (

1.6740 0.3109 −0.0316 0.0059
0.6218 1.6108 0.3226 −0.0316
−0.1266 0.6453 1.6108 0.3109
0.0470 −0.1266 0.6218 1.6740

)  

 

Observe that 𝑅 is a persymmetric matrix. 

4. Conclusion 

Based on this article, we obtain a formula for 
calculating a square root of a tridiagonal Toeplitz 
matrix, which is diagonalizable. The reader can find 
other properties and other square roots of other 
diagonalizable matrices with the same method we 
used. 
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