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In this study, the stability of an axially moving string under the influence of 
viscous damping in terms of transverse vibrations has been examined. 
Mathematically, an axially moving string can be expressed as a linear-
homogenous partial differential equation with the initial and boundary 
conditions. The axial speed of string is taken to be time-varying, sinusoidal, 
and small compared to wave velocity. In order to approximate the exact 
solutions of the initial-boundary value problem, a Fourier-expansion method, 
together with the two timescales perturbation method, has been used. 
General resonance case and the detuning case have been studied in detail. 
The total energy of an infinite-dimensional coupled system has been 
obtained. Under certain values of the damping parameter, this total 
mechanical energy is either obtained to be bound or unbound. In addition, it 
turned out that there is a possibility of mode-truncation depending on the 
certain values of the damping parameter. 
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1. Introduction 

*Engineering devices, such as conveyor belts, 
elevator cable, aerial-cable, tramways, power 
transmission belts, plastic films, oil pipelines, 
magnetic and paper tapes, band-saw blades, crane 
and mining hoists are considered in the class of 
axially moving continuous systems. These axially 
moving systems can be used in diverse engineering 
applications such as civil, mechanical, and aerospace 
engineering. Their applications are limited due to 
vibrations, specifically, the transverse vibrations. 
The understanding of transversal vibrations of 
axially moving continua is important for the design 
and manufacture of these systems. The vibrations 
are caused due to many reasons such as winds, 
storms, earthquakes, irregular speed and 
eccentricity of the driven motor, and non-uniformity 
in the material properties. All of these diverse factors 
contribute to one or the other way to cause the 
vibrations, which can lead to severe damage or the 
failure of these systems. To control the vibrations in 
these mechanical systems, differently designed 
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dampers can be used. Both the theorists and 
experimentalists have studied the transverse 
vibrations under the effect of damping, either 
present in the system (Krenk, 2000; Marynowski and 
Kapitaniak, 2007; Shahruz, 2009; Rossikhin and 
Shitikova, 2013) or at the boundary (Darmawijoyo 
and van Horssen, 2002; Gaiko and van Horssen, 
2015; Malookani et al., 2019; Akkaya and van 
Horssen, 2019). Wickert and Mote (1990) carried 
out the modal analysis to examine the dynamics of 
string-like and beam-like models. The authors 
obtained the eigenfunctions for stationary string and 
beam equations. The dynamics of the string-like 
model are examined by using discretization and then 
by using two timescales perturbation technique in a 
study by Pakdemirli and Ulsoy (1997) and a 
transition behavior of string-like equation to the 
beam-like equation is studied by Oz et al. (1998). A 
thorough review of the model describing the 
transverse vibration of an axially moving string 
system is given in Chen (2005). The free nonlinear 
vibrations of the viscoelastic string system are 
examined via the application of two timescales 
perturbation method by Zhang and Zu (1998). The 
weakly nonlinear string-like equation is studied by 
keeping one end as fixed, and the dashpot system at 
the other end in the two timescales perturbation 
method was used to compute the amplitude 
response of the system (Darmawijoyo et al., 2003). It 
has been observed that the solution tends to zero by 
an increasing amount of damping. Sandilo and van 
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Horssen (2012) studied the tensioned Euler-
Bernoulli beam equation by considering the spring-
dashpot system at one end, whereas the other end 
was simply supported. A two timescales 
perturbation method was employed, and authors did 
not draw any satisfactory conclusion regarding 
whether the energy increases, decreases, or remains 
conserved. Gaiko and van Horssen (2015) studied 
the equations of motion with non-classical boundary 
conditions. A two timescales perturbation method 
was employed to find an approximate analytic 
solution. It was observed that the amplitude of 
transverse vibrations reduces substantially by 
increasing the damping factor. Sandilo et al. (2016) 
studied the initial-boundary value problem for the 
damped axially translating continuum. A two 
timescales perturbation method was employed to 
obtain analytic solutions. The authors depicted that 
the oscillation modes are damped and damping rates 
depending on the mode numbers k, which was 
indeed expected. Akkaya and van Horssen (2017) 
used the Laplace transform method and examined 
the vibrations of the beam equation on the semi-
infinite interval. It was shown that the numerical 
results, in fact, reach the analytic results for a 
sufficiently larger length and a larger number of 
modes. Malookani and van Horssen (2015) studied 
the string-like model with the fixed boundary 
conditions. They utilized a two timescales 
perturbation method with a conjunction of Laplace 
transform method in search of the infinite-mode 
approximate solutions. They have shown that 
Galerkin’s truncation method is not applicable in 
order to obtain approximations valid on long 
timescales. However, their study was restricted to 
the un-damped system. 

This paper aims to examine the (in) stability of 
the axially moving string under the influence of 
viscous damping for general resonance and the 
detuning case. The transversal vibrations of the 
system are modeled as a second-order homogeneous 
linear partial differential equation with variable 
coefficients. The Fourier-sine series, with a 
conjunction of a two timescales perturbation 

method, are used to determine the approximate-
analytic solutions.  

This paper is structured as follows. In section 2 
the governing equations of motion are established. 
In section 3 the analytic approximations of the exact 
solutions of the initial-boundary value problem are 
constructed by using the Fourier expansion method 
with a conjunction of a two timescales perturbation 
method. A mathematical analysis of a coupled 
system of ODEs and a Galerkin’s truncation method 
will be applied to truncate few modes from the 
infinite-dimensional system of ODEs. The detuning 
case will also be discussed and analyzed in detail. In 
section 4, the results and the discussions are 
presented. Finally, some conclusions will be drawn 
in section 5. 

2. Mathematical model 

An axially translating string under the effect of 
small viscous damping 𝛿0, moving with non-constant 
velocity 𝑉(𝑡) is represented in Fig. 1. There is no 
vertical displacement at the end point of string, i.e. 
𝑢 = 0 at 𝑥 = 0 and 𝑥 = 𝐿, and pair of pulleys are 
apart by constant 𝐿. The damped string-like equation 
is formulated by extended Hamilton’s principle 
(Maitlo et al., 2016). Thus, the following IBVP is 
considered as under, 
 
𝜌(𝑢𝑡𝑡 + 2𝑉𝑢𝑥𝑡 + 𝑉𝑡𝑢𝑥 + 𝑉2𝑢𝑥𝑥) − 𝑃𝑢𝑥𝑥 + 𝛿0(𝑢𝑡 + 𝑉𝑢𝑥) =
0, 𝑡 ≥ 0, 0 < 𝑥 < 𝐿,                                                                       (1) 
𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0,       𝑡 ≥ 0,                                                 (2) 
𝑢(𝑥, 0) = 𝜓(𝑥),        and     𝑢𝑡(𝑥, 0) = 𝜙(𝑥), 0 < 𝑥 < 𝐿,    (3) 

 
where 𝑡 is the time, 𝑥 be the axial coordinate in the 
horizontal direction, time-dependent belt velocity is 
represented by 𝑉, transversal displacement of the 
string is denoted by 𝑢(𝑥, 𝑡) and linear constant mass-
density per unit length is denoted by 𝜌, 𝑃 is the 
constant tension and 𝛿0 is small viscous damping 
coefficient. Displacement and the velocity at time 𝑡 =
0 are represented by the functions 𝜓(𝑥) and 𝜙(𝑥), 
respectively. 

 

 
Fig. 1: The schematic model of a damped axially moving belt 
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In order to write IBVP (Eqs. 1-3) in dimensionless 
form, we use the following assumptions: 

 

𝑥∗ =
𝑥

𝐿
, 𝑉∗ =

𝑉

𝑐
, 𝑡∗ =

𝑐𝑡

𝐿
, 𝑢∗(𝑥∗, 𝑡∗) =

𝑢(𝑥,𝑡)

𝐿
, Ω∗ =

𝐿Ω

𝑐
 ,  𝜓∗(𝑥) =

𝜓(𝑥)

𝐿
,                                                                          (4) 

𝜙∗(𝑥∗) =
𝜙(𝑥)

𝑐
, 𝛿0

∗ =
𝛿0𝐿

𝜌𝑐
  

 
By substitution Eq. 4 into the equations of motion 

(Eqs. 1-3) yields the following equations (asterisk 
are ignored) 
 
𝑢𝑡𝑡 + 2𝑉𝑢𝑥𝑡 + 𝑉𝑡𝑢𝑥 + (𝑉2 − 1)𝑢𝑥𝑥 + 𝛿0(𝑢𝑡 + 𝑉𝑢𝑥) =
0,    𝑡 ≥ 0,   0 < 𝑥 < 1,                                                                  (5) 

 
with the Dirichlet boundary conditions:  
 
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,       𝑡 ≥ 0,                                                 (6) 

 
and the general initial conditions: 
 
𝑢(𝑥, 0) = 𝜓(𝑥),   and 𝑢𝑡(𝑥, 0) = 𝜙(𝑥),   0 < 𝑥 < 1.            (7) 
 

The axial velocity of the belt varies with time due 
to many reasons such as the eccentricity of pulleys, 
non-uniformity of material properties, irregular 
speed of the driven motor, so in this study, we have 
considered harmonically low mean time-varying belt 
velocity as under, 

 
𝑉(𝑡) = 𝜀(𝑉0 + 𝛼 sin(Ω𝑡)).                                                                  (8) 
 

To solve IBVP (Eqs. 5-7) the following 
assumptions are considered: 

 
(i) The transversal vibration 𝑢(𝑥, 𝑡)is taken into 

account only. 
(ii) The dimensional quantity  𝛿0𝐿 is small in 

comparison to 𝜌𝑐, where 𝑐 = √
𝑃

𝜌
  . Thus, it is 

reasonable to express: 
 

𝛿0
∗ =

𝛿0𝐿

𝜌𝑐
= 𝜀𝛿                                                                                 (9) 

 
(iii) The axial velocity 𝑉(𝑡) of the belt is small in 

comparison to wave-velocity 𝑐. Thus, we can 
express |𝑉| ≪ 𝑐. 

(iv) The belt always moves in a forward direction 
only, so it is necessary to impose a 
condition 𝑉0 > |𝛼|.  

(v) Bending stiffness, external excitations, and effect 
of gravity are neglected. 

(vi) 𝛼, 𝑉0,  𝛿0, 𝜌, 𝑃, Ω, 𝑐 are the non-zero positive 
constants.  

3. The analytic approximations 

This section discusses the solution of the initial-
boundary value problem (Eqs. 5-7). By plugging Eq. 
8 and Eq. 9 into Eq. 5, one obtains: 
 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = −𝜀[2(𝑉0 + 𝛼sin(Ω𝑡))𝑢𝑥𝑡 + 𝛼Ωcos(Ω𝑡) 𝑢𝑥 +
𝛿𝑢𝑡] + 𝑂(𝜀2)                                                                                (10) 

 
with the Dirichlet boundary conditions: 
 
𝑢(0, 𝑡; 𝜀) = 𝑢(1, 𝑡; 𝜀) = 0,          𝑡 ≥ 0                                    (11) 
 
and the initial conditions: 
 
𝑢(𝑥, 0; 𝜀) = 𝜓(𝑥),     and     𝑢𝑡(𝑥, 0; 𝜀) = 𝜙(𝑥),     0 < 𝑥 < 1. 

                                                                                                         (12) 

 
The boundary conditions (Eq. 11) suggest that 

the solution of Eq. 10 can be expanded in terms of 
Fourier-sine series given as under: 
 
𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑡; 𝜀)sin (𝑛𝜋𝑥)∞

𝑛=1 .                                          (13) 

 
The following orthogonally conditions holds: 
 

∫ sin(𝑛𝜋𝑥) sin(𝑘𝜋𝑥) 𝑑𝑥 = {
  0,                              for 𝑛 ≠ 𝑘 
1

2
,                              for 𝑛 = 𝑘

     
1

0
                                    

(14) 

∫ cos(𝑛𝜋𝑥) sin(𝑘𝜋𝑥) 𝑑𝑥 =
1

0

{
  0,                              for (𝑛 ± 𝑘)  even 

−
2𝑘

(𝑛2−𝑘2)𝜋
, for (𝑛 ± 𝑘)  odd

.                                 (15) 

 
By substitution Eq. 13 and all its required 

derivatives into Eq. 10, it follows that: 
 
∑ (𝑢̈𝑛 + (𝑛𝜋)2𝑢𝑛) sin(𝑛𝜋𝑥) = −𝜀 ∑ (𝑛𝜋)[2(𝑉0 +∞

𝑛=1
∞
𝑛=1

𝛼 sin(Ω𝑡)𝑢̇𝑛 + 𝛼Ωcos(Ω𝑡)𝑢𝑛)] cos(𝑛𝜋𝑥) −
𝜀𝛿 ∑ 𝑢̇𝑛 sin(𝑛𝜋𝑥) + 𝑂(𝜀2)∞

𝑛=1 .                                                 (16) 

 
Multiply Eq. 16 with sin(𝑘𝜋𝑥) both sides and then 

integrates w.r.t to 𝑥 over the interval [0  1],  and 
using Eq. 14 and Eq. 15 it yields: 
 

(𝑢̈𝑘 + (𝑘𝜋)2𝑢𝑘) = 𝜀 ∑ (
𝑛𝑘

𝑛2−𝑘2)
∞

𝑛=1
 n±k is odd

[8(𝑉0 +

𝛼 sin(Ω𝑡))𝑢̇𝑛 + 4𝛼Ωcos(Ω𝑡)𝑢𝑛] − 𝜀𝛿𝑢̇𝑘 + 𝑂(𝜀2).            (17) 
 

Eq. 17 represents a system of infinite ODE’s and is 
not easy to solve in terms of elementary functions. 
We will solve Eq. 17 for different values of 
fluctuation parameter Ω by using a perturbation 
method. Let the solution of Eq. 17 is in the 
form 𝑢𝑘(𝑡; 𝜀) = 𝑣𝑘(𝑡0, 𝑡1; 𝜀), where 𝑡0 = 𝑡 (fast 
timescale) and 𝑡1 = 𝜀𝑡 (slow timescales).  

We use the following transformations for the time 
derivatives in terms of the timescales 𝑡0, and 𝑡1: 
 
𝑑𝑢𝑘

𝑑𝑡
=

𝜕𝑣𝑘

𝜕𝑡0
+ 𝜀

𝜕𝑣𝑘

𝜕𝑡1
                                                                          (18) 

𝑑2𝑢𝑘

𝑑𝑡2 =
𝜕2𝑣𝑘

𝜕𝑡0
2 + 2𝜀

𝜕2𝑣𝑘

𝜕𝑡0𝜕𝑡1
+ 𝜀2 𝜕2𝑣𝑘

𝜕𝑡1
2 .                                            (19) 

 
Substitution of Eq. 18 and Eq. 19 into Eq. 17 it yields, 
 
𝜕2𝑣𝑘

𝜕𝑡0
2 + 2𝜀

𝜕2𝑣𝑘

𝜕𝑡0𝜕𝑡1
+ (𝑘𝜋)2𝑣𝑘 =

𝜀 ∑ (
𝑛𝑘

𝑛2−𝑘2) [4𝛼Ω cos(Ω𝑡0)𝑣𝑛 + 8(𝑉0 +∞
𝑛=1

 n±k is odd

𝛼 sin(Ω𝑡0))
𝜕𝑣𝑛

𝜕𝑡0
] − 𝛿𝜀

𝜕𝑣𝑘

𝜕𝑡0
+ 𝑂(𝜀2 ).                                        (20) 
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An approximation of 𝑣𝑘(𝑡0,𝑡1 ; 𝜀) can be extended 

as under, 
 
𝑣𝑘(𝑡0,𝑡1 ; 𝜀) = 𝑣𝑘0(𝑡0, 𝑡1) + 𝜀𝑣𝑘1(𝑡0, 𝑡1) + ⋯                      (21) 

 
Plugging of Eq. 21 into Eq. 20 and then collecting 

the coefficients of 𝜀0 and 𝜀 on both sides, we obtain 
𝑂(1) and 𝑂(𝜀)-problem for 𝑣𝑘0 and 𝑣𝑘1 as follows: 
 

𝑂(1):
𝜕2𝑣𝑘0

𝜕𝑡0
2 + (𝑘𝜋)2𝑣𝑘0 = 0                                                      (22) 

𝑂(𝜀):
𝜕2𝑣𝑘1

𝜕𝑡0
2 + (𝑘𝜋)2𝑣𝑘1 = −2

𝜕2𝑣𝑘0

𝜕𝑡0𝜕𝑡1
 − 𝛿

𝜕𝑣𝑘0

𝜕𝑡0
+

∑ (
𝑛𝑘

𝑛2−𝑘2
) [4𝛼Ω cos(Ω𝑡0)𝑣𝑛0 + 8(𝑉0 +∞

𝑛=1
 n±k is odd

𝛼 sin(Ω𝑡0))
𝜕𝑣𝑛0

𝜕𝑡0
].                                                                         (23) 

 
We use direct integration to solve the 𝑂(1)-

problem: 
 
𝑣𝑘0(𝑡0, 𝑡1) = 𝐴𝑘0(𝑡1) cos(𝑘𝜋𝑡0) + 𝐵𝑘0(𝑡1) sin(𝑘𝜋𝑡0)      (24) 

 
where 𝐴𝑘0(𝑡1) and 𝐵𝑘0(𝑡1) are still arbitrary 
functions, and to be determined to make the 𝑂(𝜀)-
problem free of unbounded terms.  

3.1. General resonance case 𝛀 = 𝒎𝝅 

In this section, the general resonance case that is, 
when the frequency Ω is equal to 𝑚𝑡ℎ times the 
natural frequency of the damped axially moving 
string, i.e., Ω = 𝑚𝜋, where 𝑚 = 1,3,5⋯. By setting 
Ω = 𝑚𝜋 into 𝑂(𝜀)-problem (23), and in order to 
avoid the secular terms in 𝑣𝑘1(𝑡0, 𝑡1); 𝐴𝑘0(𝑡1) and 
𝐵𝑘0(𝑡1) has to satisfy the following solvability 
conditions: 
 
 𝑑𝐴𝑘0

𝑑𝑡1̅
= −

𝛿̅

2
𝐴𝑘0(𝑡1) + [(𝑘 + 𝑚)𝐵(𝑘+𝑚)0 + (𝑘 − 𝑚)𝐵(𝑘−𝑚)0 −

(𝑚 − 𝑘)𝐵(𝑚−𝑘)0]                                                                         (25) 
𝑑𝐵𝑘0

𝑑𝑡1̅
= −

𝛿̅

2
𝐵𝑘0(𝑡1) − [(𝑘 + 𝑚)𝐴(𝑘+𝑚)0 + (𝑘 − 𝑚)𝐴(𝑘−𝑚)0 +

(𝑚 − 𝑘)𝐴(𝑚−𝑘)0]  

 

where, 𝛿̅ =
𝛿𝑚

𝛼
, 𝑡1̅ =

𝛼𝑡1

𝑚
 𝑘 = 1,2,3, … and the 

arbitrary functions 𝐴𝑘0 and 𝐵𝑘0 are defined to be 
zero for non-positive indices 𝑘. For simplicity, we 
will drop the bar from 𝑡1̅ and 𝛿̅. The coupled system 
(Eq. 25) of ODEs represents that there are infinitely 
many vibrations modes in the system. In the 
following subsection, we will analyze the coupled 
system (Eq. 25) by using Galerkin’s truncation 
method. 

3.1.1. Galerkin’s truncation method  

In this subsection, we will study the coupled 
system (Eq. 25) by truncating it to a finite number of 
modes. This study will compute the eigenvalues for 
𝑚 = 3 and 𝑚 = 5  up to 10 vibration modes. In order 
to compute the eigenvalues for the first four modes 
of vibration for = 3, the coupled system (Eq. 25) 
yields, 

𝑋̇ = 𝐴𝑋                                                                                           (26) 

 
where 
 

𝑋 =

[
 
 
 
 
 
 
 
𝐴10

𝐵10

𝐴20

𝐵20

𝐴30

𝐵30

𝐴40

𝐵40]
 
 
 
 
 
 
 

, 𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 −

𝛿

2
0 0 −2 0 0 0 4

0 −
𝛿

2
−2 0 0 0 −4 0

0 −1 −
𝛿

2
0 0 0 0 0

−1 0 0 −
𝛿

2
0 0 0 0

0 0 0 0 −
𝛿

2
0 0 0

0 0 0 0 0 −
𝛿

2
0 0

0 1 0 0 0 0 −
𝛿

2
0

−1 0 0 0 0 0 0 −
𝛿

2]
 
 
 
 
 
 
 
 
 
 
 
 

.  (27) 

 
The eigenvalues of matrix given in Eq. 27 

are  −
𝛿

2
, −

𝛿

2
, −

𝛿

2
, −

𝛿

2
, −

𝛿

2
± √2𝑖, −

𝛿

2
± √2𝑖 which are 

a multiplicity of two and are clearly damped out. By 
using the Maple16, the eigenvalues of the coupled 
system (Eq. 25) have been computed up to 10 modes 
of vibrations for 𝑚 = 3 and 𝑚 = 5 and are presented 
in Table 1 and Table 2, respectively. For 𝛿 = 0 we get 
similar eigenvalues as obtained by Malookani and 
van Horssen (2015). 

 

Table 1: Eigenvalues of coupled system (Eq. 25) for 𝑚 = 3 
No. of 
Modes 

Eigenvalues of A 
Order of 

A 

1 −
𝛿

2
 2 

2 −
𝛿

2
± √2 4 

3 −
𝛿

2
,−

𝛿

2
± √2 6 

4 −
𝛿

2
± √2𝑖, −

𝛿

2
, −

𝛿

2
 8 

5 −
𝛿

2
,−

𝛿

2
± 0.40 + 2.48𝑖, −

𝛿

2
± 0.40

− 2.48𝑖 
10 

6 −
𝛿

2
± 4.24𝑖,−

𝛿

2
± 0.40 + 2.48𝑖, −

𝛿

2
± 0.40 − 2.48𝑖 

12 

7 −
𝛿

2
,−

𝛿

2
± 4.24𝑖, −

𝛿

2
± 2.89𝑖, −

𝛿

2
± 5.64𝑖 14 

8 −
𝛿

2
,−

𝛿

2
,−

𝛿

2
± 4.24𝑖, −

𝛿

2
± 2.89𝑖, −

𝛿

2
± 5.64𝑖 

16 

9 
−

𝛿

2
,−

𝛿

2
,−

𝛿

2
,−

𝛿

2
± 2.89𝑖, −

𝛿

2

± 5.64𝑖, −
𝛿

2
± 8.48𝑖 

18 

10 
−

𝛿

2
,−

𝛿

2
,−

𝛿

2
± 2.08𝑖, −

𝛿

2
± 2.55𝑖, −

𝛿

2

± 8.48𝑖, −
𝛿

2
± 9.96𝑖 

20 

 

It can be observed from Table 1 that, 1st, 4th, 7th, 
8th, 9th, and 10th mode-amplitudes are stable in 
nature and 1st, 2nd, and 7th are mode-amplitudes are 
stable as shown in Table 2; however remaining 
modes in both tables are stable at certain values of 
damping parameter. 

3.1.2. Mathematical analysis of the coupled 
system (Eq. 25) 

In this subsection, we will analyze the coupled 
system of ODEs given in Eq. 25 to compute the 
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energy for a damped axially moving string for 
general resonance case as follows: 

 
For the transformations 𝑋𝑘0(𝑡1) = 𝑘𝐴𝑘0(𝑡1) 

and 𝑌𝑘0(𝑡1) = 𝑘𝐵𝑘0(𝑡1), coupled system (25) yields, 
 

{

𝑑𝑋𝑘0

𝑑𝑡1
= −

𝛿

2
𝑋𝑘0 + 𝑘[𝑌(𝑘+𝑚)0 + 𝑌(𝑘−𝑚)0 − 𝑌(𝑚−𝑘)0]

𝑑𝑌𝑘0

𝑑𝑡1
= −

𝛿

2
𝑌𝑘0 − 𝑘[𝑋(𝑘+𝑚)0 + 𝑋(𝑘−𝑚)0 + 𝑋(𝑚−𝑘)0]

         (28) 

 
where, 𝑘 = 1,2,3, … and the functions 𝑋𝑘0(𝑡1) = 0, 
𝑌𝑘0(𝑡1) = 0, ∀ 𝑘 ≤ 0. Thus it yields, 

  

{
𝑋𝑘0𝑋̇𝑘0 = −

𝛿

2
𝑋𝑘0

2 + 𝑘[𝑋𝑘0𝑌(𝑘+𝑚)0 + 𝑋𝑘0𝑌(𝑘−𝑚)0 − 𝑋𝑘0𝑌(𝑚−𝑘)0]

𝑌𝑘0𝑌̇𝑘0 = −
𝛿

2
𝑌𝑘0

2 − 𝑘[𝑌𝑘0𝑋(𝑘+𝑚)0 + 𝑌𝑘0𝑋(𝑘−𝑚)0 + 𝑌𝑘0𝑋(𝑚−𝑘)0]
                                                            (29) 

  
 
Table 2: Eigenvalues of coupled system (Eq. 25) for 𝑚 = 5 

No. of 
Modes 

Eigenvalues of A 
Order 
of A 

1 −
𝛿

2
 2 

2 −
𝛿

2
,−

𝛿

2
 4 

3 −
𝛿

2
± √6,−

𝛿

2
 6 

4 −
𝛿

2
± √6,−

𝛿

2
± 2 8 

5 −
𝛿

2
,−

𝛿

2
± √6,−

𝛿

2
± 2 10 

6 −
𝛿

2
, −

𝛿

2
, −

𝛿

2
± √6,−

𝛿

2
± √2i 12 

7 −
𝛿

2
, −

𝛿

2
, −

𝛿

2
, −

𝛿

2
± √2𝑖, −

𝛿

2
± 2√2i 14 

8 
−

𝛿

2
, −

𝛿

2
, −

𝛿

2
± √2𝑖, −

𝛿

2
± 1.08 +

4.14i, −
𝛿

2
± 1.08 − 4.14i 

16 

9 
−

𝛿

2
, −

𝛿

2
± 2.64𝑖, −

𝛿

2
± 5.57𝑖, −

𝛿

2
± 1.08 +

4.14i, −
𝛿

2
± 1.08 − 4.14i 

18 

10 
−

𝛿

2
± 7.07𝑖, −

𝛿

2
± 2.64𝑖, −

𝛿

2
± 5.57𝑖, −

𝛿

2
±

1.08 + 4.14i, −
𝛿

2
± 1.08 − 4.14i 

20 

 
By adding both the equations in Eq. 29 on both 

sides and by taking the sum from 𝑘 = 1 to ∞, it 
yields, 
 
1

2

𝑑

𝑑𝑡1

∑ (𝑋𝑘0
2 + 𝑌𝑘0

2 ) = −
𝛿

2
∞
𝑘=1 ∑ (𝑋𝑘0

2 + 𝑌𝑘0
2 ) +∞

𝐾=1

𝑚 ∑ (𝑋(𝑘+𝑚)0𝑌𝑘0 − 𝑋𝑘0𝑌(𝑘+𝑚)0) + (1)(− 𝑋(𝑚−1)0𝑌10 −∞
𝐾=1

 𝑋10𝑌(𝑚−1)0) + (2)(− 𝑋(𝑚−2)0𝑌20 − 𝑋20𝑌(𝑚−2)0) + ⋯+

 (𝑚 − 2)(− 𝑋20𝑌(𝑚−2)0 − 𝑋(𝑚−2)0𝑌20) + (𝑚 −

1)(− 𝑋10𝑌(𝑚−1)0 − 𝑋(𝑚−1)0𝑌10).                                           (30) 

 
Differentiate Eq. 30 both sides with respect to, 𝑡1 , 

we obtain, 
 
1

2

𝑑2

𝑑𝑡1
2 ∑ (𝑋𝑘0

2 + 𝑌𝑘0
2 ) + 𝛿

𝑑

𝑑𝑡1

∞
𝑘=1 ∑ (𝑋𝑘0

2 + 𝑌𝑘0
2 ) +∞

𝐾=1

(
𝛿2

2
− 2𝑚2)∑ (𝑋𝑘0

2 + 𝑌𝑘0
2 ) = 0   ∞

𝐾=1                                        (31) 

 
and then by putting ∑ (𝑋𝑘0

2 + 𝑌𝑘0
2 ) = 𝑤(𝑡1)

∞
𝐾=1  into 

Eq. 31 yields, 
 
𝑑2𝑤(𝑡1)

𝑑𝑡1
2 + 2𝛿

𝑑𝑤(𝑡1)

𝑑𝑡1
+ (𝛿2 − 4𝑚2)𝑤(𝑡1) = 0.                       (32) 

 
The solution of Eq. (32) is, 
 
𝑤(𝑡1) = 𝐶1𝑒

(−𝛿+2𝑚)𝑡1 + 𝐶2𝑒
(−𝛿−2𝑚)𝑡1                                  (33) 

 
where 𝐶1 and 𝐶2 are non-zero constants and can be 
obtained by using the initial conditions of the 

problem. Thus the following cases arise for damping 
parameter: 
 
Case 1: For 𝛿 = 2𝑚 the energy of the system first 
decreases and then becomes constant, so in this case, 
the system is stable. 
Case 2: For 𝛿 > 2𝑚, the energy of the system will 
tend to zero for sufficiently large time, so the system 
remains stable. 
Case 3: For 𝛿 < 2𝑚, the energy of the system will 
grow exponentially as time increases, so the system 
is unstable.  
 
when 𝛿 = 0  we will get the same system as obtained 
in a study by Malookani and van Horssen (2015), 
and for δ=0 and m=1, we get similar results as 
obtained in a study by Suweken and van Horssen 
(2003). 

3.2. Detuning case: 𝜴 = 𝒎𝝅 + 𝜺𝝈  

In this section, we will investigate the (in) 
stability of the damped string-like equation in the 
neighborhood of resonance that is Ω~𝑚𝜋 + 𝜀𝜎, 
where 𝑚 = 1,3,5⋯. Thus we can write, 
 
Ω = 𝑚𝜋 + 𝜀𝜎                                                                                (34) 

 
where 𝜎 is a detuning parameter and taken to be of 
𝑂(1) and 𝜀 (0 < 𝜀 ≪ 1) is a small dimensionless 
parameter. By putting Eq. 34 into Eq. 23, the 𝑂(𝜀)-
problem for 𝑣𝑘1 is obtained: 
 
𝜕2𝑣𝑘1

𝜕𝑡0
2 + (𝑘𝜋)2𝑣𝑘1 = −2

𝜕2𝑣𝑘0

𝜕𝑡0𝜕𝑡1
 − 𝛿

𝜕𝑣𝑘0

𝜕𝑡0
+

∑ (
𝑛𝑘

𝑛2−𝑘2) [4𝛼 (𝑚𝜋 + 𝜀𝜎) cos((𝑚𝜋 + 𝜀𝜎)𝑡0) 𝑣𝑛0 +∞
𝑛=1

 n±k is odd

8(𝑉0 + 𝛼 sin(𝑚𝜋 + 𝜀𝜎)𝑡0)
𝜕𝑣𝑛0

𝜕𝑡0
].                                            (35) 

 
To prevent the unbounded terms, 𝐴𝑘0 and 𝐵𝑘0  

have to satisfy,  
 
𝑑𝐴𝑘0

𝑑𝑡1̅
= −

𝛿̅

2
𝐴𝑘0(𝑡1) + [(𝑚 + 𝑘)(𝐴(𝑚+𝑘)0 sin 𝜎𝑡1 +

𝐵(𝑚+𝑘)0 cos 𝜎𝑡1) − (𝑚 − 𝑘)(𝐴(𝑚−𝑘)0 sin 𝜎𝑡1 +

𝐵(𝑚−𝑘)0 cos 𝜎𝑡1) − (𝑘 − 𝑚)(𝐴(𝑘−𝑚)0 sin 𝜎𝑡1 −

𝐵(𝑘−𝑚)0 cos 𝜎𝑡1)]                                                                        (36) 
𝑑𝐵𝑘0

𝑑𝑡1̅
= −

𝛿̅

2
𝐵𝑘0(𝑡1) − [(𝑚 +

𝑘)(𝐴(𝑚+𝑘)0 cos 𝜎𝑡1 −𝐵(𝑚+𝑘)0 sin 𝜎𝑡1) + (𝑚 −
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𝑘)(𝐴(𝑚−𝑘)0 cos 𝜎𝑡1 −𝐵(𝑚−𝑘)0 sin 𝜎𝑡1) + (𝑘 −

𝑚)(𝐴(𝑘−𝑚)0 cos 𝜎𝑡1 +𝐵(𝑘−𝑚)0 sin 𝜎𝑡1)]  

 

where 𝑡1̅ =
𝛼𝑡1

𝑚
, 𝛿̅ =

𝛿𝑚

𝛼
 and 𝑘 = 1,2,3, … and the 

functions 𝐴𝑘0 and 𝐵𝑘0 are considered to be zero for 
non-positive integers. For simplicity, the bar from 𝑡1̅ 
and 𝛿̅ is dropped. It can be observed that for 
detuning parameter 𝜎 = 0  in Eq. 36, we get the same 
system given in Eq. 25. If damping coefficient 𝛿 = 0 
and detuning parameter 𝜎 = 0  Eq. 36 reduces to 
same equation obtained in the study by Malookani 
and van Horssen (2015). 

3.2.1. Mathematical analysis of coupled system 
(Eq. 36) 

In this subsection, we compute the energy from 
the coupled system of ODEs. (Eq. 36), which is 
obtained for avoiding the secular terms for the 
detuning case. Using transformations 𝑋𝑘0(𝑡1) = 𝑘𝐴𝑘0 
and 𝑌𝑘0(𝑡1) = 𝑘𝐵𝑘0 with 𝑘 = 1,2,3⋯, thus the 
coupled system of ODEs (Eq. 36) yields: 
 
𝑑𝑋𝑘0

𝑑𝑡1
= −

𝛿̅

2
𝑋𝑘0 + 𝑘[(𝑋(𝑚+𝑘)0 sin 𝜎𝑡1 + 𝑌(𝑚+𝑘)0 cos 𝜎𝑡1) −

(𝑋(𝑚−𝑘)0 sin 𝜎𝑡1 + 𝑌(𝑚−𝑘)0 cos 𝜎𝑡1) − (𝑋(𝑘−𝑚)0 sin 𝜎𝑡1 −

𝑌(𝑘−𝑚)0 cos 𝜎𝑡1)]                                                                         (37) 
𝑑𝑌𝑘0

𝑑𝑡1
= −

𝛿

2
𝑌𝑘0 + 𝑘[(−𝑋(𝑚+𝑘)0 cos 𝜎𝑡1 +𝑌(𝑚+𝑘)0 sin 𝜎𝑡1) −

(𝑋(𝑚−𝑘)0 cos 𝜎𝑡1 −𝑌(𝑚−𝑘)0 sin 𝜎𝑡1) −

(𝑋(𝑘−𝑚)0 cos 𝜎𝑡1 +𝑌(𝑘−𝑚)0 sin 𝜎𝑡1)].    

 
The functions 𝑋𝑘0(𝑡1) and 𝑌𝑘0(𝑡1) are zero for non-
positive integers. Then from Eq. 37, it is concluded 
that, 
 

𝑋𝑘0𝑋̇𝑘0 = −
𝛿

2
𝑋𝑘0

2 + 𝑘[𝑋𝑘0(𝑋(𝑚+𝑘)0 sin 𝜎𝑡1 +

𝑌(𝑚+𝑘)0 cos 𝜎𝑡1) − 𝑋𝑘0(𝑋(𝑚−𝑘)0 sin 𝜎𝑡1 +

𝑌(𝑚−𝑘)0 cos 𝜎𝑡1) − 𝑋𝑘0(𝑋(𝑘−𝑚)0 sin 𝜎𝑡1 − 𝑌(𝑘−𝑚)0 cos 𝜎𝑡1)]   

                                                                                                         (38) 
𝑌𝑘0𝑌̇𝑘0

= −
𝛿

2
𝑌𝑘0

2

+ 𝑘[𝑌𝑘0(−𝑋(𝑚+𝑘)0 cos 𝜎𝑡1 +𝑌(𝑚+𝑘)0 sin 𝜎𝑡1)

− 𝑌𝑘0(𝑋(𝑚−𝑘)0 cos 𝜎𝑡1 −𝑌(𝑚−𝑘)0 sin 𝜎𝑡1)

− 𝑌𝑘0(𝑋(𝑘−𝑚)0 cos 𝜎𝑡1 +𝑌(𝑘−𝑚)0 sin 𝜎𝑡1)]. 

 
By taking sum on both sides of equations in Eq. 

38, and then by the sum up from 𝑘 = 1 to ∞, it yields, 
 
1

2

𝑑

𝑑𝑡1

∑ (𝑋𝑘0
2 + 𝑌𝑘0

2 ) +
𝛿

2
∞
𝑘=1 ∑ (𝑋𝑘0

2 + 𝑌𝑘0
2 ) =∞

𝐾=1

𝑚 ∑ [(𝑋(𝑘+𝑚)0𝑌𝑘0 −∞
𝐾=1

𝑋𝑘0𝑌(𝑘+𝑚)0) cos 𝜎𝑡1 −(𝑋𝑘0𝑋(𝑘+𝑚)0 +

𝑌𝑘0𝑌(𝑘+𝑚)0) sin 𝜎𝑡1]  + (1)[( 𝑌(𝑚−1)0𝑌10 −

 𝑋10𝑋(𝑚−1)0) sin 𝜎𝑡1 − (𝑋10𝑌(𝑚−1)0 +

 𝑋(𝑚−1)0𝑌10) cos 𝜎𝑡1] + (2) [( 𝑌(𝑚−2)0𝑌20 −

 𝑋20𝑋(𝑚−2)0) sin 𝜎𝑡1 − (𝑋20𝑌(𝑚−2)0 +

 𝑋(𝑚−2)0𝑌20) cos 𝜎𝑡1] + ⋯+ (𝑚 − 2)[( 𝑌(𝑚−2)0𝑌20 −

 𝑋20𝑋(𝑚−2)0) sin 𝜎𝑡1 − (𝑋(𝑚−2)0𝑌20 +

 𝑋20𝑌(𝑚−2)0) cos 𝜎𝑡1] + (𝑚 − 1) [( 𝑌(𝑚−1)0𝑌10 −

 𝑋10𝑋(𝑚−1)0) sin 𝜎𝑡1 − (𝑋(𝑚−1)0𝑌10 +

 𝑋10𝑌(𝑚−1)0) cos 𝜎𝑡1].                                                                 (39) 

Differentiate the Eq. 39 w.r.t 𝑡1 two times, we get, 
 
𝑑3𝑤

𝑑𝑡1
3 + 3𝛿

𝑑2𝑤

𝑑𝑡1
2 + (3𝛿2 − 4𝑚2 + 𝜎2)

𝑑𝑤

𝑑𝑡1
+ (𝛿3 − 4𝑚2𝛿 +

𝜎2𝛿)𝑤 = 0                                                                                    (40) 

 

where ∑ (𝑋𝑘0
2 + 𝑌𝑘0

2 ) = 𝑤(𝑡1)
∞
𝐾=1  and as – 𝛿 is the root 

of Eq. 40 thus it yields, 
 
𝑑2𝑤

𝑑𝑡1
2 + 2𝛿

𝑑𝑤

𝑑𝑡1
+ (𝛿2 − 4𝑚2 + 𝜎2)𝑤 = 0.                               (41) 

 

Finally, the roots of Eq. 41 are −𝛿 ± √4𝑚2 − 𝜎2 
so we have different cases for damping and detuning 
parameter as under: 

 
Case 1: when 4𝑚2 − 𝜎2 = 0 that is, |𝜎| = 2𝑚, then 
𝑤(𝑡1) = (𝐶1 + 𝐶2𝑡1 + 𝐶3𝑡1

2)𝑒−𝛿𝑡1 where 𝐶1, 𝐶2 , 𝐶3 are 
arbitrary constants. Further, if 𝛿 > 0, the energy of 
the system tends to zero for sufficiently large time, 
and the system remains stable, however, for 𝛿 = 0 
the energy grows polynomially, and the system 
becomes unbounded. 
 
Case 2: when 4𝑚2 − 𝜎2 > 0 that is |𝜎| < 2𝑚 

then 𝑤(𝑡1) = 𝐶1𝑒
−𝛿𝑡1 + 𝑒−𝛿𝑡1(𝐶2 cosh√4𝑚2 − 𝜎2𝑡1 +

𝐶3 sinh√4𝑚2 − 𝜎2𝑡1) and for 𝛿 > √4𝑚2 − 𝜎2 the 
energy of system reduces and system remains stable, 

however for 𝛿 < √4𝑚2 − 𝜎2 the energy of system 
grows exponentially, thus system becomes 
unbounded. 
 
Case 3: when 4𝑚2 − 𝜎2 < 0 that is |𝜎| > 2𝑚 then 

𝑤(𝑡1) = 𝐶1𝑒
−𝛿𝑡1+𝑒−𝛿𝑡1(𝐶2 cos √4𝑚2 − 𝜎2𝑡1 +

𝐶3 sin√4𝑚2 − 𝜎2𝑡1) thus, the energy of the system is 
always bounded due to the trigonometric solutions.  

4. Results and discussion 

In this paper, (in) stability of the vertical 
vibrations of the string-like model under the effect of 
viscous damping have been studied. The string is 
moving in only one positive 𝑥-direction with 𝑉(𝑡) =
𝜀(𝑉0 + 𝛼 sin(Ω𝑡)), where 0 < 𝜀 ≪ 1 and 𝑉0, 𝛼, Ω are 
positive constants. In order to find approximate-
analytic solutions of the governing equations of 
motion, a Fourier expansion method, together with 
two timescales perturbation method, is employed. It 
is found out that there are infinitely many values of 
parameter Ω, giving rise to resonances. The general 
resonance case that is, 𝛺 = 𝑚𝜋, and the (Near 
resonance) detuning case that is, Ω = 𝑚𝜋 + 𝜀𝜎, 
where 𝜎 is detuning parameter and 𝑚 = 1,3,5, … has 
been studied in detail.  

The energy of an infinite dimensional system is 
obtained from a coupled system of ODEs, and it is 
observed that for 𝛿 = 2𝑚 energy of system 
decreases and eventually become constant, for 𝛿 >
2𝑚 the energy of system tends to zero as times 
increases and for 𝛿 < 2𝑚 energy grows without 
bound and finally for 𝛿 = 0 similar solution is 
obtained by Malookani and van Horssen (2015). 
Eigenvalues of a coupled system for 𝑚 = 3 and 𝑚 =
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5 are obtained up to 10 modes by using computer 
software Maple16, which are in a multiplicity of 2. 
For 𝛿 ≥ 2𝑚, 1st, 4th, 7th, 8th, 9th, and 10th mode-
amplitudes are stable due to the negative real part as 
given in Table 1.  

However, 2nd, 3rd, mode-amplitudes are stable for 
damping parameter 𝛿 > 2.828 and 5th, and 6th modes 
are stable for damping parameters 𝛿 > 0.80 and 
similarly for 𝛿 ≥ 2𝑚, 1st, 2nd, and 7th are mode-
amplitudes are stable in nature. However, 3rd, 4th, 5th, 
6th, are stable for damping parameter  𝛿 > 4.89 and 
8th, 9th, 10th, modes are stable for damping 
parameter 𝛿 > 2.16 as shown in Table 2. For 𝛿 <
2𝑚, the energy of the system and mode-truncation 
behaves differently, so mode-truncation for this case 
is not possible.  

In addition, the detuning case for 𝑚 > 1 has also 
been discussed in detail. For |𝜎| = 2𝑚 and 𝛿 > 0 the 
energy of system decays as time increases and 
system remains stable. If 𝛿 = 0, the energy grows 
polynomially, and systems remains unbounded. For 

|𝜎| < 2𝑚 and 𝛿 > √4𝑚2 − 𝜎2, energy of the system 

decays and system is stable but for 𝛿 < √4𝑚2 − 𝜎2 
energy of coupled system grows exponentially, so 
the system is unstable for this case. Finally, for |𝜎| >
2𝑚, the energy is always bounded due to the 
trigonometric terms. 

5. Concluding remarks 

The stability analysis is carried out in the vertical 
vibrations of the string-like model under the 
influence of viscous damping, with time-varying 
velocity. The Fourier expansion method, together 
with two timescales perturbation method, has been 
used for the search of approximate-analytic 
solutions. It has been found that there are infinitely 
many values of fluctuation parameter Ω, which 
generates the resonance in the system.  

This study has focused on the stability of the 
string-like model at the general resonance and the 
resonant detuning cases. It has been found that the 
energy obtained from a coupled system of ODEs 
decays only for two cases of damping parameter 𝛿, 
that is, 𝛿 = 2𝑚 and 𝛿 > 2𝑚. The eigenvalues of a 
coupled system computed up to 10 modes, which are 
stable depending on the certain values of the 
damping parameter. It turned out that the Galerkin’s 
truncation is not problematic for these two cases of 
damping, whereas for 𝛿 < 2𝑚 Galerkin’s truncation 
is not applicable due to different behavior of energy 
and modes.  

Finally, for the detuning case, it has been 
observed that for detuning parameter 𝜎,  that is, for 
|𝜎| > 2𝑚 the energy of the system is bounded, 

whereas, for |𝜎| < 2𝑚 with 𝛿 > √4𝑚2 − 𝜎2 the 
energy tends to zero as the time progresses and for 

𝛿 < √4𝑚2 − 𝜎2, the energy grows exponentially. For 
|𝜎| = 2𝑚 with 𝛿 > 0, the energy of the system 
damps out, whereas, for 𝛿 = 0 the energy grows 
polynomial. 
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