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The purpose of this paper is to study the different classes of ordered AG-
groupoids by using fuzzy left (resp. right, interior) ideals. Particularly, we 
illustrate regular (resp. right regular, left regular, (2, 2)-regular, weakly 
regular and intra-regular) ordered AG-groupoids in terms of fuzzy left (resp. 
right, interior) ideals. In this regard, we show that in (regular, right regular, 
weakly regular) ordered AG-groupoids, the concept of fuzzy (interior, two-
sided) ideals coincide. The concept of fuzzy (interior, two-sided) ideals 
coincide in ((2,2), left, intra-) regular ordered AG-groupoids with left 
identity. 
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1. Introduction 

*In 1972, a generalization of commutative 
semigroup had been established by Kazim and 
Naseeruddin (1977). In ternary commutative law: 
𝑎𝑏𝑐 = 𝑐𝑏𝑎, they introduced braces on the left side of 
this law and explored a new pseudo associative law, 
that is (𝑎𝑏)𝑐 = (𝑐𝑏)𝑎. This they called the left 
invertive law. A groupoid 𝑆 is said to be left almost 
semigroup (abbreviated as LA-semigroup) if it 
satisfies the left invertive law: (𝑎𝑏)𝑐 = (𝑐𝑏)𝑎. 
Holgate (1992) has called the same structure as left 
invertive groupoid. This structure is also known as 
Abel-Grassmann's groupoid (abbreviated as AG-
groupoid). In fact, an AG-groupoid is a non-
commutative and non-associative semigroup. It is a 
midway structure between a commutative 
semigroup and a groupoid. Ideals in AG-groupoids 
have been investigated by Mushtaq and Yusuf 
(1978). A groupoid 𝑆 is said to be medial (resp. 
paramedial) if (𝑎𝑏)(𝑐𝑑) = (𝑎𝑐)(𝑏𝑑) (resp. 
((𝑎𝑏)(𝑐𝑑) = (𝑑𝑏)(𝑐𝑎)). An AG-groupoid is medial, 
but in general, an AG-groupoid needs not to be 
paramedial. Every AG-groupoid with left identity is 
paramedial and also satisfies 𝑎(𝑏𝑐) =
𝑏(𝑎𝑐), (𝑎𝑏)(𝑐𝑑) = (𝑑𝑐)(𝑏𝑎).  

Algebraic structures play a prominent role in 
mathematics with wide-ranging applications in 
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many disciplines such as theoretical physics, 
computer sciences, control engineering, information 
sciences, coding theory, topological spaces, and the 
like. Although semigroups concentrate on theoretical 
aspects, they also include applications in error-
correcting codes, control engineering, formal 
language, computer science, and information science. 

Algebraic structures, especially ordered 
semigroups play a prominent role in mathematics 
with wide-ranging applications in many disciplines 
such as control engineering, computer arithmetics, 
coding theory, sequential machines, and formal 
languages. 

(𝑆,⋅, ≤) is an ordered semigroup and 𝐴 ⊆ 𝑆, we 
denote by (𝐴], the subset of  𝑆 defined as follows: 
(𝐴] = {𝑠 ∈ 𝑆  :   𝑠 ≤ 𝑎 for some 𝑎 ∈ 𝐴}. A non-empty 
subset 𝐴 of 𝑆 is called a subsemigroup of 𝑆 if 𝐴2 ⊆ 𝐴.  

The notions of ideals play a crucial role in the 
study of (ring, semi-ring, near-ring, semigroup, 
ordered semigroup) theory, etc. 

A non-empty subset 𝐴 of 𝑆 is called a left (resp. 
right) ideal of  𝑆 if the following hold (1) 𝑆𝐴 ⊆ 𝐴  
(resp.  𝐴𝑆 ⊆ 𝐴). (2) If 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝑆 such that 𝑏 ≤
𝑎 implies 𝑏 ∈ 𝐴. Equivalent definition: 𝐴 is called a 
left  (resp. right) ideal of 𝑆 if (𝐴] ⊆ 𝐴 and 𝑆𝐴 ⊆ 𝐴 
(resp.  𝐴𝑆 ⊆ 𝐴). A non-empty subset 𝐴 of 𝑆 is called 
an interior ideal of 𝑆 if (1) 𝑆𝐴𝑆 ⊆ 𝐴. (2) If 𝑎 ∈ 𝐴 and 
𝑏 ∈ 𝑆 such that 𝑏 ≤ 𝑎 implies 𝑏 ∈ 𝐴.  

An ordered semigroup 𝑆 is said to be regular if, 
for every 𝑎 ∈ 𝑆, there exists 𝑥 ∈ 𝑆 such that 𝑎 ≤ 𝑎𝑥𝑎. 
Equivalent definitions are as follows: (1) 𝐴 ⊆ (𝐴𝑆𝐴] 
for every 𝐴 ⊆ 𝑆. (2) 𝑎 ∈ (𝑎𝑆𝑎]  for every 𝑎 ∈ 𝑆. 

An ordered semigroup 𝑆 is said to be (2,2)-
regular, if for every 𝑎 ∈ 𝑆,  there exists 𝑥 ∈ 𝑆 such 
that 𝑎 ≤ 𝑎2𝑥𝑎2Equivalent definitions are as follows: 
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(1) 𝐴 ⊆ (𝐴2𝑆𝐴2] for every𝐴 ⊆ 𝑆. (2) 𝑎 ∈ (𝑎2𝑆𝑎2]  
for every 𝑎 ∈ 𝑆.  

An ordered semigroup 𝑆 is said to be weakly 
regular, if for every 𝑎 ∈ 𝑆,  there exist 𝑥, 𝑦 ∈ 𝑆 such 
that 𝑎 ≤ 𝑎𝑥𝑎𝑦. Equivalent definitions are as follows: 
(1) 𝐴 ⊆ ((𝐴𝑆)2] for every 𝐴 ⊆ 𝑆. (2) 𝑎 ∈ ((𝑎𝑆)2]  for 
every 𝑎 ∈ 𝑆.  

An ordered semigroup 𝑆 is an intra-regular, if for 
every 𝑎 ∈ 𝑆 there exist 𝑥, 𝑦 ∈ 𝑆 such that 𝑎 ≤ 𝑥𝑎2𝑦. 
Equivalent definitions are as follows: (1) 𝐴 ⊆ (𝑆𝐴2𝑆] 
for every 𝐴 ⊆ 𝑆.  (2) 𝑎 ∈ (𝑆𝑎2𝑆]  for every 𝑎 ∈ 𝑆.  

We define fuzzy left (resp. right, interior) ideals in 
ordered AG-groupoids, basically, an ordered AG-
groupoid is non-commutative and non-associative 
ordered semigroup. 

In this present paper, we characterize regular 
(resp. right regular, left regular, (2, 2) -regular, 
weakly regular, and intra-regular) ordered AG-
groupoids in terms of fuzzy left (resp. right, interior) 
ideals. In this regard, we prove that in regular, right 
regular, weakly regular) ordered AG-groupoids, the 
concept of fuzzy (interior, two-sided) ideals coincide. 
The concept of fuzzy (interior, two-sided) ideals 
coincide in ((2, 2) left, intra-) regular ordered AG-
groupoids with left identity. 

2. Preliminaries 

By Shah and Kausar (2014), an ordered AG-
groupoid 𝑆, is a partially ordered set, at the same 
time, an AG-groupoid such that 𝑎 ≤ 𝑏, implies 𝑎𝑐 ≤
𝑏𝑐 and 𝑐𝑎 ≤ 𝑐𝑏 for all 𝑎, 𝑏, 𝑐 ∈ 𝑆. Two conditions are 
equivalent to the one condition (𝑐𝑎)𝑑 ≤ (𝑐𝑏)𝑑

 
for all 

𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑆. An ordered AG-groupoid is also called a 
po-AG-groupoid for short. 

Let 𝑆 be an ordered AG-groupoid and 𝐴 ⊆ 𝑆, we 
define a subset (𝐴] = {𝑠 ∈ 𝑆 :  𝑠 ≤ 𝑎 for some 𝑎 ∈ 𝐴} 
of 𝑆 and obviously 𝐴 ⊆ (𝐴]. If 𝐴 = {𝑎}, then we write 
(𝑎] instead of ({𝑎}]. For 𝐴, 𝐵 ⊆ 𝑆, then 𝐴𝐵 =
{𝑎𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, ((𝐴]] = (𝐴], (𝐴](𝐵] ⊆ (𝐴𝐵], 
((𝐴](𝐵]] = (𝐴𝐵], if 𝐴 ⊆ 𝐵 then (𝐴] ⊆ (𝐵], (𝐴 ∩ 𝐵] ≠
(𝐴] ∩ (𝐵] in general. 

For ∅ ≠ 𝐴 ⊆ 𝑆. 𝐴 is called an AG-subgroupoid of 𝑆 
if 𝐴2 ⊆ 𝐴. 𝐴 is called a left  left  (resp. right) ideal of 𝑆 
if the following hold  (1) 𝑆𝐴 ⊆ 𝐴(resp.  𝐴𝑆 ⊆ 𝐴).  
(2)  If 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝑆 such that 𝑏 ≤ 𝑎 implies 𝑏 ∈ 𝐴. 

Equivalent definition:  𝐴 is called a left left (resp. 
right) ideal of 𝑆 if (𝐴] ⊆ 𝐴 and 𝑆𝐴 ⊆ 𝐴 (𝑟𝑒𝑠𝑝. 𝐴𝑆 ⊆
𝐴). 𝐴 is called an ideal of 𝑆 if 𝐴 is both a left and a 
right ideal of 𝑆. If 𝐴, 𝐵 are ideals of 𝑆 then 𝐴 ∪ 𝐵 and 
𝐴 ∩ 𝐵 are also ideals of 𝑆. 

A non-empty subset 𝐴 of  𝑆 is called an interior 
ideal of 𝑆 if (1) (𝑆𝐴)𝑆 ⊆ 𝐴. (2)  If 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝑆 
such that 𝑏 ≤ 𝑎 implies 𝑏 ∈ 𝐴 (𝑜𝑟 (𝐴] ⊆ 𝐴).  

An ordered AG-groupoid 𝑆 is said to be regular if, 
for every 𝑎 ∈ 𝑆,  there exists 𝑥 ∈ 𝑆 such that 𝑎 ≤
(𝑎𝑥)𝑎. Equivalent definitions are as follows: (1) 𝐴 ⊆
((𝐴𝑆)𝐴] for every 𝐴 ⊆ 𝑆. (2) 𝑎 ∈ ((𝑎𝑆)𝑎]  for every 
𝑎 ∈ 𝑆. 

An ordered AG-groupoid 𝑆 is left (resp. right) 
regular if for every 𝑎 ∈ 𝑆, there exists 𝑥 ∈ 𝑆 such that 
≤ 𝑥𝑎2 (𝑟𝑒𝑠𝑝. 𝑎 ≤ 𝑎2𝑥). Equivalent definitions are as 

follows: (1) 𝐴 ⊆ (𝑆𝐴2] (resp. 𝐴 ⊆ (𝐴2𝑆]) for every 
𝐴 ⊆ 𝑆. (2) 𝑎 ∈ (𝑆𝑎2] ( resp. 𝑎 ∈ (𝑎2𝑆])  for every 𝑎 ∈
𝑆. 

An ordered AG-groupoid  𝑆 is said to be 
completely regular if it is regular, left regular, right 
regular. 

An ordered AG-groupoid 𝑆 is said to be strongly 
regular if, for every 𝑎 ∈ 𝑆,  there exists 𝑥 ∈ 𝑆 such 
that 𝑎 ≤ (𝑎𝑥)𝑎 and 𝑎𝑥 = 𝑥𝑎. 

Every strongly regular ordered AG-groupoid is 
right regularly ordered AG-groupoid. 

An ordered AG-groupoid  𝑆 is said to be weakly 
regular if for every 𝑎 ∈ 𝑆, there exist 𝑥, 𝑦 ∈ 𝑆 such 
that 𝑎 ≤ (𝑎𝑥)(𝑎𝑦). Equivalent definitions are as 
follows: (1)𝐴 ⊆ ((𝐴𝑆)2] for every 𝐴 ⊆ 𝑆. (2) 𝑎 ∈
((𝑎𝑆)2]  for every 𝑎 ∈ 𝑆. 

An ordered AG-groupoid 𝑆 is called intra-regular 
if for every 𝑎 ∈ 𝑆, there exist 𝑥, 𝑦 ∈ 𝑆 such that 𝑎 ≤
(𝑥𝑎2)𝑦. Equivalent definitions are as follows: 
(1) 𝐴 ⊆ ((𝑆𝐴2)𝑆] for every 𝐴 ⊆ 𝑆. (2) 𝑎 ∈ ((𝑆𝑎2)𝑆]  
for every 𝑎 ∈ 𝑆. 

We denote by 𝐿(𝑎), 𝑅(𝑎), 𝐼(𝑎) the left ideal, the 
right ideal, and the ideal of 𝑆, respectively generated 
by 𝑎. We have 𝐿(𝑎) = {𝑠 ∈ 𝑆  :   𝑠 ≤ 𝑎 or 𝑠 ≤ 𝑥𝑎 for 
some ∈ 𝑆} = (𝑎 ∪ 𝑆𝑎],  𝑅(𝑎) = (𝑎 ∪ 𝑎𝑆], 𝐼(𝑎) = (𝑎 ∪
𝑆𝑎 ∪ 𝑎𝑆 ∪ (𝑆𝑎)𝑆]. 
 
Example 1: Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Define 
multiplication ⋅ in 𝑆 as follows: 
 

. a B c d e 
a a A a a a 
b a A a a a 
c a A e c d 
d a A d e c 
e a A c d E 

 
and ≤⥂: = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎), (𝑒, 𝑒)}. Then 𝑆 is an 
ordered AG-groupoid and𝐴 = {𝑐, 𝑑, 𝑒} is an AG-
subgroupoid of 𝑆 and 𝐼 = {𝑎, 𝑐, 𝑑, 𝑒} is an ideal of 𝑆.  
 
Remark 1: Every ideal (whether right, left, or two-
sided) is an AG-subgroupoid, but the converse is not 
true in general. An ordered AG-groupoid  𝑆 is said to 
be locally associative if for every ∈ 𝑆, (𝑎. 𝑎). 𝑎 =
𝑎. (𝑎. 𝑎). 
 
Example 2: Let 𝑆 = {𝑎, 𝑏, 𝑐}. Define multiplication ⋅ 
in 𝑆 as follows: 

 
. A b c 
a C c b 
b B b b 
c B b b 

 
and ≤: = {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐)}. Then (𝑆,⋅, ≤) is a 
locally associative ordered AG-groupoid. 

In a locally associative ordered AG-groupoids 𝑆, 
we define powers of an element as follow: ⥂ 𝑎1 =
𝑎, 𝑎𝑛+1 = 𝑎𝑛𝑎. If  𝑆 has a left identity 𝑒, we define 
𝑎0 = 𝑒, as left identity is unique in an ordered AG-
groupoid.  A locally associative ordered AG-groupoid 
 𝑆 with left identity 𝑒 has associative powers. 
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3. Fuzzy interior ideals on ordered AG-groupoids 

A fuzzy set 𝜇 of a given set 𝑋 is described as an 
arbitrary function 𝜇 :  𝑋 → [0,1], where [0,1] is the 
unit closed interval of real numbers. 

The fundamental concept of a fuzzy set, 
introduced by Zadeh (1965), which gives a natural 
framework for the generalizations of some basic 
notions of algebra, for example, set (resp. group, 
semigroup, ring, near-ring, semi-ring) theory, 
groupoids, real analysis, topology, differential 
equations and so forth. Rosenfeld (1971) introduced 
the concept of a fuzzy set in the group. The study of 
the fuzzy set in semigroup investigated by Kuroki 
(1995). He studied fuzzy ideals and fuzzy (interior, 
bi-, quasi-, quasi-semiprime) ideals in semigroups. 
Dib and Galhum (1997) examined the definition of 
fuzzy groupoid (resp. semigroup). They studied 
fuzzy ideals and fuzzy bi-ideals of fuzzy semigroups.  

A systematic exposition of fuzzy semigroups by 
Mordeson et al. (2003), where one can find 
theoretical results on fuzzy semigroups and their use 
in fuzzy finite state machines and fuzzy languages. 
Fuzzy sets in ordered semigroups/ordered 
groupoids established by Kehayopulu and Tsingelis 
(2002). 

By a fuzzy set  𝜇 of an ordered AG-groupoid 𝑆,  we 
mean a function 𝜇 :  𝑆 → [0,1] and the complement 
of 𝜇 is denoted by 𝜇′, is a fuzzy set in 𝑆 given by 
𝜇′(𝑥) = 1 − 𝜇(𝑥) for all 𝑥 ∈ 𝑆. 

A fuzzy set 𝜇 of  𝑆 is called a fuzzy AG-
subgroupoid of 𝑆 if 𝜇(𝑥𝑦) ≥ 𝑚𝑖𝑛{ 𝜇(𝑥), 𝜇(𝑦)} for all  
𝑥, 𝑦 ∈ 𝑆. 𝜇 is called a fuzzy left (resp. right) ideal of 𝑆 
if (1) 𝜇(𝑥𝑦) ≥ 𝜇(𝑦) ( resp. 𝜇(𝑥𝑦) ≥ 𝜇(𝑥)). (2) 𝑥 ≤
𝑦, implies 𝜇(𝑥) ≥ 𝜇(𝑦)  for all 𝑥, 𝑦 ∈ 𝑆. 𝜇  is a fuzzy 
ideal of 𝑆 if 𝜇 is both a fuzzy left and a fuzzy right 
ideal of 𝑆. 

Equivalently, 𝜇 is called a fuzzy ideal of 𝑆 if 
(1) 𝜇(𝑥𝑦) ≤ 𝑚𝑎𝑥{ 𝜇(𝑥), 𝜇(𝑦)}. (2) 𝑥 ≤ 𝑦, implies 
𝜇(𝑥) ≥ 𝜇(𝑦)  for all 𝑥, 𝑦 ∈ 𝑆. 

Every fuzzy ideal (whether right, left, two-sided) 
is a fuzzy AG-subgroupoid, but the converse is not 
true in general.  

A fuzzy set 𝜇 of 𝑆 is called a fuzzy interior ideal 
of 𝑆 if (1) 𝜇((𝑥𝑎)𝑦) ≥ 𝜇(𝑎). (2) 𝑥 ≤ 𝑦, implies 
𝜇(𝑥) ≥ 𝜇(𝑦) for all 𝑥, 𝑎, 𝑦 ∈ 𝑆. 

We denote by 𝐹(𝑆), the set of all fuzzy subsets of 
 𝑆. We define an order relation " ⊆ " on 𝐹(𝑆) such 
that 𝑓 ⊆ 𝑔 if and only if 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝑆. 
Then (𝐹(𝑆),∘, ⊆) is an ordered AG-groupoid. 

By the symbols 𝑓 ∧ 𝑔 and  𝑓 ∨ 𝑔, we will mean the 
following fuzzy subsets: 
 
(∀𝑥 ∈ 𝑆)(𝑓 ∧ 𝑔  :   𝑆 → [0,1], 𝑥 ↦ (𝑓 ∧ 𝑔)(𝑥)

= 𝑚𝑖𝑛{ 𝑓(𝑥), 𝑔(𝑥)}); 
(∀𝑥 ∈ 𝑆)(𝑓 ∨ 𝑔  :   𝑆 → [0,1], 𝑥 ↦ (𝑓 ∨ 𝑔)(𝑥) =
𝑚𝑎𝑥{ 𝑓(𝑥), 𝑔(𝑥)}). 

Let 𝑎 ∈ 𝑆 and ∅ ≠ 𝐴 ⊆ 𝑆, and we define a set 𝐴𝑎 =
{(𝑦, 𝑧) ∈ 𝑆 × 𝑆 | 𝑎 ≤ 𝑦𝑧}.  Let 𝑓 and 𝑔 be fuzzy 
subsets of 𝑆, the product 𝑓 ∘ 𝑔 of 𝑓 and 𝑔 is defined 
by: 

  
  

𝑓 ∘ 𝑔  :   𝑆 → [0,1], 𝑎 ↦ 𝑓 ∘ 𝑔(𝑎) = {
∨(𝑦,𝑧)∈𝐴𝑎

𝑚𝑖𝑛{ 𝑓(𝑦), 𝑔(𝑧)}   ⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂ 𝑖𝑓 𝐴𝑎 ≠ 𝜑

⥂⥂ 0                                    𝑖𝑓 𝐴𝑎 = 𝜑
 

  
 

For a non-empty family of fuzzy subsets {𝑓𝑖}𝑖∈𝐼 ,  of  
𝑆, the fuzzy subsets ∨𝑖∈𝐼 𝑓𝑖 and ∧𝑖∈𝐼 𝑓𝑖 of  𝑆 are 
defined as follows: 
 

∨𝑖∈𝐼 𝑓𝑖 : 𝑆 → [0,1], 𝑎 ↦ (∨𝑖∈𝐼 𝑓𝑖)(𝑎):   = 𝑠𝑢𝑝
𝑖∈𝐼

{𝑓𝑖(𝑎)} 

𝑎𝑛𝑑 ∧𝑖∈𝐼 𝑓𝑖 : 𝑆 → [0,1], 𝑎 ↦ (∧𝑖∈𝐼 𝑓𝑖)(𝑎):   = 𝑖𝑛𝑓

𝑖∈𝐼

{𝑓𝑖(𝑎)}. 

 
If 𝐼 is a finite set, say 𝐼 = {1,2, . . . 𝑛},  then clearly,  

 
∨𝑖∈𝐼 𝑓𝑖(𝑎) = 𝑚𝑎𝑥{ 𝑓1(𝑎), 𝑓2(𝑎), . . . , 𝑓𝑛(𝑎)} 
𝑎𝑛𝑑 ∧𝑖∈𝐼 𝑓𝑖(𝑎) = 𝑚𝑖𝑛{ 𝑓1(𝑎), 𝑓2(𝑎), . . . , 𝑓𝑛(𝑎)}. 
 

For 𝑆, the fuzzy subsets 0 and 1 are defined as 
follows: 
 
0: 𝑆 → [0,1], 𝑥 ↦ 0(𝑥):   = 0. 
1: 𝑆 → [0,1], 𝑥 ↦ 1(𝑥):   = 1. 
 

Clearly, the fuzzy subset 0 (resp. 1) of 𝑆 is the 
least (resp. the greatest) element of the ordered set 
(𝐹(𝑆), ≤). The fuzzy subset 0 is the zero element of 
(𝐹(𝑆),∘, ≤) (that is, 𝑓 ∘ 0 = 0 ∘ 𝑓 = 0 and 0 ≤ 𝑓 for 
every 𝑓 ∈ 𝐹(𝑆)). 

For ∅ ≠ 𝐴 ⊆ 𝑆, the characteristic function of 𝐴 is 
denoted by 𝜒𝐴 and defined by, 
 

𝜒𝐴(𝑎) = {
1 𝑖𝑓 𝑎 ∈ 𝐴
0 𝑖𝑓 𝑎 ∉ 𝐴

. 

 

An ordered AG-groupoid 𝑆 can be considered a 
fuzzy subset of itself, and we write 𝑆 = 𝜒𝑆, i.e., 
𝑆(𝑥) = 𝜒𝑆(𝑥) = 1 for all  𝑥 ∈ 𝑆. This implies that 
𝑆(𝑥) = 1 for all 𝑥 ∈ 𝑆. 

For , 𝐵 ⊆ 𝑆 , then 𝐴 ⊆ 𝐵 if and only if 𝑓𝐴 ≤ 𝑓𝐵 and  
𝑓𝐴 ∘ 𝑓𝐵 = 𝑓(𝐴𝐵]. 

Let 𝜇 be a fuzzy subset of 𝑆, and then for all 𝑡 ∈
(0,1], we define a set 𝑈(𝜇; 𝑡) = {𝑥 ∈ 𝑆 | 𝜇(𝑥) ≥ 𝑡}, 
which is called an upper 𝑡 level cut of 𝜇  and can be 
used to the characterization of 𝜇. 
 
Example 3: Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}. Define multiplication 
in 𝑆 as follows: 

 
. A b c d 
a A a a a 
b A a a a 
c A a d a 
d A a c d 

 
and ≤: = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎), (𝑑, 𝑑)}. Then 𝑆 is an 
ordered AG-groupoid. Let 𝜇 be a fuzzy set of 𝑆 such 
that 𝜇(𝑎) = 𝜇(𝑐) = 𝜇(𝑑) = 0.7, 𝜇(𝑏) = 0. Then 𝜇 is a 
fuzzy right ideal of 𝑆. 
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Lemma 1: Let 𝑆  be an ordered AG-groupoid and ∅ ≠
𝐴 ⊆ 𝑆.  Then the characteristic function  𝜒(𝐴] of (𝐴]  

is a fuzzy subset of  𝑆 satisfying the condition 𝑥 ≤
𝑦 ⇒ 𝜒(𝐴](𝑥) ≥ 𝜒(𝐴](𝑦) for all 𝑥, 𝑦 ∈ 𝑆. 

 
Proof: By the definition, 𝜒(𝐴] is a mapping of 𝑆 into 

{0,1}(⊆ [0,1]). Let  𝑥 ≤ 𝑦,  𝑥, 𝑦 ∈ 𝑆. If 𝑦 ∉ (𝐴],  by 
definition 𝜒(𝐴](𝑦) = 0, thus 𝜒(𝐴](𝑥) ≥ 𝜒(𝐴](𝑦). If 𝑦 ∈

(𝐴],  this implies that 𝜒(𝐴](𝑦) = 1. Since 𝑦 ∈ (𝐴], so 

there exists 𝑧 ∈ 𝐴 such that 𝑦 ≤ 𝑧.  Thus 𝑥 ≤ 𝑧, i.e., 
𝑥 ∈ (𝐴] and 𝜒(𝐴](𝑥) = 1. Thus 𝜒(𝐴](𝑥) ≥ 𝜒(𝐴](𝑦). 

 
Proposition 1: Let  𝑆 be an ordered AG-groupoid 
and ∅ ≠ 𝐴 ⊆ 𝑆. Then 𝐴 = (𝐴] if and only if a fuzzy 
subset 𝜒𝐴 of 𝑆 has the property 𝑥 ≤ 𝑦 ⇒ 𝜒𝐴(𝑥) ≥
𝜒𝐴(𝑦)  for all 𝑥, 𝑦 ∈ 𝑆. 
 
Proof: Suppose 𝐴 = (𝐴], then the characteristic 
function 𝜒𝐴 of 𝐴 is a fuzzy subset of  𝑆 satisfying the 
condition 𝑥 ≤ 𝑦 ⇒ 𝜒𝐴(𝑥) ≥ 𝜒𝐴(𝑦), by the Lemma 
MB. Conversely, let 𝑥 ∈ (𝐴],  this implies that there 
exists 𝑦 ∈ 𝐴 such that 𝑥 ≤ 𝑦. By the given condition, 
we have  𝜒𝐴(𝑥) ≥ 𝜒𝐴(𝑦). Since 𝑦 ∈ 𝐴, we have 
𝜒𝐴(𝑦) = 1. Thus 𝜒𝐴(𝑥) = 1, i.e., 𝑥 ∈ 𝐴. Hence 𝐴 =
(𝐴]. 
 
Lemma 2: Let 𝑆 be an ordered AG-groupoid and ∅ ≠
𝐴 ⊆ 𝑆. Then 𝐴 is an AG-subgroupoid of 𝑆 if and only 
if the characteristic function 𝜒𝐴 of 𝐴 is a fuzzy AG-
subgroupoid of 𝑆. 
 
Proof: Suppose 𝐴 is an AG-subgroupoid of 𝑆 and 
𝑥, 𝑦 ∈ 𝑆. If 𝑥, 𝑦 ∉ 𝐴, by definition 𝜒𝐴(𝑥) = 0 = 𝜒𝐴(𝑦). 
Thus 𝜒𝐴(𝑥𝑦) ≥ 𝜒𝐴(𝑥) ∧ 𝜒𝐴(𝑦). If 𝑥, 𝑦 ∈ 𝐴, by 
definition 𝜒𝐴(𝑥) = 1 = 𝜒𝐴(𝑦). 𝑥𝑦 ∈ 𝐴, 𝐴 being an AG-
subgroupoid of 𝑆, this implies that 𝜒𝐴(𝑥𝑦) = 1. Thus 
𝜒𝐴(𝑥𝑦) ≥ 𝜒𝐴(𝑥) ∧ 𝜒𝐴(𝑦). Hence the characteristic 
function 𝜒𝐴 of 𝐴 is a fuzzy AG-subgroupoid of  𝑆. 

Conversely, let 𝑦 ∈ 𝐴2, 𝑥, 𝑦 ∈ 𝐴. By definition of a 
characteristic function 𝜒𝐴(𝑥) = 1 = 𝜒𝐴(𝑦). 𝜒𝐴(𝑥𝑦) ≥
𝜒𝐴(𝑥) ∧ 𝜒𝐴(𝑦) = 1, 𝜒𝐴  is a fuzzy AG-subgroupoid of 
 𝑆. This implies that 𝜒𝐴(𝑥𝑦) = 1, i.e., 𝑥𝑦 ∈ 𝐴. Hence 𝐴 
is an AG-subgroupoid of 𝑆. 
 
Lemma 3: Let 𝑆 be an ordered AG-groupoid and ∅ ≠
𝐴 ⊆ 𝑆. Then 𝐴 is a left (resp. right) ideal of 𝑆 if and 
only if the characteristic function 𝜒𝐴 of 𝐴 is a fuzzy 
left (resp. right) ideal of 𝑆. 
 
Proof: Suppose 𝐴 is a left ideal of 𝑆 and 𝑥, 𝑦 ∈ 𝑆 such 
that 𝑥 ≤ 𝑦, this implies that 𝐴 = (𝐴],  𝐴  being a left 
ideal of 𝑆.

 
 Then 𝜒𝐴(𝑥) ≥ 𝜒𝐴(𝑦),  by the Proposition 

1. If 𝑦 ∉ 𝐴, by definition 𝜒𝐴(𝑦) = 0. Thus 𝜒𝐴(𝑥𝑦) ≥
𝜒𝐴(𝑦). If 𝑦 ∈ 𝐴, by definition 𝜒𝐴(𝑦) = 1. 𝑥𝑦 ∈ 𝐴,  𝐴 
being a left ideal, so 𝜒𝐴(𝑥𝑦) = 1. Thus 𝜒𝐴(𝑥𝑦) ≥
𝜒𝐴(𝑦). Hence the characteristic function 𝜒𝐴 of 𝐴 is a 
fuzzy left ideal of 𝑆. 

Conversely, let 𝑦 ∈ 𝐴 and 𝑥 ∈ 𝑆 such that  𝑥 ≤ 𝑦 , 
this implies that 𝜒𝐴(𝑥) ≥ 𝜒𝐴(𝑦), 𝜒𝐴  being a fuzzy left 
ideal of 𝑆. Then 𝐴 = (𝐴],  by the Proposition 1. Let 
𝑥𝑦 ∈ 𝑆𝐴, where 𝑦 ∈ 𝐴, 𝑥 ∈ 𝑆. By definition of a 
characteristic function 𝜒𝐴(𝑦) = 1. 𝜒𝐴(𝑥𝑦) ≥ 𝜒𝐴(𝑦) =

1, 𝜒𝐴 being a fuzzy left ideal of 𝑆.  Thus 𝜒𝐴(𝑥𝑦) = 1, 
i.e., 𝑥𝑦 ∈ 𝐴. Hence 𝐴 is a left ideal of 𝑆. 

 
Proposition 2: Let 𝑆 be an ordered AG-groupoid and 
∅ ≠ 𝐴 ⊆ 𝑆 . Then 𝐴 is an interior ideal of 𝑆 if and only 
if the characteristic function 𝜒𝐴 of 𝐴 is a fuzzy 
interior ideal of 𝑆. 
 
Proof: Suppose 𝐴 is an interior ideal of 𝑆 and 
𝑎, 𝑥, 𝑦 ∈ 𝑆 such that 𝑥 ≤ 𝑦, this implies that 𝐴 = (𝐴], 
𝐴 being an interior ideal. Then 𝜒𝐴(𝑥) ≥ 𝜒𝐴(𝑦), by the 
Proposition 1. If 𝑎 ∉ 𝐴, by definition 𝜒𝐴(𝑎) = 0. Thus 
𝜒𝐴((𝑥𝑎)𝑦) ≥ 𝜒𝐴(𝑎). If 𝑎 ∈ 𝐴, by definition 𝜒𝐴(𝑎) = 1. 
(𝑥𝑎)𝑦 ∈ 𝐴, 𝐴 being an interior ideal, this implies that  
𝜒𝐴((𝑥𝑎)𝑦) = 1. Thus 𝜒𝐴((𝑥𝑎)𝑦) ≥ 𝜒𝐴(𝑎) . Hence the 
characteristic function 𝜒𝐴 of 𝐴 is a fuzzy interior 
ideal of 𝑆.  

Conversely, let 𝑦 ∈ 𝐴 and 𝑥 ∈ 𝑆 such that 𝑥 ≤ 𝑦, 
this implies that 𝜒𝐴(𝑥) ≥ 𝜒𝐴(𝑦), 𝜒𝐴 being a fuzzy 
interior ideal of 𝑆. Then 𝐴 = (𝐴],  by the Proposition 

1.  Let 𝑡 ∈ (𝑆𝐴)𝑆, implies 𝑡 = (𝑥𝑎)𝑦, where 𝑎 ∈ 𝐴 
and 𝑥, 𝑦 ∈ 𝑆. By definition of a characteristic function 
𝜒𝐴(𝑎) = 1. 𝜒𝐴((𝑥𝑎)𝑦) ≥ 𝜒𝐴(𝑎) = 1, 𝜒𝐴 being a fuzzy 
interior ideal of 𝑆.  Thus  𝜒𝐴((𝑥𝑎)𝑦) = 1, i.e., (𝑥𝑎)𝑦 ∈
𝐴. Hence 𝐴 is an interior ideal of S. 
 
Lemma 4: Let 𝜇 be a fuzzy subset of an ordered AG-
groupoid 𝑆. Then 𝜇 is a fuzzy AG-subgroupoid of 𝑆 if 
and only if upper 𝑡 level 𝑈(𝜇; 𝑡) of 𝜇  is an AG-
subgroupoid of  𝑆 for all 𝑡 ∈ (0,1]. 
 
Proof: S Suppose 𝜇 is a fuzzy AG-subgroupoid of 𝑆 
and 𝑥, 𝑦 ∈ 𝑈(𝜇; 𝑡), this implies that 𝜇(𝑥), 𝜇(𝑦) ≥ 𝑡. 
𝜇(𝑥𝑦) ≥ 𝜇(𝑥) ∧ 𝜇(𝑦) ≥ 𝑡, 𝜇 being a fuzzy AG-
subgroupoid, i.e., 𝑥𝑦 ∈ 𝑈(𝜇; 𝑡). Hence 𝑈(𝜇; 𝑡) is an 

AG-subgroupoid of 𝑆. 
Conversely, we have to show that 𝜇(𝑥𝑦) ≥ 𝜇(𝑥) ∧
𝜇(𝑦),  𝑥, 𝑦 ∈ 𝑆. We suppose a contradiction 𝜇(𝑥𝑦) <
𝜇(𝑥) ∨ 𝜇(𝑦). Assume 𝜇(𝑥) = 𝑡 = 𝜇(𝑦), and this 
implies that  𝜇(𝑥), 𝜇(𝑦) ≥ 𝑡, i.e., 𝑥, 𝑦 ∈ 𝑈(𝜇; 𝑡). But 
𝜇(𝑥𝑦) < 𝑡, i.e., 𝑥𝑦 ∉ 𝑈(𝜇; 𝑡), which is a contradiction. 
Hence 𝜇(𝑥𝑦) ≥ 𝜇(𝑥) ∧ 𝜇(𝑦). 
 
Lemma 5: Let 𝜇 be a fuzzy subset of an ordered AG-
groupoid 𝑆. Then 𝜇 is a fuzzy left (resp. right) ideal of 
𝑆 if and only if upper 𝑡 level 𝑈(𝜇; 𝑡) of 𝜇  is a left 
(resp. right) ideal of 𝑆  for all 𝑡 ∈ (0,1]. 
 
Proof: Suppose 𝜇

 
is a fuzzy left ideal of 𝑆. Let 𝑦 ∈

𝑈(𝜇; 𝑡)  and 𝑥 ∈ 𝑆 such that 𝑥 ≤ 𝑦, this implies that 
𝜇(𝑦) ≥ 𝑡. 𝜇(𝑥) ≥ 𝜇(𝑦) ≥ 𝑡 and 𝜇(𝑥𝑦) ≥ 𝜇(𝑦) ≥ 𝑡, 𝜇  
being a fuzzy left ideal of 𝑆. Thus 𝑥, 𝑥𝑦 ∈ 𝑈(𝜇; 𝑡). 
Hence 𝑈(𝜇; 𝑡) is a left ideal of 𝑆. 

Conversely, suppose 𝑈(𝜇; 𝑡) is a left ideal of 𝑆 and 
𝑥, 𝑦 ∈ 𝑆 such that 𝑥 ≤ 𝑦. We have to show that 
𝜇(𝑥) ≥ 𝜇(𝑦) and 𝜇(𝑥𝑦) ≥ 𝜇(𝑦), we suppose a 
contradiction 𝜇(𝑥) < 𝜇(𝑦) and 𝜇(𝑥𝑦) < 𝜇(𝑦). Let 
𝜇(𝑦) = 𝑡, this implies that 𝜇(𝑦) ≥ 𝑡, i.e., 𝑦 ∈ 𝑈(𝜇; 𝑡). 
But 𝜇(𝑥) < 𝑡 and 𝜇(𝑥𝑦) < 𝑡,  i.e., 𝑥, 𝑥𝑦 ∉ 𝑈(𝜇; 𝑡),  
which is a contradiction. Hence 𝜇(𝑥) ≥ 𝜇(𝑦) and 
𝜇(𝑥𝑦) ≥ 𝜇(𝑦).  
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Proposition 3: Let 𝜇 be a fuzzy subset of an ordered 
AG-groupoid 𝑆. Then 𝜇 is a fuzzy interior ideal of 𝑆 if 
and only if the upper 𝑡 level 𝑈(𝜇; 𝑡) of 𝜇  is an 
interior ideal of 𝑆 for all 𝑡 ∈ (0,1]. 
 
Proof: Suppose 𝜇 is a fuzzy interior ideal of 𝑆. Let 
𝑦 ∈ 𝑈(𝜇; 𝑡)  and 𝑥 ∈ 𝑆 such that 𝑥 ≤ 𝑦, this implies 
that 𝜇(𝑦) ≥ 𝑡. 𝜇(𝑥) ≥ 𝜇(𝑦) ≥ 𝑡, 𝜇  being a fuzzy 
interior ideal of 𝑆. Thus 𝜇(𝑥) ≥ 𝑡, i.e., 𝑥 ∈ 𝑈(𝜇; 𝑡). Let 
𝑎 ∈ 𝑈(𝜇; 𝑡) and 𝑥, 𝑦 ∈ 𝑆, by definition 𝜇(𝑎) ≥
𝑡.  𝜇((𝑥𝑎)𝑦) ≥ 𝜇(𝑎) ≥ 𝑡, 𝜇  being a fuzzy interior 
ideal of  𝑆. Thus 𝜇((𝑥𝑎)𝑦) ≥ 𝑡, i.e., (𝑥𝑎)𝑦 ∈ 𝑈(𝜇; 𝑡). 
Hence 𝑈(𝜇; 𝑡) is an interior ideal of 𝑆. 

Conversely, suppose 𝑈(𝜇; 𝑡) is an interior ideal of 
 𝑆 and 𝑥, 𝑦, 𝑎 ∈ 𝑆 such that 𝑥 ≤ 𝑦. We have to show 
that 𝜇(𝑥) ≥ 𝜇(𝑦), we suppose a contradiction 𝜇(𝑥) <
𝜇(𝑦). Let 𝜇(𝑦) = 𝑡,  this implies that 𝜇(𝑦) ≥ 𝑡, i.e., 𝑦 ∈
𝑈(𝜇; 𝑡). But 𝜇(𝑥) < 𝑡, i.e., 𝑥 ∉ 𝑈(𝜇; 𝑡), which is a 
contradiction. Hence 𝜇(𝑥) ≥ 𝜇(𝑦). We have to show 
that 𝜇((𝑥𝑎)𝑦) ≥ 𝜇(𝑎), we suppose a contradiction 
𝜇((𝑥𝑎)𝑦) < 𝜇(𝑎). Let 𝜇(𝑎) = 𝑡, this implies that 
𝜇(𝑎) ≥ 𝑡, i.e., 𝑎 ∈ 𝑈(𝜇; 𝑡). But 𝜇((𝑥𝑎)𝑦) < 𝑡, i.e., 
((𝑥𝑎)𝑦) ∉ 𝑈(𝜇; 𝑡), which is a contradiction. Hence 
𝜇((𝑥𝑎)𝑦) ≥ 𝜇(𝑎). 

  
Lemma 6: Every fuzzy right ideal of an ordered AG-
groupoid 𝑆 with left identity 𝑒, is a fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy right ideal of 𝑆 and 𝑥, 𝑦 ∈ 𝑆. 
Now 𝜇(𝑥𝑦) = 𝜇((𝑒𝑥)𝑦) = 𝜇((𝑦𝑥)𝑒) ≥ 𝜇(𝑦𝑥) ≥ 𝜇(𝑦). 
Thus 𝜇 is a fuzzy ideal of  𝑆. 
 
Remark 3: The concept of fuzzy (right, two-sided) 
ideals coincide in ordered AG-groupoids with left 
identity 𝑒. 
 
Lemma 7: Every fuzzy ideal of an ordered AG-
groupoid 𝑆 is a fuzzy interior ideal of  𝑆. 
 
Proof: Let 𝜇 be a fuzzy two-sided ideal of 𝑆 and 
𝑥, 𝑎, 𝑦 ∈ 𝑆. Now, 𝜇((𝑥𝑎)𝑦) ≥ 𝜇(𝑥𝑎) ≥ 𝜇(𝑎). Hence 𝜇 
is a fuzzy interior ideal of  𝑆. 

 
Proposition 4: Let 𝑆 be an ordered AG-groupoid 
with left identity 𝑒. Then 𝜇 is fuzzy interior ideal if 
and only if 𝜇 is a fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy interior ideal of  𝑆 and 𝑥, 𝑦 ∈
𝑆. Now 𝜇(𝑥𝑦) = 𝜇((𝑒𝑥)𝑦) ≥ 𝜇(𝑥). Thus 𝜇  is a fuzzy 
right ideal of  𝑆. Then 𝜇 is a fuzzy ideal of  𝑆 by 
Lemma 6. The converse is true by Lemma 7. 
 
Lemma 8: Every fuzzy right ideal of a regular 
ordered AG-groupoid 𝑆,

 
is a fuzzy ideal of 𝑆. 

 
Proof: Let 𝜇 be a fuzzy right ideal of 𝑆 and 𝑥, 𝑦 ∈ 𝑆, 
this implies that there exists 𝑎 ∈ 𝑆 such that 𝑥 ≤
(𝑥𝑎)𝑥. Now, 𝜇(𝑥𝑦) ≥ 𝜇(((𝑥𝑎)𝑥)𝑦) = 𝜇((𝑦𝑥)(𝑥𝑎)) ≥
𝜇(𝑦𝑥) ≥ 𝜇(𝑦). Hence 𝜇 is a fuzzy ideal of 𝑆.  
 
Remark 4: The concept of fuzzy (right, two-sided) 
ideals coincide in regular ordered AG-groupoids. 
 

Proposition 5: Let 𝑆 be a regular ordered AG-
groupoid. Then 𝜇 is a fuzzy interior ideal if and only 
if 𝜇 is a fuzzy ideal of  𝑆. 
 
Proof: Let 𝜇 be a fuzzy interior ideal of  𝑆 and 𝑥, 𝑦 ∈
𝑆, this implies that there exists 𝑎 ∈ 𝑆 such that 𝑥 ≤
(𝑥𝑎)𝑥. Now, 𝜇(𝑥𝑦) ≥ 𝜇(((𝑥𝑎)𝑥)𝑦) = 𝜇((𝑦𝑥)(𝑥𝑎)) ≥
𝜇(𝑥). Thus 𝜇 is a fuzzy right ideal of 𝑆. Then 𝜇 is a 
fuzzy ideal of  𝑆  by Lemma 8. The converse is true by 
Lemma 7.  
 
Lemma 9: Every fuzzy right (resp. left) ideal of (2,2) 
regular ordered AG-groupoid 𝑆,  is a fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy right ideal of  𝑆 and , 𝑦 ∈ 𝑆 , 
this implies that there exists 𝑎 ∈ 𝑆 such that 𝑥 ≤
(𝑥2𝑎)𝑥2. Now 𝜇(𝑥𝑦) ≥ 𝜇(((𝑥2𝑎)𝑥2)𝑦) =
𝜇((𝑦𝑥2)(𝑥2𝑎)) ≥ 𝜇(𝑦𝑥2) ≥ 𝜇(𝑦). Hence 𝜇 is a fuzzy 
ideal of 𝑆. Let 𝜇 be a fuzzy left ideal of 𝑆. Now 
𝜇(𝑥𝑦) ≥ 𝜇(((𝑥2𝑎)𝑥2)𝑦) = 𝜇((𝑦𝑥2)(𝑥2𝑎)) ≥
𝜇((𝑥𝑥)𝑎) = 𝜇((𝑎𝑥)𝑥) ≥ 𝜇(𝑥). Hence 𝜇 is a fuzzy 
ideal of  𝑆. 
 
Remark 5: The concept of fuzzy (right, left, two-
sided) ideals coincide in (2, 2) -regular ordered AG-
groupoids. 
 
Proposition 6: Let  𝑆  be a (2,2) -regular ordered 
AG-groupoid with left identity 𝑒. Then 𝜇 is a fuzzy 
interior ideal if and only if 𝜇 is a fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy interior ideal of 𝑆  and 𝑥, 𝑦 ∈
𝑆, this implies that there exists 𝑎 ∈ 𝑆 such that 𝑥 ≤
(𝑥2𝑎)𝑥2. Now, 
 

𝜇(𝑥𝑦) ≥ 𝜇(((𝑥2𝑎)𝑥2)𝑦) = 𝜇((𝑦𝑥2)(𝑥2𝑎)) ≥ 𝜇(𝑥2) 
= 𝜇(𝑥𝑥) = 𝜇((𝑒𝑥)𝑥) ≥ 𝜇(𝑥). 

 

Thus 𝜇 is a fuzzy right ideal of  𝑆. Then 𝜇 is a fuzzy 
ideal of 𝑆 by Lemma 9. The converse is true by 
Lemma 7. 
 
Lemma 10: Let  𝑆 be a right regular ordered AG-
groupoid. Then every fuzzy right (resp. left) ideal of 
𝑆 is a fuzzy ideal of  𝑆. 
 
Proof: Let 𝜇 be a fuzzy right ideal of 𝑆 and 𝑥, 𝑦 ∈ 𝑆, 
this implies that there exists 𝑎 ∈ 𝑆 such that 𝑥 ≤ 𝑥2𝑎. 
Now, 
 
𝜇(𝑥𝑦) ≥ 𝜇((𝑥2𝑎)𝑦) = 𝜇(((𝑥𝑥)𝑎)𝑦) = 𝜇(((𝑎𝑥)𝑥)𝑦) 
= 𝜇((𝑦𝑥)(𝑎𝑥)) ≥ 𝜇(𝑦𝑥) ≥ 𝜇(𝑦). 
 

Hence 𝜇  is a fuzzy ideal of 𝑆. Let 𝜇 be a fuzzy left 
ideal of  𝑆. Now, 
𝜇(𝑥𝑦) ≥ 𝜇((𝑥2𝑎)𝑦) = 𝜇(((𝑥𝑥)𝑎)𝑦) = 𝜇(((𝑎𝑥)𝑥)𝑦) 
= 𝜇((𝑦𝑥)(𝑎𝑥)) ≥ 𝜇(𝑎𝑥) ≥ 𝜇(𝑥). 
 

Hence 𝜇 is a fuzzy ideal of 𝑆.  
 
Remark 6: The concept of fuzzy (right, left, two-
sided) ideals coincide in right regular ordered AG-
groupoids. 
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Proposition 7: Let  𝑆 be a right regular ordered AG-
groupoid. Then 𝜇

 
is a fuzzy interior ideal if and only 

if 𝜇 is a fuzzy ideal of  𝑆. 
 
Proof: Let 𝜇 be a fuzzy interior ideal of  𝑆  and , 𝑦 ∈ 𝑆 
, this implies that there exists 𝑎 ∈ 𝑆 such that  𝑥 ≤
𝑥2𝑎. Now 𝜇(𝑥𝑦) ≥ 𝜇((𝑥2𝑎)𝑦) = 𝜇(((𝑥𝑥)𝑎)𝑦) =
𝜇(((𝑎𝑥)𝑥)𝑦) ≥ 𝜇(𝑥). Thus 𝜇  is a fuzzy right ideal of 
𝑆. Then 𝜇  is a fuzzy ideal of  𝑆  by Lemma 10. The 
converse is true by Lemma 7. 
 
Lemma 11: Let 𝑆 be a left regular ordered AG-
groupoid with left identity 𝑒. Then every fuzzy right 
(resp. left) ideal of  𝑆 is a fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy right ideal of 𝑆 and 𝑥, 𝑦 ∈ 𝑆, 
that implies that there exists  𝑎 ∈ 𝑆 such that 𝑥 ≤
𝑎𝑥2. Now,  
 
𝜇(𝑥𝑦) ≥ 𝜇((𝑎𝑥2)𝑦) = 𝜇((𝑎(𝑥𝑥))𝑦) = 𝜇((𝑥(𝑎𝑥))𝑦) 

= 𝜇((𝑦(𝑎𝑥))𝑥) ≥ 𝜇(𝑦(𝑎𝑥)) ≥ 𝜇(𝑦). 
 
Hence 𝜇  is a fuzzy ideal of  𝑆. Let 𝜇 be a fuzzy left 

ideal of  𝑆. Now, 
 
𝜇(𝑥𝑦) ≥ 𝜇((𝑎𝑥2)𝑦) = 𝜇((𝑎(𝑥𝑥))𝑦) = 𝜇((𝑥(𝑎𝑥))𝑦) 
= 𝜇((𝑦(𝑎𝑥))𝑥) ≥ 𝜇((𝑎𝑥)𝑥) ≥ 𝜇(𝑥). 
 

Hence 𝜇 is a fuzzy ideal of 𝑆. 
 
Remark 7: The concept of fuzzy (right, left, two-
sided) ideals coincide in left regular ordered AG-
groupoids with left identity 𝑒.  

 
Proposition 8: Let 𝑆 be a left regular ordered AG-
groupoid with left identity 𝑒. Then 𝜇 is a fuzzy 
interior ideal if and only if 𝜇 is a fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy interior ideal of 𝑆 and 𝑥, 𝑦 ∈
𝑆, this implies that there exists 𝑎 ∈ 𝑆 such that 𝑥 ≤

𝑎𝑥2. Now, 
 
𝜇(𝑥𝑦) ≥ 𝜇((𝑎𝑥2)𝑦) = 𝜇((𝑎(𝑥𝑥))𝑦) 
= 𝜇((𝑥(𝑎𝑥))𝑦) = 𝜇(((𝑒𝑥)(𝑎𝑥))𝑦) 
= 𝜇(((𝑥𝑥)(𝑎𝑒))𝑦) = 𝜇((((𝑎𝑒)𝑥)𝑥)𝑦) ≥ 𝜇(𝑥). 
 

Thus 𝜇  is a fuzzy right ideal of 𝑆. Hence 𝜇  is a 
fuzzy ideal of 𝑆 by Lemma 11. The converse is true 
by Lemma 7. 
 
Theorem 1: Let 𝑆 be a right regular locally 
associative ordered AG-groupoid with left identity 𝑒. 
Then for every fuzzy interior ideal 𝜇 of 𝑆,

.
 𝜇(𝑎𝑛) =

𝜇(𝑎2𝑛),  where 𝑛 is any positive integer, for all 𝑎 ∈ 𝑆. 
 
Proof: For 𝑛 = 1. Let 𝑎 ∈ 𝑆, this implies that there 
exists 𝑥 ∈ 𝑆 such that 𝑎 ≤ 𝑎2𝑥. Now 𝜇(𝑎) ≥
𝜇(𝑎2𝑥) = 𝜇((𝑒𝑎2)𝑥) ≥ 𝜇(𝑎2) ≥ 𝑚𝑖𝑛{ 𝜇(𝑎), 𝜇(𝑎)} =
𝜇(𝑎), (𝜇 is a fuzzy ideal of 𝑆 by Proposition 7). 
Hence 𝜇(𝑎) = 𝜇(𝑎2). Now  𝑎2 = 𝑎𝑎 ≤ (𝑎2𝑥)(𝑎2𝑥) =
𝑎4𝑥2, then the result is true for 𝑛 = 2.  Suppose 
result is true for 𝑛 = 𝑘, i.e., 𝜇(𝑎𝑘) = 𝜇(𝑎2𝑘). Now, 
 

𝑎𝑘+1 = 𝑎𝑘𝑎 ≤ (𝑎2𝑘𝑥𝑘)(𝑎2𝑥) = 𝑎2(𝑘+1)𝑥(𝑘+1). 
𝜇(𝑎𝑘+1) ≥ 𝜇(𝑎2(𝑘+1)𝑥(𝑘+1)) = 𝜇((𝑒𝑎2(𝑘+1))𝑥(𝑘+1)) 
≥ 𝜇(𝑎2(𝑘+1)) = 𝜇(𝑎2𝑘+2) = 𝜇(𝑎𝑘+1𝑎𝑘+1) 
≥ 𝑚𝑖𝑛{ 𝜇(𝑎𝑘+1), 𝜇(𝑎𝑘+1)} = 𝜇(𝑎𝑘+1). 
 

Thus 𝜇(𝑎𝑘+1) = 𝜇(𝑎2(𝑘+1)). Hence by the 
induction method, the result is true for all positive 
integers. 
 
Lemma 12: Let 𝑆 be a right regular locally 
associative ordered AG-groupoid with left identity 𝑒. 
Then for every fuzzy interior ideal 𝜇 of 𝑆, 𝜇(𝑎𝑏) =
𝜇(𝑏𝑎) for all 𝑎, 𝑏 ∈ 𝑆. 
 
Proof: Let 𝑎, 𝑏 ∈ 𝑆. By using Theorem (for 𝑛 = 1). 
Now, 
 
𝜇(𝑎𝑏) = 𝜇((𝑎𝑏)2) = 𝜇((𝑎𝑏)(𝑎𝑏)) 
= 𝜇((𝑏𝑎)(𝑏𝑎)) = 𝜇((𝑏𝑎)2) = 𝜇(𝑏𝑎). 
 

Theorem 2: Let 𝑆 be a regular and right regular 
locally associative ordered AG-groupoid with left 
identity 𝑒. Then for every fuzzy interior ideal 𝜇 of 𝑆, 
𝜇(𝑎𝑛) = 𝜇(𝑎3𝑛),  where 𝑛 is any positive integer, for 
all 𝑎 ∈ 𝑆. 
 
Proof: For 𝑛 = 1.  Let 𝑎 ∈ 𝑆, this implies that there 
exists 𝑥 ∈ 𝑆 such that 𝑎 ≤ (𝑎𝑥)𝑎 and 𝑎 ≤ 𝑎2𝑥. Now 
𝑎 ≤ (𝑎𝑥)𝑎 ≤ (𝑎𝑥)(𝑎2𝑥) = 𝑎3𝑥2. Thus, 
 
𝜇(𝑎) ≥ 𝜇(𝑎3𝑥2) = 𝜇((𝑒𝑎3)𝑥2) ≥ 𝜇(𝑎3) 
= 𝜇(𝑎𝑎2) ≥ 𝑚𝑖𝑛{ 𝜇(𝑎), 𝜇(𝑎2)} 
≥ 𝑚𝑖𝑛{ 𝜇(𝑎), 𝜇(𝑎), 𝜇(𝑎)} = 𝜇(𝑎). 
 

Hence 𝜇(𝑎) = 𝜇(𝑎3).  Now 𝑎2 = 𝑎𝑎 ≤
(𝑎3𝑥2)(𝑎3𝑥2) = 𝑎6𝑥4 , then the result is true for 𝑛 =
2. Suppose result is true for 𝑛 = 𝑘 , i.e.,  𝜇(𝑎𝑘) =
𝜇(𝑎3𝑘). Now, 
 

𝑎𝑘+1 = 𝑎𝑘𝑎 ≤ (𝑎3𝑘𝑥2𝑘)(𝑎3𝑥2) = 𝑎3(𝑘+1)𝑥2(𝑘+1).
 

𝜇(𝑎𝑘+1) ≥ 𝜇(𝑎3(𝑘+1)𝑥2(𝑘+1)) = 𝜇((𝑒𝑎3(𝑘+1))𝑥2(𝑘+1))
≥ 𝜇(𝑎3(𝑘+1)) 

= 𝜇(𝑎3𝑘+3) = 𝜇(𝑎𝑘+1𝑎2𝑘+2) ≥ 𝑚𝑖𝑛{ 𝜇(𝑎𝑘+1), 𝜇(𝑎2𝑘+2)} 
≥ 𝑚𝑖𝑛{ 𝜇(𝑎𝑘+1), 𝜇(𝑎𝑘+1), 𝜇(𝑎𝑘+1)} = 𝜇(𝑎𝑘+1). 
 

Thus 𝜇(𝑎𝑘+1) = 𝜇(𝑎3(𝑘+1)). Hence by the 
induction method, the result is true for all positive 
integers.  
 
Lemma 13: Let  𝑆 be a weakly regular ordered AG-
groupoid. Then every fuzzy right (resp. left) ideal is a 
fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy right ideal of  𝑆 and 𝑥, 𝑦 ∈ 𝑆, 
this implies that there exist 𝑎, 𝑏 ∈ 𝑆 such that  𝑥 ≤
(𝑥𝑎)(𝑥𝑏). Now, 
 
𝜇(𝑥𝑦) ≥ 𝜇(((𝑥𝑎)(𝑥𝑏))𝑦) = 𝜇((((𝑥𝑏)𝑎)𝑥)𝑦) 
= 𝜇((((𝑎𝑏)𝑥)𝑥)𝑦) = 𝜇((𝑦𝑥)((𝑎𝑏)𝑥)) 
= 𝜇((𝑦𝑥)(𝑛𝑥)) 𝑠𝑎𝑦 𝑎𝑏 = 𝑛 
≥ 𝜇(𝑦𝑥) ≥ 𝜇(𝑦). 
 

Hence 𝜇 is a fuzzy ideal of 𝑆.  Let  𝜇 be a fuzzy left 
ideal of 𝑆. Now, 
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𝜇(𝑥𝑦) ≥ 𝜇(((𝑥𝑎)(𝑥𝑏))𝑦) = 𝜇((((𝑥𝑏)𝑎)𝑥)𝑦) 
= 𝜇((((𝑎𝑏)𝑥)𝑥)𝑦) = 𝜇((𝑦𝑥)((𝑎𝑏)𝑥)) 
= 𝜇((𝑦𝑥)(𝑛𝑥)) 𝑠𝑎𝑦 𝑎𝑏 = 𝑛 
≥ 𝜇(𝑛𝑥) ≥ 𝜇(𝑥). 
 

Hence 𝜇 is a fuzzy ideal of 𝑆. 
 
Remark 8: The concept of fuzzy (right, left, two-
sided) ideals coincide in weakly regular ordered AG-
groupoids. 
 
Proposition 9: Let  𝑆 be a weakly regular ordered 
AG-groupoid. Then 𝜇 is a fuzzy interior ideal if and 
only if 𝜇 is a fuzzy ideal of  𝑆. 
 
Proof: Let 𝜇 be a fuzzy interior ideal of 𝑆 and 𝑥, 𝑦 ∈
𝑆, this implies that there exist 𝑎, 𝑏 ∈ 𝑆 such that  𝑥 ≤
(𝑥𝑎)(𝑥𝑏). Now 𝜇(𝑥𝑦) ≥ 𝜇(((𝑥𝑎)(𝑥𝑏))𝑦) =
𝜇((((𝑥𝑏)𝑎)𝑥)𝑦) ≥ 𝜇(𝑥).  Thus 𝜇 is a fuzzy right ideal 
of  𝑆. Hence 𝜇 is a fuzzy ideal of  𝑆  by Lemma 13. The 
converse is true by Lemma 7. 
 
Proposition 10: Let  𝑆 be an ordered AG-groupoid 
with left identity 𝑒.  Then 𝑆 is a weakly regular if and 
only if 𝑆 is completely regular. 
 
Proof: Suppose 𝑆 is a weakly regular ordered AG-
groupoid. Let 𝑎 ∈ 𝑆,  then there exist 𝑥, 𝑦 ∈ 𝑆 such 
that  𝑎 ≤ (𝑎𝑥)(𝑎𝑦). Now 𝑎 ≤ (𝑎𝑥)(𝑎𝑦) = (𝑎𝑎)(𝑥𝑦) =
𝑎2𝑡,  for some 𝑡 ∈ 𝑆, this implies that 𝑎 ≤ 𝑎2𝑡. Thus 𝑆 
is a right regular ordered AG-groupoid.  

Now 𝑎 ≤ (𝑎𝑥)(𝑎𝑦) = (𝑦𝑥)(𝑎𝑎) = 𝑡𝑎2,  for some 
𝑡 ∈ 𝑆, this imply that 𝑎 ≤ 𝑡𝑎2. Thus 𝑆 is a left regular 
ordered AG-groupoid. Now, 
 
𝑎 ≤ (𝑎𝑥)(𝑎𝑦) = (𝑎𝑎)(𝑥𝑦) = 𝑎2𝑡 = (𝑎𝑎)𝑡 = (𝑡𝑎)𝑎 
≤ (𝑡(𝑡𝑎2))𝑎 = (𝑡(𝑡(𝑎𝑎)))𝑎 = (𝑡(𝑎(𝑡𝑎)))𝑎 
= (𝑎(𝑡(𝑡𝑎)))𝑎 = (𝑎𝑠)𝑎,  𝑠𝑎𝑦 𝑡(𝑡𝑎) = 𝑛. 
 

This implies that 𝑎 ≤ (𝑎𝑠)𝑎, for some 𝑠 ∈ 𝑆. Thus 
 𝑆 is a regular ordered AG-groupoid. Hence 𝑆 is a 
completely regular ordered AG-groupoid. 

Conversely, let 𝑆 be a completely regular ordered 
AG-groupoid. Let 𝑎 ∈ 𝑆, and then there exists 𝑥 ∈ 𝑆 
such that 𝑎 ≤ (𝑎𝑥)𝑎,  𝑎 ≤ 𝑎2𝑥 and 𝑎 ≤ 𝑥𝑎2. Now, 
 
𝑎 ≤ (𝑎𝑥)𝑎 ≤ (𝑎𝑥)(𝑥𝑎2) = (𝑎𝑥)(𝑥(𝑎𝑎)) 
= (𝑎𝑥)(𝑎(𝑥𝑎)) = (𝑎𝑥)(𝑎𝑦),  𝑠𝑎𝑦 𝑥𝑎 = 𝑦. 
 

This implies that 𝑎 ≤ (𝑎𝑥)(𝑎𝑦), for some 𝑥, 𝑦 ∈ 𝑆. 
Hence 𝑆 is weakly regular ordered AG-groupoid.  
 
Lemma 14: Every fuzzy right ideal of an intra-
regular ordered AG-groupoid  𝑆,  is a fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy right ideal of 𝑆 and 𝑥, 𝑦 ∈ 𝑆, 
this implies that there exist 𝑎, 𝑏 ∈ 𝑆 such that 𝑥 ≤
(𝑎𝑥2)𝑏.

 
Now, 

𝜇(𝑥𝑦) ≥ 𝜇(((𝑎𝑥2)𝑏)𝑦) = 𝜇((𝑦𝑏)(𝑎𝑥2)) ≥ 𝜇(𝑦𝑏) ≥ 𝜇(𝑦).  
 

Hence 𝜇  is a fuzzy ideal of  𝑆. 
 

Remark 9: The concept of fuzzy (right, two-sided) 
ideals coincide in intra-regular ordered AG-
groupoids .  

 
Proposition 11: Let  𝑆 be an intra-regular ordered 
AG-groupoid with left identity  . Then 𝜇 is a fuzzy 
interior ideal if and only if 𝜇 is a fuzzy ideal of 𝑆. 
 
Proof: Let 𝜇 be a fuzzy interior ideal of 𝑆 and 𝑥, 𝑦 ∈
𝑆, this implies that there exist 𝑎, 𝑏 ∈ 𝑆 such that  𝑥 ≤
(𝑎𝑥2)𝑏. Now, 
 
𝑥𝑦 ≤ ((𝑎𝑥2)𝑏)𝑦 = (𝑦𝑏)(𝑎𝑥2) = 𝑛(𝑎(𝑥𝑥))

= 𝑛(𝑥(𝑎𝑥)), 𝑠𝑎𝑦 𝑦𝑏 = 𝑛 
= (𝑒𝑛)(𝑥(𝑎𝑥)) = (𝑒𝑥)(𝑛(𝑎𝑥)) = (𝑒𝑥)𝑚, 𝑠𝑎𝑦 𝑛(𝑎𝑥) = 𝑚. 
 

Thus 𝜇(𝑥𝑦) ≥ 𝜇((𝑒𝑥)𝑚) ≥ 𝜇(𝑥). Hence 𝜇 is a 
fuzzy ideal of  𝑆. The converse is true by Lemma 7. 
 
Theorem 3: L Let  𝑆 be an intra-regular locally 
associative ordered AG-groupoid. Then for every 
fuzzy interior ideal 𝜇 of 𝑆, 𝜇(𝑎𝑛) = 𝜇(𝑎2𝑛), where 𝑛 
is any positive integer, for all  𝑎 ∈ 𝑆. 
 
Proof: For 𝑛 = 1. Let ∈ 𝑆 , this implies that there 
exist 𝑥, 𝑦 ∈ 𝑆 such that 𝑎 ≤ (𝑥𝑎2)𝑦. Now 𝜇(𝑎) ≥
𝜇((𝑥𝑎2)𝑦) ≥ 𝜇(𝑎2) = 𝜇(𝑎𝑎) ≥ 𝑚𝑖𝑛{ 𝜇(𝑎), 𝜇(𝑎)} =
𝜇(𝑎), (𝜇 is a fuzzy ideal of 𝑆 by Proposition 11. 
Hence,  

𝜇(𝑎) = 𝜇(𝑎2).  
 
Now, 
 

𝑎2 = 𝑎𝑎 ≤ ((𝑥𝑎2)𝑦)((𝑥𝑎2)𝑦) = ((𝑥𝑎2)(𝑥𝑎2))𝑦2 =

(𝑥2𝑎4)𝑦2,  
 
then the result is true for 𝑛 = 2. Suppose that result 
is true for  𝑛 = 𝑘,  i.e.,  𝜇(𝑎𝑘) = 𝜇(𝑎2𝑘). Now, 
 

𝑎𝑘+1 = 𝑎𝑘𝑎 ((𝑥𝑘𝑎2𝑘)𝑦𝑘) ((𝑥2𝑎)𝑦) = (𝑥𝑘+1𝑎2(𝑘+1))𝑦𝑘+1 

𝜇(𝑎𝑘+1) ≥ 𝜇((𝑥𝑘+1𝑎2(𝑘+1))𝑦𝑘+1) ≥ 𝜇(𝑎2(𝑘+1))
= 𝜇(𝑎(𝑘+1)𝑎(𝑘+1)) 

≥ 𝑚𝑖𝑛{ 𝜇(𝑎(𝑘+1)), 𝜇(𝑎(𝑘+1))} = 𝜇(𝑎(𝑘+1)). 

 
Thus 𝜇(𝑎𝑘+1) = 𝜇(𝑎2(𝑘+1)). Hence by the 

induction method, the result is true for all positive 
integers.  
 
Lemma 15: Let 𝑆 be an intra-regular locally 
associative ordered AG-groupoid with left identity 𝑒. 
Then for every fuzzy interior ideal 𝜇 of  𝑆. 𝜇(𝑎𝑏) =
𝜇(𝑏𝑎) for all  𝑎, 𝑏 ∈ 𝑆. 
 
Proof: Same as Lemma 12. 

4. Conclusion 

Our ambition is to inspire the study and maturity 
of non-associative algebraic structure (ordered AG-
groupoid). The objective is to explain original 
methodological developments on ordered AG-
groupoids, which will be very helpful for the 
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upcoming theory of algebraic structure. The ideal of 
a fuzzy set to the characterizations of ordered 
semigroups is captivating the great attention of 
algebraists. The aim of this paper is to investigate, 
the study of (regular, left regular, right regular, (2, 
2)-regular, left weakly regular, right weakly regular, 
intra-regular) ordered AG-groupoids by using of the 
fuzzy left (right, interior) ideals. 
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