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The objective of this study is to find the numerical solution for the MHD flow 
of heat transfer to the incompressible Oldroyd-B liquid on a stretching sheet 
channel. The partial differential equations governing this system are 
converted into ordinary differential equations using similarity conversion. 
The resulting nonlinear equations governing the flow problem are 
numerically solved by the successive line method (SLM). Numerical results 
are derived and presented in tables for some comparisons. These 
comparisons are important in demonstrating the high accuracy of SLM in 
solving the system of nonlinear differential equations. These solutions take 
into account the behavior of Newtonian and non-Newtonian fluids. It is 
reported that Deborah number in terms of relaxation time resists and slows 
down the motion of fluid particles at various time instants. Temperature 
profile increase by increasing Deborah number in terms of relaxation time. 
The graphical results of various non-Newtonian parameters such as 
coefficient of mixed convection, Hartman, Deborah, and Prandtl number on 
the flow, field, and analysis are also discussed. In addition, the current results 
were tested and compared to the published results available in a limited 
manner, and an excellent agreement was reached. 
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1. Introduction 

*In our daily lives, most cosmic events in science, 
physics, and geometry are phenomena represented 
by nonlinear equations. Therefore, because of these 
nonlinearities, it is more difficult to solve these 
equations. Some of these nonlinear equations can be 
solved using approximate mathematical analytical 
methods such as the Homotopy (HAM) analysis 
method proposed by Liao (1992, 2004), the 
Homotopy Perturbation (HPM) method discovered 
by the mathematical scientist He (1999) and 
Adomain decomposition method (ADM) (Esmaili et 
al., 2008; Makinde and Mhone, 2006; Makinde, 
2008). Some of these equations can be solved by 
conventional numerical methods such as finite 
difference method, the Keller box method, and 
Runge-Kutta methods. Recently some studies have 
shown a new method called the successive 

                                                 
* Corresponding Author.  
Email Address: frashed@kau.edu.sa  
https://doi.org/10.21833/ijaas.2020.06.006 

 Corresponding author's ORCID profile:  
https://orcid.org/0000-0003-0410-001X 
2313-626X/© 2020 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

linearization method (SLM). This method has been 
successfully applied to many non-linear problems in 
science and engineering, such as MHD flows of non-
Newtonian fluids and transfer over a stretching 
sheet (Shateyi and Motsa, 2010), and the viscous 
pressure-flow between two parallel plates 
(Makukula et al., 2010a), a two-dimensional plate 
flowing between two porous walls (Makukula et al., 
2010b), on the thin-film flow of Eyring-Powell fluid 
on the vertically moving belt (Salah et al., 2019) and 
convective thermal transfer heat to the MHD 
boundary layer with a pressure gradient (Ahmed et 
al., 2015). Therefore, this method has shown very 
high efficiency, accuracy, and flexibility of SLM in 
solving nonlinear equations.  

In recent decades, the applications of liquids have 
become of great interest as they enter into many 
industrial products. Mathematically, however, some 
of these fluids are not easily expressed by a specific 
mathematical relationship between shear and stress 
rates, which are quite different from viscous fluids 
(Ellahi et al., 2008; Hayat et al., 2004). Examples of 
these fluids are very many and often found in homes, 
such as: Toiletries, paints, cosmetics, certain oils, 
shampoo, jam, soup, etc., have different 
characteristics and symbolize non-Newtonian fluids. 
In general, classification of non-Newtonian fluid 
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models is given under three categories called 
integral, differential, and rate types (Fetecau et al., 
2007; Salah et al., 2011; Hayat et al., 2008; Cortell, 
2006). In this research, our main concern is to 
discuss the heat transfer flow of the 
magnetohydrodynamic (MHD) Oldroyd–B fluid 
overstretching. This application has attracted the 
attention of many scientists, and therefore 
conducted a large number of researches. The MHD 
fluid flow study can be carried out on the expansion 
plate for extrusion and drawing casting, plastic film, 
polymer, hot rolling, and many engineering 
applications. Following developments in this field, 
researchers in this field always try to improve 
accuracy using different methods of fluid behaviour. 
One of these methods used in this area is the 
application of dynamic magnetic flux (Ghadikolaei et 
al., 2018). This application is known as MHD. MHD is 
the study of the interaction of electrically conductive 
fluids with electromagnetic phenomena. Therefore, 
the flow of MHD liquid in the presence of a magnetic 
field is very, very important in many applications in 
science, engineering, and applied technology such as 
MHD pumps and nuclear power generation. Given 
these facts, many and many researchers continue to 
contribute to the field of MHD fluid mechanics 
(Hayat et al., 2013; Malik et al., 2013; Hussain et al., 
2010; Husain et al., 2008). Another important 
application of nanoparticles in the base fluid, which 
seeks to improve the behaviour of fluids and 
recruitment, is the optimal use of changes. Because 
there are many different engineering issues and 
boundary conditions, extensive research has been 
conducted in this area, which is briefly summarized. 
Due to different boundary conditions and different 
geometric positions, Waqas et al. (2017) discussed 
the stratification of the nonliquid flow with 
generating heat in a stretchable linear surface. 
Ghadikolaei et al. (2018) analyzed the flow and heat 
of the second row liquid on a dilation sheet channel. 
The study of heat transfer with a mixed thermal flow 
of nonliquid that passes through a vertical plate 
extending with the presence of three different types 
of nanoparticles, Cu, Al2O3 and TiO2 for the analysis 
of the different thermal conductivity of nonliquid 
and the speed of nanoparticles and research Nusselt 
number was found in Si et al. (2017), The works 
available in this introduction are listed in the 
references (Zargartalebi et al., 2015; Megahed, 2013; 
Sadeghy et al., 2006; Mukhopadhyay, 2012; Abel et 
al., 2012; Waqas et al., 2018; 2019a; Khan et al., 
2019a; 2019b; Khan and Shehzad, 2019). The mixed 
convection flow resulting from forced and free 
convection contains many important practical 
applications in various industrial fields such as 
furnaces, astrophysics, geology, drying techniques, 
chemical treatments, etc. Forced convection is the 
temperature difference between the infinite thermal 
expansion disk resulting from free thermal flow and 
the heat transfer in the thermal expansion disc 
caused by the application of external forces. The 
mathematical model of buoyancy-driven flows 
becomes very complicated, resulting in the coupling 

of thermal fields and transport properties of flows. A 
dimensionless parameter, namely Archimedes 

number 
𝐺𝑟

 𝑅𝑒2 in mixed convection flow which 

represents distribution and comparative of natural 
convection to forced convection, play a critical and 

important role. For  
𝐺𝑟

 𝑅𝑒2 > 1, the free convection 

becomes governing over forced convection (Hashmi 
et al., 2017; Waqas et al., 2019b; Khan et al., 2018).  
At present, a new investigation is underway on the 
thermal transfer of the non-compressible Oldroyd-B 
liquid on an extended plate channel. The governing 
equations for the Oldroyd-B liquid are used with 
MHD. The numerical solution to the resulting 
nonlinear problem is calculated by using an SLM 
method. Embedded flow parameters are discussed 
and illustrated via diagrams. 

2. Mathematical formulation of the problem 

2.1. Flow analysis 

Here we considering the two–dimensional steady 
laminar flow of an incompressible MHD Oldroyd–B 
fluid, which is past a flat sheet coincide with the 
plane 𝑦 = 0, confining the flow to 𝑦 > 0. Along 𝑥- 
axis, there are two opposite, and equal forces are 
applied. Due to this, the wall is stretched and 
reserving the origin fixed. Under the constant and 
boundary layer assumptions, the continuity, 
constitutive equation of Oldroyd–B fluid (Waqas et 
al., 2018) and energy equation (Cortell, 2006; 
Ghadikolaei et al., 2018) are: 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                     (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝛽 (𝑢2 𝜕2𝑢

𝜕𝑥2 + 𝑣2 𝜕2𝑢

𝜕𝑦2 + 2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
) =

𝜐 [
𝜕2𝑢

𝜕𝑦2
+ γ (𝑢

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+ 𝑣

𝜕3𝑢

𝜕𝑦3
−

𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2
−

𝜕𝑢

𝜕𝑦

𝜕2𝑣

𝜕𝑦2
)] −

𝜎𝐵0
2

𝜌
(𝑢 + 𝛽𝑣

𝜕𝑢

𝜕𝑦
) + 𝑔𝛽𝑇(𝑇 − 𝑇∞),                    (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
𝜐

𝑐𝑝
(

𝜕𝑢

𝜕𝑦
)

2
,                                                   (3) 

 
where, (𝑢, 𝑣) are the components of velocity in (𝑥, 𝑦) 

directions, 𝜐 (=
𝜇

𝜌
) is the kinematic viscosity, 𝜇 is the 

dynamic viscosity, 𝛽 is the relaxation time, 𝛾 is the 
retardation time, 𝜌 is density of fluid, 𝜎 is the electric 
conductivity, 𝐵0 is the uniform magnetic fluid, 𝑔 is 
the gravitational acceleration, 𝛽𝑇 is the coefficient of 
thermal expansion, 𝑇 is temperature of fluid, 

𝛼 (=
𝑘

𝜌𝑐
) is the thermal diffusivity, 𝑘 the fluid 

thermal conductivity, 𝜌𝑐 the fluid capacity heat and 
𝑐𝑝 is the specific heat of a fluid at constant pressure . 

The relevant boundary conditions are defined as: 
 
𝑢 = 𝑢𝑤 = 𝑐𝑥, 𝑣 = 0   𝑎𝑡   𝑦 = 0, 𝑐 > 0,                                 (4) 

𝑢 → 0,
𝜕𝑢

𝜕𝑦
→ 0    𝑎𝑠    𝑦 → ∞,                                                      (5) 

𝑇 = 𝑇𝑤(= 𝑇∞ + 𝐴𝑥𝑠)   𝑎𝑡    𝑦 = 0,     𝑇 → 𝑇∞   𝑎𝑠    𝑦 → ∞,  
                                                        (6) 

where, 𝑐 is the rate of stretching, 𝑇𝑤,  𝑇∞ are 
constants, and 𝑠 is the parameter wall temperature.  
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2.2. Transformation 

Introducing the following dimensionless 
variables (Cortell, 2006; Ghadikolaei et al., 2018), 
 

𝑢 = 𝑐𝑥𝑓′(𝜂), 𝑣 = −(𝑐𝜐)
1

2𝑓(𝜂),   𝜂 = (
𝑐

𝜐
)

1

2
, 𝜃(𝜂) =

 
𝑇−𝑇∞

𝑇𝑤−𝑇∞
  𝑎𝑛𝑑 𝐸𝑐 =

𝑐2

𝐴𝑝𝑐
.                                                                   (7) 

 

Utilizing Eq. 7, Eq. 1 is satisfied automatically and 
Eqs. 2 and 3 characterize to the following problems 
statement, 
 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 + 𝛽1(2𝑓𝑓′𝑓′′ − 𝑓2𝑓′′′) + 𝛽2(2𝑓𝑓′′ −

𝑓′′2
− 𝑓𝑓𝑖𝑣) − 𝑀2𝑓′ + 𝜆𝜃 = 0,                                                 (8) 

𝜃′′ + 𝑃𝑟𝑓𝜃′ − 𝑠𝑃𝑟𝑓′𝜃 = −𝑃𝑟𝐸𝑐(𝑓′′)2𝑥2−𝑠.                          (9) 

 
It is clear from Eq. 9 that all solutions are then of 

a similar type. If 𝑠 = 2, and the effect of dissipative 
heat is neglected (Cortell, 2006), then we obtain the 
simpler equation from Eq. 9: 
 
𝜃′′ + 𝑃𝑟𝑓𝜃′ − 𝑠𝑃𝑟𝑓′𝜃 = 0,                                                      (10) 
 

here, 𝛽1(= 𝛽𝑐) is Deborah number in terms of 
relaxation time while 𝛽2(= 𝛾𝑐) is Deborah number in 

terms of retardation time, 𝑀 (= √𝜎𝐵0
2 𝑐𝑝⁄ ) is the 

Hartman number, 𝜆 (=
𝐺𝑟𝑥

𝑅𝑒𝑥
2) is the mixed convection 

parameter, 𝑃𝑟 (=
υ

𝛼
) is the Prandtl number and 

𝐸 (=
𝐶2

𝐴𝑝𝑐
) is the Eckert number. 

 
The related boundary conditions: 
 

𝑓 = 0, 𝑓′ = 1    𝑎𝑡   𝜂 = 0,                                                         (11) 
𝑓′ → 0, 𝑓′′ → 0   𝑎𝑠   𝜂 → ∞,                                                   (12) 
𝜃(0) = 1,   𝜃(∞) → 0.                                                                (13) 

3. Solution the problem 

3.1. Procedure of computational 

Here successive linearization method (SLM) 
(Makukula et al., 2020b; Salah et al., 2019; Ahmed et 
al., 2015) is implemented to obtain the numerical 
solutions for nonlinear systems in Eqs. 8 and 10 
corresponding to the boundary condition in Eqs. 11–
13.  

For SLM solution we select the initial guesses 
functions 𝑓(𝜂)  and  𝜃(𝜂) in the form, 
 
𝑓(𝜂) = 𝑓𝑖(𝜂) + ∑ 𝐹𝑚

𝑖−1
𝑚=0 (𝜂), 𝜃(𝜂) = 𝜃𝑖(𝜂) + ∑ 𝜃𝑚

𝑖−1
𝑚=0 (𝜂),

                                                               (14) 
 
here, the two functions 𝑓𝑖(𝜂) and 𝜃𝑖(𝜂) are 
representative of unknown functions. 𝐹𝑚(𝜂), 𝑚 ≥
1, 𝜃𝑚(𝜂), 𝑚 ≥ 1 are a successive approximation, 
which are obtained by recursively solving the linear 
part of the equation that results from substituting 
Eq. 14 in the governing equations. The mean idea of 
SLM that the assumption of unknown function 𝑓𝑖(𝜂) 

and 𝜃𝑖(𝜂) are very small when 𝑖 becomes larger, 

therefore, the nonlinear terms in 𝑓𝑖(𝜂), 𝜃𝑖(𝜂) and 
their derivatives are considered to be smaller and 
thus neglected. The intimal guess functions 𝐹0(𝜂), 

𝜃0(𝜂) which are selected to satisfy the boundary 
conditions, 
 
𝐹0(𝜂) = 0, 𝐹0

′(𝜂) = 1   𝑎𝑡   𝜂 = 0, 

𝐹0
′(𝜂) → 0  , 𝐹0

′′(𝜂) → 0  𝑎𝑡  𝜂 → ∞, 

𝜃0(0) = 1,     𝜃0(∞) → 0.                                                           (15) 

 
which are taken to be in the form,  
 
𝐹0(𝜂) = (1 − 𝑒−𝜂)    𝑎𝑛𝑑  𝜃0(𝜂) = 𝑒−𝜂.                               (16) 
 

Therefore, beginning from the initial guess, the 
subsequent solution 𝐹𝑖  and 𝜃𝑖  are calculated by 
successively solving the linearized from the 
equation, which is obtained by substituting Eq. 14 in 
the governing Eqs. 8 and 10. Then we arrive at the 
linearized equations to be solved are: 
 

𝑎1,𝑖−1𝐹𝑖
𝑖𝑣 + 𝑎2,𝑖−1𝐹𝑖

′′′ + 𝑎3,𝑖−1𝐹𝑖
′′ + 𝑎4,𝑖−1𝐹𝑖

′ + 𝑎5,𝑖−1𝐹𝑖 +

𝜆𝜃𝑖 = 𝑟1,𝑖−1,                                                                                  (17) 
𝑏1,𝑖−1𝐹𝑖

′ + 𝑏2,𝑖−1𝐹𝑖 + 𝜃𝑖
′′ + 𝑏3,𝑖−1𝜃𝑖

′ + 𝑏4,𝑖−1𝜃𝑖 = 𝑟2,𝑖−1.   (18) 

 

Subject to the boundary conditions, 
 
𝐹𝑖(0) = 𝜃𝑖(∞) = 0,     𝐹𝑖

′(0) = 𝜃𝑖(0) = 1,                            (19) 
 

where, the coefficients parameters 𝑎𝑘,𝑖−1, 𝑏ℎ,𝑖−1(𝑘 =

1,2,3,4,5), (ℎ = 1,2,3,4)  and 𝑟𝑗,𝑖−1, 𝑗 = 1,2 are defined 

as, 

 

𝑎2,𝑖−1 = 1 − 𝛽1(∑ 𝐹𝑚   𝑖−1
𝑚=0 )

2
+ 2𝛽2 ∑ 𝐹𝑚

′ ,𝑖−1
𝑚=0     

𝑎3,𝑖−1 = ∑ 𝐹𝑚   𝑖−1
𝑚=0 + 2𝛽1 ∑ 𝐹𝑚   ∑ 𝐹𝑚

′  −𝑖−1
𝑚=0

𝑖−1
𝑚=0

2𝛽2 ∑ 𝐹𝑚
′′𝑖−1

𝑚=0 ,  

𝑎4,𝑖−1 = −2 ∑ 𝐹𝑚
′  − 𝑀2 𝑖−1

𝑚=0 + 2𝛽1 ∑ 𝐹𝑚   ∑ 𝐹𝑚
′′ +𝑖−1

𝑚=0
𝑖−1
𝑚=0

2𝛽2 ∑ 𝐹𝑚
′′′𝑖−1

𝑚=0 ,  

𝑎5,𝑖−1 = ∑ 𝐹𝑚
′′  𝑖−1

𝑚=0 + 2𝛽1 ∑ 𝐹𝑚   ∑ 𝐹𝑚
′′ −𝑖−1

𝑚=0
𝑖−1
𝑚=0

2𝛽1 ∑ 𝐹𝑚   ∑ 𝐹𝑚
′′′ − 𝑖−1

𝑚=0  𝛽2 𝑖−1
𝑚=0 ∑ 𝐹𝑚

𝑖𝑣𝑖−1
𝑚=0 ,  

 

and, 
 
𝑟1,𝑖−1 = − ∑ 𝐹𝑚

′′′  𝑖−1
𝑚=0 − ∑ 𝐹𝑚   ∑ 𝐹𝑚

′′ +𝑖−1
𝑚=0

𝑖−1
𝑚=0

(∑ 𝐹𝑚
′    𝑖−1

𝑚=0 )
2

− 𝛽1 [2 ∑ 𝐹𝑚   ∑ 𝐹𝑚
′ ∑ 𝐹𝑚

′′ 𝑖−1
𝑚=0 −𝑖−1

𝑚=0
𝑖−1
𝑚=0

   (∑ 𝐹𝑚   𝑖−1
𝑚=0 )

2
∑ 𝐹𝑚

′′′ 𝑖−1
𝑚=0 ]   − 𝛽2 [2 ∑ 𝐹𝑚

′   ∑ 𝐹𝑚
′′ −𝑖−1

𝑚=0
𝑖−1
𝑚=0

(∑ 𝐹𝑚
′′ 𝑖−1

𝑚=0 )
2

−   ∑ 𝐹𝑚   𝑖−1
𝑚=0 ∑ 𝐹𝑚

𝑖𝑣 𝑖−1
𝑚=0 ] + 𝑀2 ∑ 𝐹𝑚

′    𝑖−1
𝑚=0 −

𝜆 ∑ 𝜃𝑚
𝑖−1
𝑚=0 ,                                                                                    (20) 

−2Pr ∑ 𝜃𝑚
𝑖−1
𝑚=0 , 𝑏2,𝑖−1 = Pr ∑ 𝜃𝑚

′ ,𝑖−1
𝑚=0 𝑏3,𝑖−1 = Pr ∑ 𝐹𝑚,𝑖−1

𝑚=0

𝑏4,𝑖−1 = −2Pr ∑ 𝐹𝑚
′ ,𝑖−1

𝑚=0    

𝑟2,𝑖−1 = − ∑ 𝜃′𝑚
′ − Pr ∑ 𝐹𝑚 ∑ 𝜃𝑚

′ +𝑖−1
𝑚=0

𝑖−1
𝑚=0

𝑖−1
𝑚=0

Pr ∑ 𝐹𝑚
′   ∑ 𝜃𝑚.  𝑖−1

𝑚=0
𝑖−1
𝑚=0                                                              (21) 

 

When we solve Eqs. 8 and 10 iteratively, the 
solution for 𝐹𝑖  and 𝜃𝑖  has been obtained and finally 
after 𝐾 iterations the solution 𝑓(𝜂) and 𝜃(𝜂) can be 
written as 𝑓(𝜂) ≈ ∑ 𝐹𝑚

𝐾
𝑚=0 (𝜂), 𝜃(𝜂) ≈ ∑ 𝜃𝑚

𝐾
𝑚=0 (𝜂). 
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In order to apply SLM, firstly, transform the domain 
solution from [0, ∞) to [−1,1]. SLM is based on the 
Chebyshev spectral collection method. This method 
is depending on the Chebyshev polynomials defined 
on the interval [−1,1]. Thus, by using the truncation 
of the domain approach where the problem is solved 
in the interval [0, 𝐿], where 𝐿 is a scaling parameter 
used to impose the boundary condition at infinity. 
Thus, this can be obtained via the transformation, 
  
𝜂

𝐿
=

𝜉+1 

2
,          −1 ≤ 𝜉 ≤ 1.                                                       (22) 

 

By using the Gauss-Lobatto collocation points, we 
can discretize the domain [−1,1] as follows: 
 

𝜉 = cos
𝜋𝑗

𝑁
 ,   𝐹𝑖 ≈ ∑ 𝐹𝑖

𝑁
𝑘=0 (𝜉𝑘)𝑇(𝜉𝑗) ,    𝑗 = 0,1, … … 𝑁,   (23) 

 

where, 𝑁 is the number of collection points and 𝑇𝑘  is 
the 𝑘𝑡ℎ Chebyshev polynomial given by 𝑇𝑘(𝜉) =
cos[𝑘 cos−1(𝜉)]. 

The derivatives of the variable at the collocation 
points are in the form, 
 
 
𝑑𝑟𝐹𝑖

𝑑𝜂𝑟 = ∑ 𝑫𝑘𝑗
𝑟 𝐹𝑖

𝑁
𝑘=0 (𝜉𝑘),    𝑗 = 0,1, … . , 𝑁, 

𝑑𝑟𝜃𝑖

𝑑𝜂𝑟 = ∑ 𝑫𝑘𝑗
𝑟 𝜃𝑖

𝑁
𝑘=0 (𝜉𝑘),    𝑗 = 0,1, … . , 𝑁,                              (24) 

 

where 𝑟 is the order of differentiation and 𝑫 =
2

𝐿
𝐷 

with 𝐷 is the Chebyshev spectral differentiation 
matrix. Substituting Eqs. 22 to 24 into Eqs. 17 and 18 
we arrive at the matrix equation: 
 

𝑨𝑖−1𝑿𝑖 = 𝑹𝑖−1,                                                                          (25) 
 
where, 
 

𝑨𝑖−1 = [
𝑨11 𝑨12

𝑨21 𝑨22
],   𝑿𝑖−1 = [

𝐹𝑖

𝜃𝑖
],       𝑹𝑖−1 = [

𝑟1,𝑖−1

𝑟2,𝑖−1
] , 

𝑨11 =  𝑎1,𝑖−1𝑫4 + 𝑎2,𝑖−1𝑫3 + 𝑎3,𝑖−1𝑫2 + 𝑎4,𝑖−1𝑫 + 𝑎5,𝑖−1𝐈, 

𝑨11 = 𝜆𝐈, 

𝑨21 =  𝑏1,𝑖−1𝑫 + 𝑏2,𝑖−1𝐈, 

𝑨22 =  𝑫2 + 𝑏3,𝑖−1𝑫 + 𝑏4,𝑖−1𝐈.               (26) 
 

Following the above procedure, we can obtain the 
solution as 𝑿𝑖 = 𝑨𝑖−1

−1𝑹𝑖−1 

3.2. Convergence analysis 

The convergence for numerical values of −𝑓′′(0) 
for different order of approximation when 𝑀 =
0.50, 𝛽1 = 0.20, 𝛽2 = 0.01, 𝑃𝑟 = 1.00 𝑎𝑛𝑑 𝜆 = 0.20 is 
shown in Table 1. 

3.3. Numerical scheme testing 

The aim here is to test our numerical results and 
compare them with published works results in the 
literature as limiting cases situations. Thus, we 
compare the present results with the available 
results in reference (Cortell, 2006; Ghadikolaei et al., 
2018; Waqas et al., 2017; Megahed, 2013; Sadeghy et 
al., 2006; Mukhopadhyay, 2012). It is found that our 

results are in excellent agreement with those of 
Cortell (2006), Ghadikolaei et al. (2018), Waqas et al. 
(2017), Megahed (2013), Sadeghy et al. (2006), and 
Mukhopadhyay (2012) as shown in Tables 2-5.  
 

Table 1: The convergence for numerical values of −𝑓′′(0) 

for different order of approximation when, 𝑀 = 0.50, 𝛽1 =
0.20, 𝛽2 = 0.01, 𝑃𝑟 = 1.00 𝑎𝑛𝑑 𝜆 = 0.20 

Order of approximation −𝑓′′(0) −𝜃′(0) 
1 1.0145745392 1.3289761386 
5 1.0458522661 1.3178799143 

10 1.0625824893 1.3109508206 
20 1.0721659565 1.3070530958 
30 1.0735888962 1.3065067051 
50 1.0737954104 1.3064333815 
70 1.0737972453 1.3064330292 

100 1.0737971920 1.3064330634 
105 1.0737971915 1.3064330637 
110 1.0737971913 1.3064330638 
120 1.0737971911 1.3064330639 
130 1.0737971911 1.3064330639 
140 1.0737971911 1.3064330639 
150 1.0737971911 1.3064330639 

 
Table 2: Comparison of numerical values of −𝑓′′(0) with 

references Waqas et al. (2017) and Megahed (2013) f for 

several values of 𝛽1 when, 𝑀 =  𝛽2 =  𝑃𝑟 =  𝜆 = 0.00 
𝛽1 Megahed (2013) Waqas et al. (2017) Present work 
0.0 0.999978 1.000000 0.999999 
0.2 1.051945 1.051889 1.051889 
0.4 1.101848 1.101903 1.101903 
0.6 1.150163 1.150137 1.150137 
0.8 1.196690 1.196711 1.196711 
1.0 - - 1.241747 

 
Table 3: Comparative analysis of numerical values of 

−𝑓′′(0) with References Sadeghy et al. (2006) and 
Mukhopadhyay (2012) for several values of 𝛽1 when, 𝑀 =

 𝛽2 =  𝑃𝑟 =  𝜆 = 0.00 

𝛽1 
Sadeghy et al. 

(2006) 
Mukhopadhyay 

(2012) 
Present 

work 
0.0 1.000000 0.9999963 0.999999 
0.2 1.05194 1.051949 1.051889 
0.4 1.10084 1.101851 1.101903 
0.6 1.0015016 1.150162 1.150137 
0.8 1.19872 1.196693 1.196711 
1.0 - - 1.241747 

 
Table 4: Comparison of numerical values of 𝑓(𝜂) with 
Ghadikolaei et al. (2018) when, 𝑀 =  𝛽1 =  𝑃𝑟 =  𝜆 =

0.00 𝑎𝑛𝑑 𝛽2 =  0.01 
𝛽2 𝜂 Ghadikolaei et al. (2018) Present work 

0.01 

0 0 0 
0.1 0.095199 0.095194 
0.2 0.181400 0.181338 
0.5 0.394050 0.393892 
1 0.633463 0.633460 
2 0.866679 0.867642 
3 0.952228 0.954211 
4 0.983566 0.986229 
5 - 0.998059 

4. Results and discussion  

 

In this section, we present the graphs obtained 
using the successive linear method of speed and 
temperature profiles. These drawings show 
differences in the flow parameters included in the 
solution expressions for the heat transfer analysis of 
the non-compressible MHD flow of Oldroyd-B liquid 
on an extended plate channel. Physical explanations 
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and the behavioural parameters of the problem are 
discussed in Fig. 1 to Fig. 10.  
 

Table 5: Comparison of numerical values of −𝜃′(0) with 
Cortell (2006) when, 𝑀 =  𝛽1 =  𝑃𝑟 =  𝜆 = 0.00 𝑎𝑛𝑑 𝛽2 =

 0.01 
𝛽2 𝜂 Cortell (2006) Present work 

0.01 

0 1.334735 1.334733 
0.1 1.150410 1.150382 
0.2 0.993973 0.994026 
0.5 0.650461 0.650523 
1 0.335684 0.335643 
2 0.102150 0.102133 
3 - 0.034583 
4 - 0.012274 
5 0.004444 0.004441 

10 2 × 10−5 0.000029 
    

These figures are drawn to illustrate these 
differences. Here the flow diagrams of the MHD heat 
transfer flow of the Oldroyd-B fluid fixed on the 
expansion board are determined. In Fig. 1 we can see 
the effects of the applied magnetic field (Hartmann's 
number) 𝑀 on the velocity profile. By maintaining 
𝛽1, 𝑃𝑟, 𝜆 its stability and contrast 𝑀, it turns out that 
the velocity profile decreases when the magnetic 
field parameter 𝑀 becomes larger. From the physical 
side, we notice that when we increase its value, the 
flow on the profile  𝑓′(𝜂) of speed decreases, in fact 
due to the effect of the transverse magnetic field on 
the electrically conductive fluid, which produces a 
Lorentz-type resistance force that tends to slow the 
movement of the fluid and limits its movement and 
speed. Fig. 2 shows that for the strong magnetic 
force imposed, this leads to a large temperature, and 
this is due to the fact that in the strong magnetic 
foreground, Lorenz's force becomes dominant, and 
then the result increases the temperature of the 
liquid. Fig. 3 illustrates the effects of the mixed 
convection parameter 𝜆 on the velocity profile when 
𝛽1, 𝑃𝑟, 𝑀 are constant. It should be noted that by 
increasing the 𝜆 parameter, buoyancy increases due 
to increased gravity and as a result increases speed. 
Besides, the thickness of the large 𝜆 border layer is 
also increasing. In Fig. 4, we illustrate that for a 
larger size of 𝜆, this may lead to an increase in coil 
temperature (this is very much related to the 
decrease in the thickness of the boundary layer). Fig. 
5 is plotted for the Prandtl number 𝑃𝑟 variance 𝜃(𝜂). 
Note that for a large 𝑃𝑟, the thermal field is lower 
and then reduces the temperature. In fact, the 
Prandtl number assists liquids in higher thermal 
conductivity and this creates a thicker thermal 
boundary layer of large. It is noted that from Fig. 6, 
Prandtl number 𝑃𝑟 has the same effect on the same 
temperature. The effect of the Deborah number 𝛽1 
on the velocity distribution  𝑓′(𝜂) is shown by Fig. 7 
and Fig. 8. In fact, comes mainly because of the 
relaxation time phenomena. A lot leads to a longer 
relaxation time that interferes with the flow of liquid, 
and then the thickness of the momentum layer is 
reduced. Fig. 8 illustrates the effect of 𝛽1 on 
temperature profile over the sheet, and we note that 
by increasing in 𝛽1 parameter is seen to decrease 
and reducing in the liquid temperature 𝜃(𝜂). 

Physically, that is, for the larger parameter, the 
thermal border layer becomes thicker. Finally, Fig. 9 
and Fig. 10 show an effect of 𝛽2 on the velocity and 
temperature profiles on the paper, and note that by 
increasing the parameter 𝛽2 the effect is seen to be 
very small for both features. Moreover, the second 
grade, Maxwell and viscous cases are retrieved by 
setting  𝛽1 = 0,   𝛽2 = 0 ,  and  𝛽1 =  𝛽2 = 0. 

 

 
Fig. 1: Effects of Hartman number 𝑀 for 𝑓′(𝜂) 

 

 
Fig. 2: Effects of Hartman number 𝑀 for 𝜃(𝜂) 

 

 
Fig. 3: Effects of mixed convection parameter 𝜆 for 𝑓′(𝜂) 
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Fig. 4: Effects of mixed convection parameter 𝜆 for 𝜃(𝜂) 

 
 
 

 
Fig. 5: Effects of Prandtl number Pr for 𝜃(𝜂) 

 
 
 

 
Fig. 6: Effects of Prandtl number Pr for 𝑓′(𝜂) 

 
 
 
 
 
 

 

 
Fig. 7: Effects of Deborah number 𝛽1 for 𝑓′(𝜂) 

 
 
 

Fig. 8: Effects of Deborah number 𝛽1 for 𝜃(𝜂) 
 
 
 

 
Fig. 9: Effects of Deborah number 𝛽2 for 𝑓′(𝜂) 

 



Faisal Salah/International Journal of Advanced and Applied Sciences, 7(6) 2020, Pages: 40-47 

46 
 

 
Fig. 10: Effects of Deborah number 𝛽2 for 𝜃(𝜂) 

5. Conclusion 

In this research, the problem of MHD heat 
transfer of an incompressible Oldroyd–B fluid on a 
stretching sheet channel is solved numerically. The 
numerical solutions are well established by SLM. The 
influence of various parameters is shown through 
different graphs. The present results have been 
tested and compared with the available published 
results in Cortell (2006), Ghadikolaei et al. (2018) 
and Waqas et al. (2017), Megahed (2013), Sadeghy 
et al. (2006) and Mukhopadhyay (2012) in a limiting 
situation shown in Tables 2-5 and an excellent 
agreement is found. 
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