International Journal of Advanced and Applied Sciences, 7(6) 2020, Pages: 48-56

W @@% Contents lists available at Science-Gate

& % International Journal of Advanced and Applied Sciences

£

5 Y
g l&\ A
H J.r L)_l

Journal homepage: http://www.science-gate.com/IJAAS.html

)

[ Z
Y
p. 4

Numerical treatment of fourth-order singular boundary value problems CrossMark
using new quintic B-spline approximation technique

+clickor updates

Muhammad Kashif Igbal !, Muhammad Waseem Iftikhar 2, Muhammad Shahid Igbal 3, Muhammad Abbas % *

1Department of Mathematics, Government College University, Faisalabad, Pakistan
2Department of Mathematics, National Textile University, Faisalabad, Pakistan

3Department of Mathematics, University of Okara, Okara, Pakistan

*Department of Mathematics, University of Sargodha, Sargodha, Pakistan

ARTICLE INFO ABSTRACT

Article history:

Singular boundary value problems (SBVPs) are cropped up in mathematical

Received 4 October 2019 modeling of many real-life phenomena such as chemical reactions, electro-
Received in revised form hydrodynamics, aerodynamics, thermal explosions, fluid dynamics, and
8 March 2020 atomic nuclear reactions. In this work, a new quintic B-spline approximation
Accepted 11 March 2020 technique has been presented for the numerical solution of fourth-order

Keywords:

Singular boundary value problems
Quintic B-spline functions

Quintic B-spline collocation method
Emden flower type equations

singular boundary value problems. The fifth-degree basis spline functions are
brought into play together with a new approximation for fourth-order
derivative. The proposed numerical technique is proved to be uniformly
convergent in the entire domain. In order to corroborate this work, the
proposed scheme has been implemented on some test problems. The
comparison of computational outcomes advocates the superior performance

of the presented algorithm over current methods on the topic.
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1. Introduction

In this work, we have considered the following
class of fourth-order SBVPs.

au™® (x) + gu(” ) +v(u" (x) + wkx)u'(x) =
fx,w),x €[0,1], 8]

with one of the following the initial/boundary
conditions:

u(0) =By, u'(0) = B, u"(0) =3, u"(0)=0
u(O) = ﬁlr u,(o) = BZ' u(l) = B3' u,(l) = ﬁ‘l— ) (2)
u(0) = By, u'(0) =B, u(l) =B;, u"(1) =,

where, a,B,a;'s are constants and v(x),w(x) are
smooth functions and f,f, are supposed to be
continuous in the entire domain with f, > 0. In
recent years, SBVPs have attracted a considerable
amount of research work. Khuri (2001) explored the
numerical solution of generalized Lane-Emden type
equations by means of a new decomposition method
based on Adomian polynomials. Kim and Chun
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(2010) employed a modified Adomian
decomposition method to obtain the series solution
of higher-order SBVP's. Aruna and Kanth (2013)
studied the series solution of higher-order SBVP's
using differential transformation method. Wazwaz
(2015) proposed the Variational iteration method
for the numerical solution of fourth-order SBVP's.
Taiwo and Hassan (2015) presented a new iterative
decomposition method to solve higher-order initial
and boundary value problems. The numerical
solution to fourth-order Emden-Flower type
equations has been discussed in Wazwaz et al
(2015) using the Adomian decomposition method.
Parand and Delkhosh (2017) proposed a generalized
fractional-order of Chebyshev functions for solving
singular Lane-Emden type equations.

The spline interpolating functions have been
employed frequently for solving initial and boundary
value problems (BVP's). The third-degree spline
functions were brought into use for solving second
order SBVP's in Abukhaled et al. (2011), Caglar et al.
(2009), and Goh et al. (2012; 2011). Khuri and Sayfy
(2014) developed an adaptive cubic B-spline (CBS)
collocation scheme to investigate the approximate
solution of second-order Emden-Flower type
equations. The fourth-degree polynomial spline
functions were utilized by Akram (2011) for the
numerical solution of third-order self-adjoint
singularly perturbed BVP's. Akram and Amin (2012)
used a quintic polynomial spline for solving fourth-
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order singularly perturbed BVP's. Lodhi and Mishra
(2016) employed the quintic B-spline (QnBS)
collocation method for solving fourth-order
singularly perturbed SBVP's.

In this paper, we have explored the approximate
solution of fourth-order SBVP's by dint of QnBS
functions reinforced with a new approximation for
fourth-order derivative. In recent years, several
numerical techniques have been proposed for the
numerical solution of SBVP's, but as far as we know,
this technique is novel and has not been employed
for solving BVP's before.

This work is composed as follows: We shall
review some key ideas of QnBS interpolation in
section 2. The new QnBS approximation for the
fourth-order derivative has been formulated in

(x - xj—3)5!
—5(x—x_,)°,

+5h(x — xj_5)*

—20h(x — xj_1)4 +10(x — xj_l)s,

section 3. The numerical method is described in
section 4. The derivation of uniform convergence is
given in section 5. The numerical results and
discussions are presented in section 6.

1.1. Quintic B-spline functions

We uniformly partition the interval [a, b] by n + 1
equidistant knots x; = x; + ih i = 0(1)n, where,
n €Z*,a = x,b =x, and h = —. Let us extended

[a,b] to [a + 5h, b + 5h] with equldlstant knots x; =
xo +ih,(i=-5-4,-3,..,n+3,n+4,n+5) and
define the typical fifth-degree basis spline functions
as (Lodhi and Mishra, 2016; Xu and Lang, 2014):

x € [Xj-3, %]

h5 + 5h*(x — x;_,) + 10R%(x — xj_z)z + 10R%(x — xj_2)3

X € [X_2,%j_1]

26h5 + 50h*(x — x;_1) + 203 (x — xj_1)" — 20h2(x — x,_,)"

x € [xj_1, %]

Bi(x) = 120h5 26h5 + 50h*(xj41 — x) + 20h3(xj41 — x)z — 20h%(xj4q — x)3 . 3)
4 5
—20h(xj41 —x) +10(x541 — ), x € [%}, Xj41]
hS + 5h*(xj45 — x) + 1083 (x542 — %) + 10h2(xj,, — x)°
5
+5h(xj12 — x)* = 5(xj42 — x)7, X € [xj41, X42)
5
(xj+3 —x), X € [%42,Xj43]
0 otherwise
For a sufficiently differentiable function M; =u"(x;) + h_4u(6)(x )— “_6u(8) () + -, (11)
u(x), there corresponds a unique QnBS, U(x), s.t.

) p que Q @ T, =u" (x;) ——u(7)( ) +3 fiv, u(9)(x )+ - (12)
U(x) = X122, ¢;B;(x), (4) Fy=u®(x) — Eu(s) (x,) + %u@) (x;) + - (13)
where, ¢;'s are, constants, yet to be calculated. Let U;, From Egs. 10-13, we can write:

m;, M;, T;and F; denote the quintic B-spline
approximations for u(x) and its first four derivatives llm; — u' (x) o = O(h®), (14)
at the i*" knot respectively. IM; — u" (x)llo = O(RY), (15)
Using Egs. 3 and 4, we have: IT; —u"” (x)lloo = O(h*), (16)
|F; = u® x| = 0(h?). (17)
U =U(x) =Xt , B (x) = éo(ci—z +26¢;_1 + 66¢; +
26Ci41 + Civ2), ) (5) The truncation error in F; is 0(h?) which
m; = U'(x;) = ;+% LGB/ () = o (—ciy = 10c_; + prov1de"s 3 s?lldf re;fond tod C(.)ns;c.ruct a new
10¢11 + Ciag), 6) approximation for fourth-order derivative.
M;=U"(x;) = ;+f 2B (%) = — (cip + 2¢—4 — . .
Ghz 2. The new approximation for U*(x
66 + 20141 + Giy2), Y pp )
Ti=U"() = Eiti 268" () = 2h3 (=Ciz + 2611 = Using Eq. 3, the following expression can be
2Cis1 + Ciy2), . L (8) established for F;_, at the knots x;, (i =,2,3,...,n —
Fr = UM (x) = B8, B () = 15 (cimy — ey + 2) (Igbal et al,, 2018):
6¢; — 4Ci41 + Civ2)- 9

Moreover, from Eqs. 5-9, we can establish the
following relations (Fyfe, 1969; Lodhi and Mishra,
2016; Xu and Lang, 2014):

m;=u (xl.) + _u(7)( L) - (9)(xl.) + -

21600 (10)
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h? h*
Fip =u®(x;_5) - ﬁu(@ (i) + TOU(S) (xi—2) + -

=u®(x) — 2hu® (x) + ﬁu(6)(xl-) -

Lu(7)(xl.) + o
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We can derive similar relations for F;_4, F;;q1, Fiy
at the i knot as:

5h? h3
u®(x;) = h?u® (x;) + Eu(@(xi) - Eum(xi) +

2 3
Firp = u® () — hu® () +2-u® () + Su? () +

Fipp = u®(x) + 2hu® (x)) + 8

Lu(7)(xi) 4o

B 0O +

Let F; be the new approximation to u®(x;) s.t.
Fi = a1Fi_; + apF;_1 + asF; + a4Fipq + asFiyo. (18)

The above expression returns five equations
involving a;’s as:

a,+a,+taz+a,+as =1, -2a, —a, +a, +2a; =0,
23a1+5a2_a3+5a4+23a5:0,

—14a; —a, + a, + 14a5 = 0,121a, +a, +az; + a4 +

121as = 0,

hence, a; = ——, @, = —, a; = -, a, = — and as =
1'1_ 240" 27 10" 3 T 1200 % T 10 57

" 240°

Substituting a;’s back into Eq. 18, we obtain,

i= 240h4( Ci—4 + 28Cl 3 + 92Cl 2
604c;, 1 +92¢i1y + 28Ci13 — Cits)-

60Ci_1 + 970Ci -
(19)

Now we approximate u® (x)
neighboring values, as:

at x, using four

Fy = a1Fy + ayF; + asF, + a,Fs, (20)

where,
@y ® ey ®
Fy = u'™(x,) SU (x0) T (xg) + -+,
3
u® (xy) + h—u(7)(x0) 4o

u® (xg) + Z-u () +

Fp = u®(xo) — hu® (x,) + i
Fy = u® (xg) + 2hu® (xp) + == ZSh

Fy = u® (xg) + 3hu® (xp) + 2= 23
17h (7)(360) +-

" u® (x0) +

Eq. 20 returns the following four equations,

a1+a2+a3+a4 = 1,a2+2a3+3a4= 0,_a1+5a2+
23(13 + 53(14 = 0, a, + 14(13 + 51(14 = 0,

5 _1 1
_,a3—§,a4—__.

hence, a; =2 a, = —
P T g 2 12

Using these values in Eq. 20, we get:

Fy = 12h4 —— (14c_, — 61c_; + 108¢y — 103¢; + 62¢; —

27c3 + 8¢y — C5). (21)
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Similarly, involving four neighboring knots at x;,
we suppose,

F, = a,Fy + ayF; + agF, + a,Fs, (22)

where,

Fo =u®(x;) — hu® (xy) + (6)(x1) - —u(7) () +-
F=u®(x) - Eu(é)(xl) + Eu(fi)(xl) + -

2 3
Fp = u®(x;) + hu® (x;) + iu(6)(x1) + %um () + -,

3
B2 1O + 2 u(xp) +

Fy = u™®(x) + 2hu® (x;) + £

Eq. 22 gives the following equations involving
a;’s:

a1+a2+a3+a4:1, _a1+a3+2a420, 5a1—a2+
5a3 + 23a4 = 0, —aq + as + 14a4 =0.

: 1 5

Solving the above system, we get a; = 2=y

as = %, a, = 0. Substituting a;’s back into Eq. 22, we

have:
Fl 12h4 (C 2 + 6C 1~ 33C0 + 52C1 — 33C2 + 6C3 + C4)
(23)
Working on the same lines, following

approximations at the knots x,_, and x, are
obtained:

Fn—l IZh"’ (Cn 4 + 6Cn 3 33Cn_2 + 52Cn_1 - 33CTL +

6Cn+1 + Cni2), (24)
Fy = i (CCnes + 8cn_g = 27Cy_3 + 62¢,, — 103cy1 +
108c, — 61c, 41 — 14cpyn). (25)

3. Description of the numerical method

Employing Quasi-linearization technique, Eq. 1 is
transformed as

aum+1(4)(x) + éum+1(3) (2) + v up 41" (x) +

WX Ups1' () + Vin (s 1 (x) = Zn (x),x €[0,1],  (26)

af ar
where, ¥, (x) = _(a)(x,um) and Yy, (x) = _(E)(x,um)'
m=20,1,2, ..

After removal of singularity, Eq. 26 takes the
following form

p(x)um+1(4)(x) + q(x)um+1(3) () + v(OuUp 41" (x) +

W) Um+1' (1) + Vin w1 (x) = Zn(x),x €[0,1],  (27)
where, p(x) = {0;+ A ;]]:;:00 and q(x) =

ifx=0
if x#0

0;
e
x’
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Similarly, transforming the boundary conditions
(Eq. 2), we get:

Um+1'(0) = B,

Ums+1(0) = B4
{ sy’ (1) = By (28)

Umt1(1) = B3

Let us consider that the QnBS solution for Eq. 27

is given by:
U(x) = X122, ¢;B; (x). (29)

Discretizing Eq. 27 at the it" knot, we obtain:

() + Q) Unys @ () + v Upr " () +
(30)

PO Umsr™®
W(xi)Um+1,(xi) + Ym(x)um+1(x) = Zm(x)-

For i =2,3,4,...,n — 2, using Egs. 5-8 and 19 in
30, we obtain:
2O ¢,y + 28c1_5 + 92¢,; — 60¢;y + 970c; —
60441 + 9261z + 286143 — Ciya) + o2 (—Cig + 2611 —
( i)
2Cl+1 + CL+2) +— = (Cl 2 + 2Cl 1 6C1 + 2CL+1 + CL+2) +
( l) Ym( l)
M;:; (—ci—2 10Ci—1 + Cip1 FCig2) + 1;; (ci2 +

26Ci_1 + 66Ci + 66Ci+1 + Ci+2) = Zm(xi). (31)

Similarly, at the knots (xg, X1, x,_1) and x,, Eq. 30
produces the following equations respectively,

PE0) (12¢_, — 61c_y + 108co — 103¢; + 62¢, — 27¢5 +
864 _ CS) + Q(Xo) V(xo)

5 (o2 +2c_ 1—2c1+c2)+

> (2 +

wixo) ¢ 10(:_1 +10¢, +

24h
(C 2+ 26¢_ 1+ 66C0 + 26C1 + Cz) =Z (xo)

(32)
( C_p+ 6C_1 - 33C0 + 52C1 - 33C2 + 6C3 + C4_) +

U(xl)

2c_1 —6cy + 201 +c)+

ym(xo)

Cz) + -

p(xy)
12h*

ae)
2h3

ZCZ + C3) +

(—c_1+2¢cg—2¢c,+c3) +
wi(xq)
24h
) (¢, + 26¢_ + 66y + 26 = Z(x1)
W(C—z -1 Co + 26¢1 + ¢3) = Ziy(xq),
p(xn-1)
121
Cnt2) +—5+

v(xn-1)
6h?

—(c21 +2¢9 — 6cy +

(=c_1 —10¢qy + 10c2 +c3) +
(33)

(cp—4 +6Cp_3 —

q(xn-_1)
2h3

33cp—2 +52cp—1 — 33c, + 6Cpyq +

(—Cnz+2cp2 —2cp +cpy1) +

(cn—3 +2cpp = 6Cp-1 + 2¢ + Cpyq) +

w(Xp_1) Yin(Xn—1)
Tnl (—cn_3 —10cp_5 + 10c, + cpyq) + Tol

26C,_5 + 66,1 + 26¢, + Cpy1) = Zp(xn_1),
p(xn) 27¢, 5 +52¢,_5 — 103c,_q +

12h*
108¢,, — 1)

(cp_z +
(34)

(cnos +8cpg —

14cny2) +

v(xn)

61cpiq — (=cn—2+2cp1 —

2Cn+1 + Cn+2) +—=

Cnt2) +

Yin(xn)
120

(cpp + 2cn 1—6Cp + 241 +

w(xpn)
24h

(Cpeg +26Cy_1 + 66C, +26C141 + Cnyz) = Zy(xp).
(35)

(_Cn—z —10¢cyp—1 + 10cp41 + Cny2) +

The set of boundary conditions (Eq. 28) as well
give the following four equations:

C_o + 26C_1 + 66C0 + 26C1 + Cy = 120B1, (36)
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—Cc_p —10c_1 + 10c¢q + c; = 24hp,, 37)

Cn-z +26C,_1 + 66C, + 26,41 + Cpyp = 12083, (38)

—Cp—p — 10cy_1 + 10cy, + Cpyp = 24hp,. (39)
The system of Eqs. 31-39, with unknowns ¢;’s,i =

-2,—-1,0,..,n+2 can be expressed in matrix

notation as:

Ac—b =0, (40)

where, A represents the coefficient matrix of order
n+5,b is a column vector with n + 5 entities and
€ = [€_3C_1Cy - Cpyz]T. We start from m = 0 with an
initial guess Uy(x) and solve for ¢ using a modified
form of well-known Thomas algorithm. The values of
¢;’s are plugged into Eq. 29 to obtain U;(x). This
process is continued for m = 1,2, 3, ... until we get
the desired accuracy.

4. Error analysis

Using the QnBS approximations, we can establish
the following relations (Lodhi and Mishra, 2016; Xu
and Lang, 2014):

hlU'(x;_2) + 26U (x;_1) + 66U’ (x;) + 26U (x;41) +
U'(xi42)] = 5[-U(x;—2) — 10U (x;—1) + 10U (x341) +
U(xi+2)], (41)
h2[U" (x;—3) + 26U" (x;_1) + 66U" (x;) + 26U"" (x;;1) +

U" (xi42)] = 20[U (x;—3) + 2U (x;—1) — 6U (x;) +

2U(x41) + U(xi12)], (42)
R3[U™ (x;_y) + 26U (x;_1) + 66U (x;) + 26U (x;141) +
U (xi42)] = 60[=U(x;—2) + 2U(x;-1) — 2U(xi44) +
U(xi42)]- (43)
Similarly, using Egs. 7, 8, and 19, we have:

hZ
R U () = 5o [=U" (xip) + 114U" (x;-1) —

3
1420" () + 300" (xi3a) = U” Geig)] + 55 (U Grica) +
20" (x)]. (44)

Employing the operator notation, E*(U'(x;)) =
U'(x;;2), A €Z, Eqgs. 41-43 are written as (Fyfe,
1969):

h[E™2 + 26E~1 + 66 + 26E* + E?]U’'(x;) = 5[—-E~2 —

10E~ + 10E* + E?u(xy), (45)
h?[E™2 + 26E~' + 66 + 26E* + E?|U" (x;) = 20[E~% —
2E71 — 6+ 10EY + E%u(x;), (46)
h3[E~2 + 26E71 + 66 + 26E* + E?|U""(x;) =

60[—E~2 + 2E7Y — 2E* + E?u(xy). (47)

Using E = e" D =%, we have the following

expressions, respectively (Lodhi and Mishra, 2016;
Xu and Lang, 2014):

U’ (xl) =u (xl) + —u(7)(

(11)
Toseaoo L )+ ) (48)
h
U”(XL) =u"(x;) + —OU(G) (x;) — ﬁu(s) (x;) +
(10)
8640011 () +- (49)
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" ) _nt (7 _ 11h6 O (y.) —
U (x) u" (x;) u () = 557w (x0)

MY CED (x) + - (50)

28800

Similarly, writing Eq. 44 in operator notation, we
get:

U@ (x;) = [ E™2 4+ 11E71 — 142 4+ 30E' —
30E2]u"(xi) + F [E + 2]u"" (x;). (51)

Again, using E = e in Eq. 51, we obtain:

U@ (x) = o [—e72 + 114¢7 — 142 + 30" -
3
e2"P1U" (x;) + % [e™"P + 21U (xp). (52)

Expanding in powers of hD, we get:

RU@ () = [~84hD — 68h2D? — 14h3D3 F L D% +
o + —[—3 —hD +2h2D? = 1p3p3 +
10 2 6
1 nr
Zh4D4:| U (Xi). (53)

Simplifying the above relation, we have:

U®(x) = u®(x;) + (7)( D — ﬂu(s)(xi) + - (54)

We define the error term at i*" knot as e(x;) =
U(x;) — u(x;). Using the Egs. 48-50 and 54 in Taylor
series expansion of error term, we get:

e(x; +0h) =~ hou® (x;) +
0(20+762%(— 10+79)) 7.
100800 h7u'” )+ (55)

where, 0 < 8 < 1. From Eq. 55, it is clear that the
truncation error in new QnBS approximation is
0(h®).

5. Numerical results and discussion
In this segment, the experimental outcomes of the
new quintic B-spline approximation method are
presented. The accuracy of the presented numerical
scheme is verified by L, as (Abbas et al., 2014):
max
Lo = Ui —tillee = ; [U; —wl,

where, U; and u; represent the numerical and true
solutions at the i** nodal point, respectively.

Problem 1: Consider the fourth-order Emden-
Flower type equation (Wazwaz, 2015):

u® (x) +§u(3)(x) = 362D g o x <,

u’(x)
u(0)=1 v =0 u"(0)=1 u"(0)=0.

The analytical solution is v1+x2. Table 1
displays a comparison of computational outcomes
with VIM (Wazwaz, 2015). It is observed that our
approximate results are better than VIM as x — 1.
The numerical error norm corresponding to four
different choices of step size is presented in Fig. 1.

Problem 2: Consider the fourth-order Emden-
Flower type equation (Wazwaz et al., 2015):

u®(x) + %u“)(x) =96(1—10x* +5x8)e 9™, 0 <x <
1,
u(0) =0, ©'(0)=0, u”(0)=0, u"(0)=0.

The exact solution is u(x) =log(1 + x*). The
approximate results are listed in Table 2. It is
obvious that the obtained results are well balanced
as compared to the Adomian decomposition method
(ADM) (Wazwaz et al, 2015) and QnBSM used in
Lodhi and Mishra (2016). The absolute
computational error for n =10,20,40,80 is
displayed in Fig. 2. The computational error
decreases as the mesh size is decreased, which
confirms the convergence of the proposed numerical
technique.

Problem 3: Consider the fourth-order singular
boundary value problem:

u®(x) + iu(” () +u” () +u'(x) +ulx) = f(x), 0 <
x <1,

u(0) =0, '(0) =0, u(l)=sin10, u'(1) =
10 cos 10 + sin 10.

where, f(x) = 10(—498 + x) cos 10x + (—300 + x +
9901x 2) smle

The exact solution is u(x) = xsin10x. The
approximate results are listed in Table 3. It is
observed that the obtained approximate results are
better than the quintic B-spline collocation method
(QnBSM) used in Lodhi and Mishra (2016). Fig. 3
portrays a close agreement between the
approximate and exact solution when h = 1/20.

Table 1: Approximate results for problem 1 when h=1/20

x VIM (Wazwaz, 2015) Proposed method Exact solution
0.0 1 1.0000000000 1

0.1 1.0049875621 1.0049875593 1.0049875621
0.2 1.0198039027 1.0198038892 1.0198039027
0.3 1.0440306502 1.0440306154 1.0440306509
0.4 1.0770329231 1.0770328880 1.0770329614
0.5 1.1180331707 1.1180338570 1.1180339887
0.6 1.1661805962 1.1661901642 1.1661903790
0.7 1.2205772258 1.2206552361 1.2206555616
0.8 1.2801571267 1.2806243813 1.2806248475
0.9 1.3431296012 1.3453617662 1.3453624047
1.0 1.4052734375 1.4142127186 1.4142135624
Ly 8.94 x 1073 8.44 x 1077 e
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h=1/10 h=1/20
2.00E-05 9.00E-07
8.00E-07
5 1.50E-05 5 7.00E-07
£ E 6.00E-07
© o 5.00E-07
:g 1.00E-05 % 4.00E-07
2 2 3.00E-07
é 5.00E-06 é 2.00E-07
1.00E-07
0.00E+00 0.00E+00
0 0.2 0.4 0.6 0.8 1 12 0 0.2 0.4 0.6 0.8 1 1.2
X X
h=1/40 h=1/80
5.00E-08 3.00E-09
g 3.00E-08 E 2.00E-09
o S 1.50E-09
£ 2.00E-08 2
E s 1.00E-09
< 100E-08 =< 5.00E-10
0.00E+00 0.00E+00
0 0.2 0.4 0.6 0.8 1 1.2
1.00E-08 5.008-10 ° 0.2 0.4 0.6 0.8 1 1.2
X X
Fig. 1: Absolute error for problem 1
Table 2: Numerical results for problem 2 when h=1/20
x ADM (Wazwaz et al,, 2015) Proposed method Exact solution
0.0 0 0.0000000000 0
0.1 0.0000999950 0.0000999841 0.0000999950
0.2 0.0015987214 0.0015986513 0.0015987214
0.3 0.0080673721 0.0080671401 0.0080673711
0.4 0.0252779124 0.0252772347 0.0252778072
0.5 0.0606282552 0.0606234649 0.0606246218
0.6 0.1219275141 0.1218616201 0.1218635878
0.7 0.2158897574 0.2151891479 0.2151920215
0.8 0.3486204122 0.3433022850 0.3433059762
0.9 0.5350095738 0.5044611160 0.5044654406
1.0 0.8333333333 0.6931423256 0.6931471806
Lo 1.40 x 107* 4.85x107°° e

Problem 4: Consider the following fourth-order
singularly perturbed SBVP (Lodhi and Mishra, 2016).

eu®(x) + iu(x) =e*[l—x—e(8+ 7x+x%) — %e(l -
x),0<x<1,
u(0) =0, u”"(0)=0, u(1)=0, u"(1)=0.

The exact solution is u(x) = xe*(1 — x) — ge(l -
x?). The computational outcomes are listed in Table

4, when h = % and € =—. t is obvious that the

16
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approximate results are in good agreement with the
exact solution.

Table 5 portrays a comparison of absolute
numerical error with QnBSM (Lodhi and Mishra,
2016) using different values of € and h. It is revealed
that our approximate results are superior to those
obtained by QnBSM. In Fig. 4, the analytical and
numerical solutions are exhibited when h =€ = %.
Fig. 5 displays the absolute computational error
corresponding to four different step sizes with € = %.
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h=1/10 h=1/20
1.40E-04 6.00E-06
1.20E-04 5.00E-06
£ LOOE-04 5 4.00E-06
© 8.00E-05 E
= S 3.00E-06
2 6.00E-05 g
é 4.00E-05 S 200E-06
2.00E-05 2 1.00E-06
0.00E+00 0.00E+00
0 0.2 0.4 0.6 0.8 1 1.2
1.00E-06 © 0.2 0.4 0.6 0.8 1 1.2
X X
h=1/40 h=1/80
3.00E-07 1.60E-08
2 50E-07 1.40E-08
1.20E-08
§ 2.00E-07 § 1.00E-08
; 1.50E-07 ; 8.00E-09
= 1.00E-07 £ 6.00E-09
2 500808 4 400809
= 200k 2.00E-09
0.00E+00 0.00E+00
-5.00E-08 0 0.2 0.4 0.6 08 1 12 -2.00E-09 0 0.2 0.4 0.6 08 1 12
X X
Fig. 2: Absolute error for problem 2
1
0.8
0.6
0.4
0.2
Exact solution
0 ® Approximate solution
0.2
0.4
0.6
0.8
X
Fig. 3: Exact and approximate solutions for problem 3 using h=1/20
Table 3: Absolute numerical error for problem 3
n 8 16 32 64 128
Proposed method 1.38E-02 1.14E-03 1.01E-04 8.92E-06 8.54E-07
QnBSM used in Lodhi and Mishra 3.06E-01 6.79E-02 1.63E-02 4.02E-03 1.00E-03

(2016)

Table 4: Numerical results for problem 4, when h = % and € = i

Absolute error

x Exact solution Proposed method
0.0 0 0.0000000000 2.95x 10716
0.1 -0.0799412181 -0.0799412319 138 x 1078
0.2 -0.1525156327 -0.1525156584 2.57 x 1078
0.3 -0.2112569432 -0.2112569787 3.55%x 1078
0.4 -0.2508572021 -0.2508572451 429 x 1078
0.5 -0.2673901394 -0.2673901869 4.75x 1078
0.6 -0.2585716360 -0.2585716846 4.86 x 1078
0.7 -0.2240630066 -0.2240630520 453 x 1078
0.8 -0.1658235625 -0.1658235994 3.96 x 1078
0.9 -0.0885198484 -0.0885198706 2.21x1078
1.0 0 0.0000000000 3.25x 1078
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Table 5: Computational error norm for problem 4 with e = 107

n k 0 2 4 6 8

2.60E-06 8.85E-07 1.01E-07 3.05E-09 3.19E-11

8 Proposed Method QnBSM (Lodhi and Mishra, 2016) 8.51F-04 2 62E-04 7 52E-06 1.30E-07 1.35E-09
16 Proposed Method QnBSM (Lodhi and Mishra, 2016) Gt At Gt G G
32 Proposed Method QnBSM (Lodhi and Mishra, 2016) e S S B oD
64 Proposed Method QnBSM (Lodhi and Mishra, 2016) ST B S S
128 Proposed Method QnBSM (Lodhi and Mishra, 2016) gggg:éé 1'825:32 ;gzg‘éé gggjg i'gﬁgiig
0
01 02 03 04 05 06 0.7 08 09
0.05
-0.1
0.15 Exact solution
® Approximate solution
-0.2
0.25
-0.3

Fig. 4: Exact and approximate solution of problem 4 using h=€=1/16

h=1/10 h=1/20
9.00E-07 6.00E-08
8.00E-07
L 7.008-07 5.00E-08
£ 6.00E-07 5 4.00E-08
& 5.00E-07 5 200E.08
2 4.00E-07 g T
& =
Z 3.00E-07 < 2.00E-08
< 2.00E-07 2
1 00E-07 < 1.00E-08
0.00E+00 0.00E+00
0 02 04 06 08 1 1.2
100508 © 02 04 06 08 1 1.2
X X
h=1/40 h=1/80
3.50E-09 2.50E-10
_ 3.00E-09 2.00E-10
S 2.50E-09 =
£ S 1.50E-10
; 2.00E-09 E -
El . o
s 1.50E-09 £ 1.00E-10
2 1.00E-09 s
2 5.00E-11
5.00E-10 =
0.00E+00 0.00E+00
0 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2
-5.00E-11
X X
Fig. 5: Absolute error from problem 4 when €=1/16
6. Conclusion 1. The proposed numerical approach is based on a
new quintic B-spline approximation for the fourth-
In this paper, a new quintic B-spline order derivative.
approximation technique is developed for solving 2. The presented technique is novel for fourth-order
fourth-order singular boundary value problems. We singular boundary value problems.
conclude this work as: 3. The scheme is uniformly convergent in the entire

domain.
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4. As the step size is decreased, the approximate
solution approaches the exact analytical solution,
which ensures the convergence of the proposed
algorithm.

By virtue of simple implementation, it produces
more accurate outcomes as compared to VIM
(Wazwaz, 2015), ADM (Wazwaz et al, 2015), and
QnBSM (Lodhi and Mishra, 2016).
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