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The non-invertible systems are very useful in practical applications. The 
study of the non-invertible systems has important value since a large number 
of genetics studies in biology, physics, engineering, and economic systems 
have been widely carried out found to exhibit a class of non-invertible 
systems. This short paper proposes a new simple four-term 2-D polynomial 
chaotic system with only one quadratic nonlinearity and describes its some 
interesting dynamical properties. Moreover, the stability of the fixed point 
and chaotic motions are investigated using analytical and numerical 
methods. Our 2-D polynomial system displays new chaotic attractors via the 
quasi-periodic route to chaos for certain values of its parameter of 
bifurcation. 
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1. Introduction 

*Many papers have described 2-D chaotic 
invertible system with a quadratic inverse and 
constant Jacobian (Aziz-Alaoui et al., 2001; Miller 
and Grassi, 2001), one of the most famous is the 
smooth two-dimensional Hénon system (Hénon, 
1976) and studied in detail by others (Hénon, 1969; 
Benedicks and Carleson, 1991; Cao and Liu, 1998; 
Marotto, 1979). In this context, the study of the non-
invertible systems has important value since, a large 
number of genetics researches in biology (Bi and 
Ruan, 2013; Gałach, 2003), physics (Benerjee and 
Verghese, 2001), engineering (Tse, 2003), economics 
(Bischi and Tramontana, 2010), and applied 
mathematics (Mammeri, 2018) systems have been 
widely carried out found to exhibit a class of non-
invertible quadratic systems. This short paper 
proposes a new simple 2-D non-invertible discrete 
chaotic system (2) with one bifurcation parameter, 
and that has only one nonlinear term (Mammeri, 
2017). In section 1, a rigorous proof of the existence 
of some interesting properties of the system (2) on 
open, a connected subset is given, in section 2, a 
detailed dynamical behavior of this system (2) is 
further investigated numerically in term of a single 
bifurcation parameter. The final section concludes 
the letter.  
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It is well known that the general form two-
dimensional quadratic systems were made by 
Zeraoulia and Sprott (2010), where the 2-D 
quadratic systems are classified according to their 
number of nonlinearities. Also, many examples are 
given. And the first case of one nonlinearity is 
defined by: 
 

(𝑥𝑛+1
𝑦𝑛+1

) = ( 𝑎0+𝑎1𝑥𝑛+𝑎2𝑦𝑛
𝑏0+𝑏1𝑥𝑛+𝑏2𝑦𝑛+𝑏3𝑥𝑛𝑦𝑛

)                                                 (1) 

 

In this paper, the new simplest two-dimensional 
quadratic system with only one cross-product 
nonlinear term 𝑥𝑦 is presented as follows: 
 

𝑓(𝑥𝑛, 𝑦𝑛) = (𝑥𝑛+1
𝑦𝑛+1

) = ( 𝑥𝑛−𝑎𝑦𝑛
𝑥𝑛−𝑎𝑥𝑛𝑦𝑛

),                                              (2) 

 

where (𝑥, 𝑦) ∈ ℝ² and 𝑎 ∈ ℝ+
∗  is the bifurcation 

parameter. For 𝑎 = 0 the system (2) reduces to a 
two-dimensional linear system. On the other hand, 
the system (2) permits the construction of a new 
family of attractors dependent on the bifurcation 
parameter 𝑎 and initial conditions. 

2. Qualitative properties of the system 

In the following section, we will prove some 
propositions in order to rigorously demonstrate the 
existence of some interesting properties of the 
system (2) on the largest open, connected subset. Let 
us define the following subset: 𝛺 = {(𝑥, 𝑦) ∈  ℝ ²: 1 −
𝑥 − 𝑎𝑦 > 0}. 
 
Proposition 1: The system (2) is invertible if 
 

(−𝑎
1

) ≠
1

(𝑛+1) ∑ 𝑦𝑘
2−(∑ 𝑦𝑘)2 (

(𝑛+1) ∑ 𝑦𝑘𝑥𝑘−∑ 𝑦𝑘 ∑ 𝑥𝑘

− ∑ 𝑦𝑘 ∑ 𝑦𝑘𝑥𝑘+∑ 𝑦𝑘
2 ∑ 𝑥𝑘

)  
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Proof: The determinant of the Jacobi matrix of the 
system (2) evaluated at a point (𝑥, 𝑦) is 
𝑑𝑒𝑡𝐷𝑓(𝑥, 𝑦) = 𝑎(−𝑎𝑦 + 1 − 𝑥) and we consider the 
finite number of points 
(𝑥₀, 𝑦₀), (𝑥₁, 𝑦₁), . . . , (𝑥𝑘 , 𝑦𝑘), . . . , (𝑥𝑛 , 𝑦𝑛) of an orbit of 
the system (2) and let us define the following matrix, 
 

𝐴 = (

𝑦₀
𝑦₁

  
...

𝑦𝑛

1
1
...
1

), 𝑌 = (−𝑎
1

), 𝐵 = (

𝑥₀
𝑥₁

  
...

𝑥𝑛

), 

 

then one has,  
 

𝐴𝑌 − 𝐵 = (

−𝑎𝑦₀+1−𝑥₀
−𝑎𝑦1+1−𝑥1

  
...

−𝑎𝑦𝑛 + 1 − 𝑥𝑛

), 

 
we use the results available on linear algebra, then 
one has, 
 
‖𝐴𝑌 − 𝐵‖² = ∑ (−𝑎𝑦𝑘 + 1 − 𝑥𝑘)2𝑛

𝑘=0 , 

 
the system (2) is invertible if, 
 
‖𝐴𝑌 − 𝐵‖² ≠ 0, 

 
i.e., 
 

𝑌 ≠ ( 𝐴𝐴𝑡 )
−1

( 𝐴𝑡 𝐵), 

 
where, 
 

𝐴𝐴𝑡 = (𝑦₀…𝑦𝑛
1…1

) (

𝑦₀
𝑦₁

  
...

𝑦𝑛

1
1
...
1

) = (
∑ 𝑦𝑘

2 ∑ 𝑦𝑘

∑ 𝑦𝑘 (𝑛 + 1)
), 

and 
 

( 𝐴𝐴𝑡 )
−1

=
1

(𝑛+1) ∑ 𝑦𝑘
2−(∑ 𝑦𝑘)2 (

(𝑛 + 1) − ∑ 𝑦𝑘

− ∑ 𝑦𝑘 ∑ 𝑦𝑘
2 ), 

 

and 
 

𝐴𝑡 𝐵 = (𝑦₀…𝑦𝑛
1…1

) (

𝑥₀
𝑥₁

  
...

𝑥𝑛

) = (
∑ 𝑦𝑘𝑥𝑘

∑ 𝑥𝑘
), 

 

then we have, 
 

𝑌 ≠ ( 𝐴𝐴𝑡 )
−1

( 𝐴𝑡 𝐵) =
1

(𝑛+1) ∑ 𝑦𝑘
2−(∑ 𝑦𝑘)2 (

(𝑛+1) ∑ 𝑦𝑘𝑥𝑘−∑ 𝑦𝑘 ∑ 𝑥𝑘

− ∑ 𝑦𝑘 ∑ 𝑦𝑘𝑥𝑘+∑ 𝑦𝑘
2 ∑ 𝑥𝑘

).  

 

Proposition 2: The open subset 𝛺 is the largest 
open connected and includes (0, 0). 
 
Proof: The subset Ω is open because it's the inverse 
image of the interval (0, +∞) by the continuous map 
ℎ: ℝ² → ℝ described by ℎ(𝑥, 𝑦) = 1 − 𝑥 − 𝑎𝑦. 

 
Proposition 3: The system (2) is of class 𝐶∞ on the 
subset Ω. 

 
Proof: Because the coordinates of the system (2) is 
polynomial. 
 
Proposition 4: 𝐷𝑓(𝑥, 𝑦) is an isomorphism for ℝ²on 
ℝ² for all (𝑥, 𝑦) ∈ 𝛺. 
 
Proof: Because, for all (𝑥, 𝑦) ∈ 𝛺. We have 
𝑑𝑒𝑡𝐷𝑓(𝑥, 𝑦) = 𝑎(1 − 𝑥 − 𝑎𝑦) > 0. 

 
Proposition 5: The system (2) is one to one on 𝛺. 
 
Proof: We use the following standard results: the 
system (2) is one to one if 𝑓(𝑥₁, 𝑦₁) = 𝑓(𝑥₂, 𝑦₂); it 
implies that (𝑥₁ = 𝑥₂, 𝑦₁ = 𝑦₂). Let (𝑥₁, 𝑦₁) and 
(𝑥₂, 𝑦₂) with 1 − 𝑥₁ − 𝑎𝑦₁ > 0 and 1 − 𝑥₂ − 𝑎𝑦₂ > 0. 
In our case 𝑓(𝑥₁, 𝑦₁) = 𝑓(𝑥₂, 𝑦₂) equivalent to (𝑥₁ −
𝑎𝑦₁ = 𝑥₂ − 𝑎𝑦₂, 𝑥₁(1 − 𝑎𝑦₁) = 𝑥₂(1 − 𝑎𝑦₂)) or (𝑥₁ +
(1 − 𝑎𝑦₁) = 𝑥₂ + (1 − 𝑎𝑦₂), 𝑥₁(1 − 𝑎𝑦₁) = 𝑥₂(1 −
𝑎𝑦₂)) we observe that the two coordinates (𝑥₁, 1 −
𝑎𝑦₁) and (𝑥₂, 1 − 𝑎𝑦₂) have the same total and the 
same product, and it is convenient to distinguish two 
possibilities: 
 
a) 𝑥₁ = 𝑥₂ and 𝑦₁ = 𝑦₂ in this case the map (2) is one 
to one on 𝛺. 
b) 𝑥₁ = 1 − 𝑎𝑦₂ and 𝑥₂ = 1 − 𝑎𝑦₁, than from the 
choice of (𝑥₁, 𝑦₁) we have 1 − 𝑥2 − 𝑎𝑦2 = 1 −
(1 − 𝑎𝑦1) − (1 − 𝑥1) = −(1 − 𝑥1 − 𝑎𝑦1) < 0  this is 
impossible since 1 − 𝑥2 − 𝑎𝑦2 > 0. Finally, we 
conclude that the system (2) is one to one on 𝛺. 

 
Proposition 6: 𝑓(𝛺) = {(𝑋, 𝑌) ∈ ℝ²: (1 + 𝑋)² − 4𝑌 >
0}.  

 
Proof: Let (𝑋, 𝑌) ∈  ℝ² we want to find the 
conditions that must be satisfied the coordinate 
(𝑋, 𝑌) in order to exist (𝑥, 𝑦) ∈ 𝛺 in which 𝑓(𝑥, 𝑦) =
(𝑋, 𝑌). We have 𝑓(𝑥, 𝑦) = (𝑋, 𝑌) equivalent (𝑥 −
𝑎𝑦 = 𝑋, 𝑥(1 − 𝑎𝑦) = 𝑌) or (𝑥 + (1 − 𝑎𝑦) = 1 +
𝑋, 𝑥(1 − 𝑎𝑦) = 𝑌). Therefore, 𝑥 and 1 − 𝑎𝑦 are two 
solutions of the following equation of the variable 
𝑇: 𝑇² − (1 + 𝑋)𝑇 + 𝑌 = 0 and the condition to accept 
this equation solutions in ℝ is ∆= (1 + 𝑋)² − 4𝑌 > 0. 
If the last inequality satisfied, then we have: 
 

{
𝑥 =

1+𝑋−√∆

2

1 − 𝑎𝑦 =
1+𝑋+√∆

2

,                                                                        (3) 

 

or 
 

{
𝑥 =

1+𝑋+√∆

2

1 − 𝑎𝑦 =
1+𝑋−√∆

2

.                                                                        (4) 

 

The solution (3) is suitable because of 1 − 𝑥 −

𝑎𝑦 = √∆> 0 but the solution (4) is not suitable 

because it gives 1 − 𝑥 − 𝑎𝑦 = −√∆< 0 and also we 
reject the case ∆= 0. Because it leads to 1 − 𝑥 − 𝑎𝑦 =
0. We conclude from the above discussion that: 

 



M. Mammeri/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 98-103 

100 
 

𝑓(𝛺) = {(𝑋, 𝑌) ∈ ℝ²: (1 + 𝑋)² − 4𝑌 > 0}. We remark 
that the subset 𝑓(𝛺) includes 𝐴(0,0). 
 
Proposition 7: 𝑓Ω

−1: 𝑓(𝛺)→ ℝ ² given by: 

{
�̅� =

1+𝑋−√∆

2

�̅� =
1−𝑋−√∆

2𝑎

                                                                                   (5) 

 

Proof: It's very easy work to verify this proposition 
by using (3). 
 
Proposition 8: In the positive quadrant, all orbits of 
the system (2) are bounded. 
 
Proof: It follows from the system (2) that 𝑥𝑛+1 ≤
𝑥𝑛 and 𝑦𝑛+1 ≤ 𝑥𝑛 for all positive integer 𝑛 since 𝑥𝑛 >
0, 𝑦𝑛 > 0 and 𝑎 > 0, thus we have 𝑥𝑛+1 ≤ 𝑥𝑛 ≤
𝑥𝑛−1 ≤ ⋯ ≤ 𝑥1 ≤ 𝑥0 and 𝑦𝑛+1 ≤ 𝑥𝑛 ≤ 𝑥𝑛−1 ≤ ⋯ ≤
𝑥1 ≤ 𝑥0. 
 

For all positive integer 𝑛. Then the sequences are 
monotone decreasing and so are bounded from 
above by 𝑥₀. It follows that the orbit of the system 
(2) is bounded. 

3. Bifurcation properties of the system 

The following section further investigates the 
dynamical behaviors of the chaotic system (2), 
including the stability of fixed point and bifurcations, 
Lyapunov exponents, bifurcation diagram, and 
Phases portraits. 

3.1. Local stability conditions 

The only fixed point of the system (2) is 𝐴(0, 0). 
The Jacobi matrix of the system (2) evaluated at a 
point (𝑥, 𝑦) is given by: 
 

𝐷𝑓(𝑥, 𝑦) = (
1 −𝑎

1 − 𝑎𝑦 −𝑎𝑥
)                                                       (6) 

 

and 𝑑𝑒𝑡𝐷𝑓(𝑥, 𝑦) = 𝑎(1 − 𝑥 − 𝑎𝑦), at the fixed point 
𝐴(0,0), the Jacobi matrix is given by: 
 

𝐷𝑓(0,0) = (
1 −𝑎
1 0

) 

 

The characteristic polynomial of the Jacobi matrix 
of the system (2) calculated at the fixed point 𝐴, 
which takes the form: 𝑃𝐴(𝜆) = 𝜆² − 𝜆 + 𝑎, according 
to the criterion available in Elaydi (1996), we 
conclude that the fixed point A of the system (2) is 
asymptotically stable if and only if the following 
conditions hold: 
 
1 + 1 + 𝑎 > 0,1 − 1 + 𝑎 > 0,1 − 𝑎 > 0 
 

or, equivalently, 
 
0 < 𝑎 < 1 
 

For example, if we choose 𝑎 = 0.7 then with this 
value the fixed point 𝐴 is asymptotically stable, and 

we have the following two eigenvalues 𝜆₁ = 0.50 −
𝑖0.67 and 𝜆₂ = 0.50 + 𝑖0.67 thus |λ𝑖(1≤i≤2)|<1. 

On the other hand, the local stability of 𝐴 is 
studied by evaluating the eigenvalues of the 
Jacobi J(0,0) . 

If 𝑎 <
1

4
 the eigenvalues of J(0,0)  are 𝜆₁ =

1−√1−𝑎4

2
 and 

𝜆₂ =
1+√1−𝑎4

2
. Then one has the following results: 

 

(a) |𝜆₁| < 1 and |𝜆₂| < 1, if and only if 0 < 𝑎 <
1

4
, 

system (2) is attracting at this fixed point. 

(b) 𝜆₁ = 𝜆₂ =
1

4
 < 1, if and only if 𝑎 =

1

4
, system (2) is 

attracting at this fixed point. 
(c) |𝜆₁| > 1 and |𝜆₂| < 1 (impossible because 𝑎 > 0), 

system (2) is not a saddle at this fixed point. 
(d) |𝜆₁| < 1 and |𝜆₂| > 1 (impossible because 𝑎 > 0), 

system (2) is not a saddle at this fixed point. 
(e) |𝜆₁| > 1 and |𝜆₂| > 1 (impossible because 𝑎 > 0), 

system (2) is non-repelling at this fixed point. 
 

If 𝑎 >
1

4
 the eigenvalues of J(0,0)  are 𝜆₁ =

1−𝑖√−(1−𝑎4)

2
 

and 𝜆₂ =
1+𝑖√−(1−𝑎4)

2
. Then one has the following 

results: 
 

(a) |𝜆₁| = |𝜆₂| < 1, if and only if 
1

4
< 𝑎 < 1, system 

(2) is attracting at this fixed point. 
(b) |𝜆₁| = |𝜆₂| = 1, if and only if 𝑎 = 1, system (2) is 

non-hyperbolic at this fixed point. 
(c) |𝜆₁| = |𝜆₂| > 1, if and only if 𝑎 > 1, system (2) is 

unstable at this fixed point. 
(d) |𝜆₁| > 1 and |𝜆₂| < 1 (impossible because 𝑎 > 0), 

system (2) is not a saddle at this fixed point. 
(e) |𝜆₁| < 1 and |𝜆₂| > 1 (impossible because 𝑎 > 0), 

system (2) is not a saddle at this fixed point. 
(f) |𝜆₁| > 1 and |𝜆₂| > 1 (impossible because 𝑎 > 0), 

system (2) is non-repelling at this fixed point. 

3.2. Numerical results 

In this subsection, we will illustrate some 
observed chaotic attractors, the dynamical behaviors 
of the system (2) are investigated numerically. Fig. 1 
shows the bifurcation diagram and the diagram of 
the variation of Lyapunov exponent of the system (2) 
by varying the parameter 𝑎. For the range 0.5 ≤ 𝑎 ≤
1.42. It can be observed from Fig. 1 that system (2) 
undergoes the following dynamical behaviors as 𝑎 
increases: 

 
 For 0.5 ≤ 𝑎 < 1, system (2) is a fixed point. 
 For 𝑎 = 1, the fixed point 𝐴 loses stability at 𝑎 = 1, 

and we have the following two eigenvalues 𝜆₁ =
1+𝑖√3

2
 and 𝜆₂ =

1−𝑖√3

2
, thus |λi(1≤i≤2)|=1. At this value, 

a Hopf bifurcation occurs, and via the quasi-
periodic route to chaos, chaotic behavior can be 
observed. Fig. 1a shows a diagram description of 
this scenario of chaos. 

 For 0.5 < 𝑎 ≤ 1.42, system (2) is chaotic via the 
quasi-periodic route to chaos, and there are several 
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quasi-periodic windows. If we fix the parameter 𝑎 
to the value 𝑎 = 1.40 at the point, the dynamical 
behavior of the system (2) is chaotic, which is 
verified by the corresponding largest Lyapunov 
exponent is positive, as shown in Fig. 1b. The 
corresponding chaotic attractor is shown in Fig. 2d. 

Also, Fig. 2a shows Quasi-periodic orbit of the 
system (2) (𝑎 =  1.25), Fig. 2b shows Chaotic 
attractor of the system (2) (𝑎 =  1.27), and Fig. 2c 
shows Chaotic attractor of the system (2) (𝑎 =
 1.28). 

 

 
a: Bifurcation diagram of the system (2) versus 0.5 ≤ 𝑎 ≤ 1.42 

 
b: Lyapunov exponent of the system (2) versus 0 ≤ 𝑎 ≤ 1.4 

Fig. 1: Bifurcation diagram and Lyapunov exponent of the system (2) 
 
 

 
a: Quasi-periodic orbit of the system (2) (𝑎 =  1.25) 

 

 
b: Chaotic attractor of the system (2) (𝑎 =  1.27) 
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c: Chaotic attractor of the system (2) (𝑎 =  1.28) 

 

 
d: Chaotic attractor of the system (2) (𝑎 =  1.40) 

Fig. 2: Quasi-periodic orbit, chaotic attractor and chaotic attractor of the system (2) 

 
4. Conclusion 

This paper is devoted to the rigorous proof of the 
existence of some interesting dynamical properties 
of the system using the standard methods available 
in most kinds of literature on analysis mathematics. 
Also, the dynamics of the system are described 
numerically in some detail. 
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