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In this paper, the solution of Hammerstein integral equations is presented by 
a new approximation method based on operational matrices of Chebyshev 
polynomials. The nonlinear Hammerstein and Volterra Hammerstein integral 
equations are reduced to a system of nonlinear algebraic equations by using 
operational matrices of Chebyshev polynomials. Illustrative examples are 
presented to test the method. The method is less complicated in comparison 
to others. The results obtained are demonstrated with previously validated 
results. 
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1. Introduction 

* In this work, we consider the nonlinear integral 
equations of Hammerstein and Volterra-
Hammerstein types. 

The nonlinear integral equations of Hammerstein 
and Volterra-Hammerstein types are considered, 
which they have the following forms respectively: 
 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑠)𝜓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0
                                 (1) 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑠)𝜓(𝑠, 𝑢(𝑠))𝑑𝑠.
𝑥

0
                               (2) 

 

Assume that 𝑓, ψ and 𝑘 are to be in L2 and λ is a 

real known constant, and ψ(x, u(s)) nonlinear in 

u.  We assume that Eqs. 1 and 2 have a unique 
solution u(x) to be determined. 

Several problems in mathematical physics, 
boundary value problems, and in the theory of 
elasticity are reduced into Volterra Hammerstein 
integral equations (Eq. 2) (Abdou, 2003; Ganesh and 
Joshi, 1991). The nonlinear Hammerstein integral 
equations (Eq. 1) arise as a reformulation of two-
point boundary value problems with a certain 
nonlinear boundary condition, (Delves and 
Mohamed 1985). 

The aim of the present paper is to consider the 
numerical solution of the nonlinear integral 
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equations of Hammerstein and Volterra-
Hammerstein types based on the Chebyshev 
approximation (Zarnan, 2016).  

Several numerical methods for approximating the 
solution of Hammerstein integral equations were 
considered as a review for this work. The classical 
method of successive approximations for the 
solution of Fredholm-Hammerstein's integral 
equations was introduced in Tricomi (1985). Lardy 
(1981), and Kumar & Sloan (1987) introduced A 
variation of the Nystrom method and collocation-
type method. The discussion of the connection of 
nonlinear Volterra-Hammerstein integral equations 
and integro-differential equations with iterated 
collocation method and application of a collocation-
type method is presented by Brunner (1992). The 
asymptotic error expansion of a collocation-type 
method for Volterra-Hammerstein's integral 
equations is discussed by Han (1993). The Walsh 
series operational matrix of integration to solve 
linear integral equations was described by Hsiao and 
Chen (1979).  

Moreover, Hwang and Shih (1982), Chang and 
Wang (1985), Chou and Horng (1985) and Razzaghi 
et al. (1990) used the operational matrices of 
integration associated with Laguerre polynomials, 
Legendre polynomials, Chebyshev polynomials, and 
Fourier series to derive continuous solutions for 
linear integral equations in Babolian et al. (2007) a 
computational method for solving nonlinear 
Fredholm–Volterra Hammerstein integral equations 
is described. 

The collocation-type method and rationalized 
Haar function to nonlinear Volterra–Fredholm–
Hammerstein integral equations are introduced 
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(Brunner, 1992; Ordokhani, 2006). Yousefi and 
Razzaghi (2005) applied Legendre wavelets to a 
special type of nonlinear Volterra–Fredholm integral 
equations. Han (1993) introduced and discussed the 
asymptotic error expansion of a collocation-type 
method for Volterra–Hammerstein integral 
equations.  

Orthogonal functions often used to represent 
arbitrary time functions, have received considerable 
in dealing with various problems of dynamic 
systems. The main characteristic of this technique is 
that it reduces these problems to those of solving 
systems of algebraic equations, thus greatly 
simplifying the problem. Orthogonal functions have 
also been proposed to solve linear integral 
equations. Special attentions have been given to 
applications of Walsh functions (Hsiao and Chen, 
1979), Block-pulse functions (Wang and Shih, 1982), 
Laguerre series (Wang and Shih, 1982), and 
Chebyshev polynomials (Chou and Horng, 1985). 
Very few references have been found in technical 
literature dealing with Volterra–Fredholm integral 
equations. Yalçinbaş (2002) applied a Taylor series 
to the nonlinear Volterra–Fredholm integral 
equation. 

2. Elements of a research 

2.1. Chebyshev polynomials 

A sequence of orthogonal polynomials that are 
related to de Moivre's formula and which can be 
defined recursively is called the Chebyshev 
polynomials. In Saran et al. (2000) the nth degree of 
the Chebyshev polynomials defined by: 
 

𝑇𝑛(𝑥) = ∑ (−1)𝑚
𝑛!

(2𝑚)!(𝑛−2𝑚)!
(1 − 𝑥2)𝑚𝑥𝑛−2𝑚,

[𝑛 2⁄ ]
𝑚=0           (3) 

 

where, [𝑛 2⁄ ] = {
𝑛 2⁄              𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑣𝑛 

(𝑛 + 1) 2        𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑⁄
  and,  

 
𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇2(𝑥) = 2𝑥

2 − 1,
𝑇3(𝑥) = 4𝑥

3 − 3𝑥,
𝑇4(𝑥) = 8𝑥

4 − 8𝑥2 + 1, 𝑇5(𝑥)

= 16𝑥5 − 20𝑥3 + 5𝑥,      𝑇6(𝑥)

= 32𝑥6 − 48𝑥4 + 18𝑥2 − 1.  

 
In Fig. 1, we give the first six Chebyshev 

polynomials over the interval [-1, 1]. 

 
Fig. 1: First 6 Chebyshev polynomials over the interval [-1, 1] 

 

Now, we define, 
 

𝛷(𝑥) = [𝑇0,𝑛(𝑥), 𝑇1,𝑛(𝑥), … , 𝑇𝑛,𝑛(𝑥) ]
𝑇
,                                 (4) 

 
where, 

𝛷(𝑥) = 𝐴𝐵𝑛(𝑥),                                                                             (5) 

 
where, A is an (n +  1) X(n +  1) upper triangular 
matrix with rows, 
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[0, 0, …  0⏞    
𝑖 𝑡𝑖𝑚𝑒𝑠 

, (−1)0 (
𝑛

𝑖
) (
𝑛 − 𝑖

0
) , (−1)1 (

𝑛

𝑖
) (
𝑛 − 𝑖

1
) , … , (−1)𝑚−𝑖 (

𝑛

𝑖
) (
𝑛 − 𝑖

𝑛 − 𝑖
)  ], 

  
 

and Bn(x) is an (n +  1) ×  1 matrix as follows:  
 

𝐵𝑛(𝑥) =

[
 
 
 
 
1
𝑥
⋮
𝑥𝑛

]
 
 
 
 

. 

2.2. Function approximation 

Obtaining approximate function values much 
quicker with an approximating functional form. 
Assume that the Hilbert space with the inner product 
is H = L2[0,1) and defined by: 
 

(f, g) = ∫ f(x)g(x)dx

1

0

, 

 
and, 
 
𝑌 = 𝑆𝑝𝑎𝑛{𝑇0,𝑛(𝑥), 𝑇1,𝑛(𝑥), … , 𝑇𝑛,𝑛(𝑥)}, 

 

where, Y is a complete subspace of H if it a finite-
dimensional and closed subspace. 

Now f has a unique best approximation out of Y 
such as y0, if it is an arbitrary element in H, that is 
(Yousefi and Behroozifar, 2010): 
 
∃𝑦0 ∈ 𝑌    𝑠. 𝑡   ∀𝑦 ∈ 𝑌    ‖𝑓 − 𝑦‖, 

 
this gives, 
 
∀𝑦 ∈ 𝑌   (𝑓 − 𝑦0) = 0.                                                                  (6) 
 

Since ∀y ∈ Y    so there exist coefficients 
c0, c1 , … , cn such that: 
 
y0 = c

TΦ(x), 
 

where, 
 
𝑐𝑇 = [𝑐0, 𝑐1 , … , 𝑐𝑛].                                                                       (7) 
 

Using Eq. 6: 
 

(𝑓 − 𝑐𝑇𝛷(𝑥), 𝑇𝑖,𝑛(𝑥)) = 0,     𝑖 = 0, 1,… , 𝑛, 

 

if we write, 
 

(𝑐𝑇(𝛷(𝑥),𝛷(𝑥)) = (𝑓, 𝛷(𝑥)),                                                   (8) 

 

where, 

(𝑓, 𝛷(𝑥)) = ∫𝑓(𝑥)𝛷(𝑥)𝑑𝑥.

1

0

 

Here, the dual matrix of Φ(x) is the (n +  1)  ×
(n +  1) (Φ(x), Φ(x)). Assume that: 
 

𝐷 = (𝛷(𝑥), 𝛷(𝑥))𝐴 [∫ 𝑇𝑛(𝑥)𝑇𝑛
𝑇(𝑥)𝑑𝑥

1

0
] 𝐴𝑇 = 𝐴𝐻𝐴𝑇 ,         (9) 

H is a Hilbert matrix. We can write the element of D 
as: 
 

𝐷(𝑖+1),   (𝑗+1) = ∫ 𝑇𝑖,𝑛(𝑥)𝑇𝑗,𝑛(𝑥)𝑑𝑥 =
(𝑛
𝑖
)(𝑛
𝑗
)

(2𝑛+1)(2𝑛
𝑖+𝑗
)

1

0
,               (10) 

 

where i, j = 0, 1, … , n. Any function f(x) ∈ L2[0,1] can 
be written using Chebyshev basis as f(x) ≃ cT(Φ(x), 
where from (8) and (9), we receive  
 

𝑐 = 𝐷−1(𝑓, 𝛷(𝑥)).                                                                      (11) 

 

The function k(x, s) ∈ L2[0,1]  × L2[0,1] can be 
approximate as: 
 
𝑘(𝑥, 𝑠) ≃ 𝛷𝑇(𝑥)𝐾𝛷(𝑠),                                                             (12) 
 

where, 
 

𝐾𝑖,𝑗 =
(𝛷𝑖(𝑥),(𝑘(𝑥,𝑠),𝛷𝑗(𝑠)))

(𝛷𝑖(𝑥),𝛷𝑖(𝑥))(𝛷𝑗(𝑥),𝛷𝑗(𝑥))  
,                                                  (13) 

 
is an (n +  1)  × (n +  1) matrix, For i, j = 0, 1, … , n. 
From Eq. 9:  
 

𝐾 = 𝐷−1 (𝛷𝑖(𝑥), (𝑘(𝑥, 𝑠), 𝛷(𝑠)))𝐷
−1.                                (14) 

2.3. Operational matrix of integration 

The approach is based on reducing the 
differential equations into integral equations 
through integration, approximating various signals 
involved in the equation by truncated orthogonal 
series and using the operational matrix of 
integration, to eliminate the integral operations.  

Integrated the vector Φ(x) in Eq. 4 we obtain: 
 

∫ 𝛷(𝑥′)𝑑
𝑥

0
𝑥′ ≃ 𝑃 𝛷(𝑥).                                                             (15) 

 

The (n +  1)  × (n +  1) operational matrix for 
integration P in Eq. 15 is given in (Wazwaz, 2011) as: 
 

∫ 𝛷(𝑥′)𝑑
𝑥

0
𝑥′ = 𝐴𝑝𝑋𝑝,                                                                (16) 

 

and Ap is the (n +  1)  × (n +  1) matrix,  
 

𝐴𝑝 = 𝐴 [

1 0 … 0
0 1

2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

𝑛+1

] and 𝑋𝑝 = [

𝑥
𝑥2

⋮
𝑥𝑛+1

].                (17) 

 
The elements of the vector Xp in terms of Φ(x) 

can be approximated as: From Eq. 5, Tn(x) =
A−1Φ(x), then for k = 0, 1, … , n, xk = A[k+1]

−1 Φ(x), 

where, A[k+1]
−1  is k + 1 − th row for A−1 for k =

0, 1, … , n. We just need to approximate xn+1 ≃
cn+1
T Φ(x). By using (11) and (10), we have: 
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𝑐𝑛+1 = 𝐷
−1∫𝑥𝑛+1

1

0

𝛷(𝑥)𝑑𝑥 =
𝐷−1

2𝑛 + 2

[
 
 
 
 
 
 
 
 
(𝑛
0
)

(2𝑛+1
𝑛+1

)

(𝑛
1
)

(2𝑛+1
𝑛+2

)

⋮
(𝑛
𝑛
)

(2𝑛+1
2𝑛+1

)]
 
 
 
 
 
 
 
 

, 

 

let, 
 

𝑇 =

[
 
 
 
 
 
𝐴[2]
−1

𝐴[3]
−1

⋮
𝐴[𝑛+1]
−1

𝑐𝑛+1
𝑇 ]

 
 
 
 
 

,                                                                                 (18) 

 

then Xp ≃ TΦ(x). Therefore, the operational matrix 

of integration is given by:  
 
𝑃 = 𝐴𝑝𝑇. 

2.4. Product operational matrix  

It is important to calculate the product of Φ(x) 
and Φ(x)T, named the product matrix of Chebyshev 
polynomials basis. Assume: 
 
𝛱(𝑥) = 𝛷(𝑥)𝛷(𝑥)𝑇 .                                                                   (19) 
 

If the matrix Π(x) is multiplying in vector c 
defined in Eq. 7, we have: 
 

𝑐𝑇𝛱(𝑥) = 𝛷(𝑥)𝑇�̂�,                                                                     (20) 
 

where, Ĉ is an (n +  1)  × (n +  1) matrix and called 
the coefficient matrix. So we have: 

 
𝑐𝑇𝛱(𝑥) =

[∑ 𝑐𝑖𝑇𝑖,𝑛(𝑥),
𝑛
𝑖=0 ∑ 𝑐𝑖𝑥𝑇𝑖,𝑛(𝑥),

𝑛
𝑖=0 … ,∑ 𝑐𝑖𝑥

𝑛𝑇𝑖,𝑛(𝑥),
𝑛
𝑖=0  ]𝐴𝑇.  

                                                                                                         (21) 

 
To approximate the function xkTi,n(x) in terms of 

Φ(x), we assume that: 
 

𝑒𝑘,𝑖 =

[
 
 
 
 𝑒0
𝑘,𝑖

𝑒1
𝑘,𝑖

⋮

𝑒𝑛
𝑘,𝑖]
 
 
 
 

.                                                                                  (22) 

 

Using Eq. 11, we have xkTi,n(x) ≃ ek,iΦ(x), i, k =
0, 1, … , n. By using Eqs. 11 and 10 for i, k = 0, 1, … , n, 
we have: 
 

𝑒𝑘,𝑖 = 𝐷
−1 ∫ 𝑥𝑘𝑇𝑖,𝑛(𝑥)𝛷(𝑥)𝑑𝑥 =

𝐷−1(𝑛𝑖 )

2𝑛+𝑘+1

1

0

[
 
 
 
 
 
 
(𝑛0)

(2𝑛+𝑘𝑖+𝑘 )

(𝑛1)

( 2𝑛+𝑘𝑖+𝑘+1)

⋮
(𝑛𝑛)

( 2𝑛+𝑘𝑖+𝑘+𝑛)]
 
 
 
 
 
 

,            (23) 

 
therefore, 
 

∑ 𝑐𝑖𝑥
𝑘𝑇𝑖,𝑛(𝑥) ≃ 

𝑛
𝑖=0 ∑ 𝑐𝑖 (∑ 𝑒𝑗

𝑘,𝑖  𝑛
𝑗=0 𝑇𝑖,𝑛(𝑥)) =

𝑛
𝑖=0

 𝛷(𝑥)𝑇

[
 
 
 
 
∑ 𝑐𝑖𝑒0

𝑘,𝑖  𝑛
𝑖=0

∑ 𝑐𝑖𝑒1
𝑘,𝑖  𝑛

𝑖=0

⋮

∑ 𝑐𝑖𝑒𝑛
𝑘,𝑖  𝑛

𝑖=0 ]
 
 
 
 

                                                                    (24) 

 

= 𝛷(𝑥)𝑇[𝑒𝑘,0, 𝑒𝑘,1, … , 𝑒𝑘,𝑛  ]𝑐 = 𝛷(𝑥)
𝑇𝐸𝑘+1𝑐, 

 

where, Ek+1c is an (n +  1)  × (n +  1) matrix, that 
has vectors ek,i, k = 0,1, … , n for each column’s. Then 

we define Ek+1̃ = Ek+1c  for k=0,1,…,n. If we choose 

an (n +  1)  × (n +  1) matrix C̃ = [E1̃, E2 ,̃ … , En+1̃], 

then by Eqs. 21 and 24 we have: 
 
𝑐𝑇𝛱(𝑥) ≃ 𝛷(𝑥)𝑇�̃�𝐴𝑇 .                                                                (25) 

3. Solution of Hammerstein integral equations 

Integral equations of the Fredholm–Hammerstein 
are the most important applications of the methods 
of nonlinear functional analysis and of the theory of 
nonlinear operators. This kind of integral equation 
appears in nonlinear physical such as electro-
magnetic fluid dynamics, reformulation of boundary 
value problems (BVPs) with a nonlinear boundary 
condition. 

For solving Hammerstein Integral Eq. 1, we let: 
 
𝑧(𝑠) = 𝜓(𝑠, 𝑢(𝑥)),     0 ≤ 𝑠 ≤ 1,                                             (26) 

 
then we get, 
 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑠)𝑧(𝑠)𝑑𝑠
1

0
,                                         (27) 

 

substituting Eq. 27 in Eq. 26, we get: 
 

z(x) = ψ(x, f(x) + ∫ k(x, s)z(s)ds
1

0
.                                      (28) 

 
We approximate this equation as: 

 
𝑧(𝑥) = 𝑍𝑇𝛷(𝑥),                                                                           (29) 
 

where, and Φ(x) are defined with Eqs. 4 and 7. Using 
Eqs. 9, 12, and 29, we have: 
 

∫𝑘(𝑥, 𝑠)𝑧(𝑠)𝑑𝑠) ≃ ∫𝛷𝑇(𝑥)𝐾𝛷(𝑠)𝛷(𝑠)𝑇𝑍𝑑𝑠)

1

0

1

0

 

= 𝛷𝑇(𝑥)𝐾 ∫𝛷𝑇(𝑥)𝛷(𝑠)𝑇𝑍𝑑𝑠)𝑍

1

0

 

= 𝛷𝑇(𝑥)𝐾𝐷𝑍.                                                                               (30) 
 

Via Eqs. 28, 29, and 30, we get, 
 
𝑍𝑇𝛷(𝑥) = 𝜓(𝑥, 𝑓(𝑥) + 𝜆𝛷𝑇(𝑥)𝐾𝐷𝑍).                                  (31) 
 

In order to find Z we collocate Eq. 31 in n nodal 
points of Newton-cotes as: 
 

𝑥𝑝 =
2𝑝−1

2𝑛
,     𝑝 = 1, 2,… , 𝑛.                                                     (32) 

 

Then, we have Eq. 31 as follows: 
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𝑍𝑇𝛷(𝑥𝑝) = 𝜓(𝑥𝑝, 𝑓(𝑥𝑝) + 𝜆𝛷
𝑇(𝑥𝑝)𝐾𝐷𝑍).                         (33) 

 

We can calculate the unknown vector Z from the 
above nonlinear system of equations. Newton’s 
iterative method is suitable for solving this nonlinear 
system. We used Mathematica 7 to obtain our 
solutions. The required approximated solution u(x) 
for our Hammerstein integral equation (Eq. 1), can 
be obtained by using Eqs. 27 and 29 as follows: 
 
𝑢(𝑥) = 𝑓(𝑥) + 𝜆𝛷𝑇(𝑥)𝐾𝐷𝑍).                                                  (34) 

4. Solution of nonlinear Volterra Integral 
equations 

Linear and nonlinear Volterra integral equations 
arise in many scientific fields such as the population 
dynamics spread of epidemics, and semi-conductor 
devices. Volterra started working on integral 
equations. 

Consider the nonlinear Volterra integral 
equations given in Eq. 2. For solving these equations, 
we let z(s)  = ψ (s, u(s)) for 0 ≤ s ≥  1. Then from 
Eq. 2, we get: 
 

𝑧(𝑥) = 𝛹(𝑥, 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑠)𝑧(𝑠)𝑑𝑠).
𝑥

0
                                 (35) 

 

Using Eqs. 20, 12, 29, and 15 we can write, 
 

∫𝑘(𝑥, 𝑠)𝑧(𝑠)𝑑𝑠

𝑥

0

≃ ∫𝛷𝑇(𝑥)𝐾𝛷(𝑠)𝛷(𝑠)𝑇𝑍𝑑𝑠

𝑥

0

 

= 𝛷𝑇(𝑥)𝐾 ∫𝛱(𝑠)𝑍𝑑𝑠

𝑥

0

 

= 𝛷𝑇(𝑥)𝐾�̂�𝑇 ∫ 𝛷(𝑠)𝑑𝑠
𝑥

0
                                                            (36) 

= 𝛷𝑇(𝑥)𝐾�̂�𝑇𝑃𝛷(𝑠). 
 

After using Eq. 36, we get: 
 
𝑍𝑇𝛷(𝑥) = 𝜓(𝑥, 𝑓(𝑥) + 𝜆𝛷𝑇(𝑥)𝐾𝐷𝑍)�̂�𝑇𝑃𝛷(𝑠)).               (37) 

 
Collocating Eq. 37 in n nodal point (Eq. 32), we 

have, 
 

𝑍𝑇𝛷(𝑥𝑝) = 𝜓(𝑥𝑝, 𝑓(𝑥𝑝) + 𝜆𝛷
𝑇(𝑥𝑝)𝐾�̂�

𝑇𝑃𝛷(𝑥𝑝))           (38) 

for 𝑝 =  1, 2, … , 𝑛.  
 
After solving the nonlinear system (Eq. 38), we 

get Z, and by use of z(x)  = ZTΦ(xp) we will have the 

approximation solution of Volterra–Hammerstein 
integral equations (Eq. 2) as: 
 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑠)𝑧(𝑠)𝑑𝑠.
𝑥

0
                                            (39) 

 

From above, we know that Eq. 39 can be 
evaluated by 
 
𝑢(𝑥) = 𝑓(𝑥) + 𝜆𝛷𝑇(𝑥)𝐾�̂�𝑇𝑃𝛷(𝑥).                                        (40) 
 

The main aim in the present approach is to 
reduce such problems to those of solving systems of 
algebraic equations with constant coefficients by 
unknown variables. The validity and effectiveness of 

the approach are demonstrated via some numerical 
examples 

5. Numerical examples 

To illustrate the effectiveness of the presented 
approach in the present paper, some test examples 
are carried out in this section. The results obtained 
by the present methods reveal that the present 
method is very effective and convenient for 
nonlinear Fredholm integral equations. 

5.1. Example 1 

Consider the nonlinear Fredholm integral 
equation: 
 

𝑢(𝑥) = 𝑓(𝑥) + ∫2𝑥2𝑠𝑖𝑛(𝑢(𝑆))𝑑𝑠

1

0

, 

where, 

𝑓(𝑥) = 1 + 𝑥 + (1 −
3

2
𝑙𝑛(3) +

√3

6
𝜋) 𝑥2. 

 

The exact solution is 1 +  x + x2. Table 1 shows 
the present method results, for example, 1 in 
comparison with the method of Mahmoudi (2005). 
The superiority of the Chebyshev operational 
matrices method compared with the Taylor 
polynomial method is clear here because, with the 
same number of basic functions, we get very better 
results. 

 
Table 1: Approximate and exact solutions for example 1 

xi 
Present 
method 

n=6 

Method of Kumar and 
Sloan (1987) 

N = 6 

Exact 
solution 

0.0 1.000000 1.000000 1 
0.2 1.239987 1.238432 1.24 
0.4 1.559988 1.553726 1.56 
0.6 1.959988 1.945884 1.96 
0.8 2.439989 2.414905 2.44 
1.0 2.999999 2.960788 3 

 
In this table, the exact and the computed 

solutions have been given. As seen, the computed 
solution is in good agreement with the exact 
solution. It is clear that the presented approach can 
be considered as an efficient approach to solving the 
nonlinear Fredholm integral equations.  

5.2. Example 2 

Consider the Hammerstein integral equation: 
 

𝑢(𝑥) = 𝑓(𝑥) + ∫𝑠𝑖𝑛(𝑥 + 𝑠) 𝑙𝑛(𝑢(𝑠)) 𝑑𝑠,       0 ≤ 𝑥 ≤ 1

1

0

, 

 

where, f(x) =  ex −  0.382 sin(x) − 0.301 cos(x), and 
the exact solution is u(x)  = ex (Brunner, 1992). The 
computational results are obtained by the present 
method with n =  5, and we compared our results 
by the results of Brunner (1992). In this comparison, 
the number of present method basis functions is 5, 
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but the number of basic functions for method of 
Maleknejad et al. (2010a) is 32, and the results have 
almost same accuracy, so Chebyshev method is 
superior to hybrid Legendre and Block–Pulse 
method for solving Hammerstein integral equation. 
Table 2 shows approximate and exact solutions, for 
example 2. 

 
Table 2: Approximate and exact solutions for example 2 

xi 
Present 
method 

n=5 

Method of Brunner 
(1992) 

m=4, n=8 
Exact solution 

0.0 1.0001824211 1.0001817942 1 
0.2 1.2215473602 1.2215472834 1.2214027582 
0.4 1.4919260323 1.4919261952 1.4918246976 
0.6 1.8221730237 1.8221731864 1.8221188004 
0.8 2.2255460320 2.2255459923 2.2255409285 
1.0 2.7182380265 2.7182373557 2.7182818285 

 

In this table, the exact and the calculated 
solutions have been given. As seen, the calculated 
solution is in good agreement with the exact 
solution. It is clear that the presented method can be 
considered as an efficient method to solve the 
Hammerstein integral equations. 

5.3. Example 3 

Table 3 shows errors E2 for example 3. Consider 
the nonlinear Volterra integral equation: 
 

𝑢(𝑥) =
3

2
−
1

2
𝑒−2𝑥 + ∫ (𝑢2(𝑠) + 𝑢(𝑠))𝑑𝑠,

𝑥

0
  

 

where, the exact solution is e−x. 
The L2-norm of errors is considered in this 

example, which can be given by: 
 

𝐸2 = (∫[𝑢(𝑥) − 𝑢𝑛(𝑥)]
2𝑑𝑥

1

0

)

1
2⁄

. 

 
Table 3: Errors E2 for example 3 

n|m Present method Method of Han (1993) 
4 0.000068193251 0.003738014268 
8 0.000000084171 0.000937018240 

16 0.000000000000 0.000937018240 
32 0.000000000000 0.002374324588 

 

In Table 3, the comparison among the Chebyshev 
operational matrices errors E2 with n=4, 8, 16, 32 
beside triangular function (Maleknejad et al., 2010b) 
errors with m=4, 8, 16, 32 are given. The primacy of 
the present method compared with the triangular 
function method is obvious here because by the 
same number of basis function present method E2 
errors are very low.  

6. Conclusion 

This work presents a numerical solution 
approach for Hammerstein and Volterra 
Hammerstein integral equations by the operational 
matrices of Chebyshev polynomials. It had been 
proven in this research that a nonlinear system of 
algebraic equations is possible to be solved by 

Newton’s method. The less complicity and 
attractiveness of the Chebyshev polynomials 
operational matrices method are clear in the present 
paper. The implementation of the current approach 
in analogy to existed methods is more convenient, 
and the accuracy is higher than previous methods. 
Numerical examples are given to demonstrate the 
validity and applicability of the proposed method. 
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