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This work is devoted to present a study of the class of the difference 
equations xn+1 = xn−2q+1 A + Bxn−2q+1xn−q+1, q = 1,2, …⁄  with arbitrary 

initial data, where 𝐴 and 𝐵 are arbitrary parameters, and 𝑞 is an arbitrary 
nonnegative integer. We present a detailed investigation of the behavior of 
the solution, including their dependence on parameters and initial 
conditions. Local and global stabilities of the equilibrium points are 
discussed. The existence of a periodic solution is studied. Numerical 
simulations are given to assure the correctness of the analytical results. This 
study improves and surpasses studies of several forms of difference 
equations that have been investigated earlier by many researchers. 
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1. Introduction 

*Mathematics Difference equations play an 
important role in describing dynamical systems and 
presenting many numerical schemes (Agiza and 
Elsadany, 2004; Ahmed et al., 2015; Ahmed and 
Hegazi, 2006; Askar, 2014; Elabbasy et al., 2014; El-
Metwally et al., 2015; El-Morshedy and Liz, 2005; 
Elsadany, 2010; Elsadany et al., 2013; Elsadany and 
Matouk, 2014; Karatas et al., 2006; Matouk et al., 
2015). Many applications of difference equations can 
be found in various fields of science such as game 
theory, mathematical biology, physics, and 
engineering (Ahmed et al., 2015; Ahmed and Hegazi, 
2006; Askar et al., 2016; Elabbasy et al., 2014; El-
Morshedy and Liz, 2006; Elsadany et al., 2013; 
Elsadany and Matouk, 2014; Wang et al., 2017a). 
Because of these applications, many researchers 
focused on studying difference equations. For some 
of these studies, we refer the reader to Cinar (2004a, 
2004b) and Elsayed (2008, 2009a, 2009b, 2009c, 
2009d, 2010a, 2010b, 2010c). In recent years, many 
researchers investigated the qualitative behavior of 
nonlinear rational difference equations and systems 
of difference equations. 
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Elabbasy et al. (2007) discussed the global 
stability character of the difference equation xn+1 =
𝐶xn+𝛽𝑥𝑛−1+𝛾𝑥𝑛−2

𝐴xn+𝐵𝑥𝑛−1+𝐶𝑥𝑛−2
. Amleh et al. (2001) studied the third 

order rational difference equation xn+1 =
𝑎+𝑏𝑥𝑛−1

𝐴+B𝑥𝑛−2
. 

Aloqeili (2006) obtained the solution of the 

difference equation xn+1 =
𝑥𝑛−1

𝑎−xn𝑥𝑛−1
. Cinar (2004a) 

gave the solution for the difference equation xn+1 =
𝑎𝑥𝑛−1

1+𝑏xn𝑥𝑛−1
. Motivated by the work of Cinar (2004b) 

and others, Wang et al. (2010) studied the 
asymptotic behavior of the solutions for the 

difference equation xn+1 =
∑ 𝐴𝑠𝑖

𝑥𝑛−𝑠𝑖
𝑙
𝑖=1

𝐵+𝐶 ∏ 𝑥𝑛−𝑡𝑖
𝑘
𝑗=1

+ 𝐷𝑥𝑛 , 

where the parameters 𝐴𝑠𝑖
, 𝐵, 𝐶, and 𝐷 are positive 

real numbers. Their technique is based on a 
variational iteration method. They introduce the 
notion of mixed monotone property of functions. 
Then they use it to obtain an interesting result [54, 
Theorem 3.2]. This result gives sufficient conditions 
that grantee that the equation has a unique 
equilibrium point, and this equilibrium point is 
globally attractor. Using a similar technique, Wang et 
al. (2011) investigated the asymptotic behavior of 
the solutions for the difference equation xn+1 =

∑ 𝐴𝑠𝑖
𝑥𝑛−𝑠𝑖

𝑙
𝑖=1

𝐵+𝐶 ∏ 𝑥𝑛−𝑡𝑖
𝑘
𝑗=1

, where the parameters 𝐴𝑠𝑖
, 𝐵, and 𝐶, are 

positive real numbers. Wang et al. (2016) studied the 
dynamical behavior and determined the expressions 
of the solutions for a system of two rational 

difference equations xn+1 =
𝑥𝑛−3

𝐴+𝑥𝑛−3𝑦𝑛−1
, 𝑦𝑛+1 =

𝑦𝑛−3

𝐵+𝑦𝑛−3𝑥𝑛−1
. Very recently, Wang et al. (2017b) and 
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Liu et al. (2019) also used variational iteration 
techniques to described the asymptotic behavior of 
the equilibrium points of the systems of difference 

equations xn+1 =
𝑥𝑛−1𝑥𝑛−2

𝐴+𝐵𝑦𝑛−3
, yn+1 =

𝑦𝑛−1𝑦𝑛−2

𝐶+𝐷𝑥𝑛−3
, xn+1 =

𝑥𝑛−3−𝑦𝑛−1

𝐴+𝑥𝑛−3𝑦𝑛−1
, and yn+1 =

𝑦𝑛−3−𝑥𝑛−1

𝐴+𝑦𝑛−3𝑥𝑛−1
, respectively. For 

more recent studies of systems of rational difference 
equations (Haddad et al. 2017a; 2017b; 2018). 

Elsayed (2011a; 2011b; 2011c) obtained the 
solutions for the following difference equations 

xn+1 =
𝑥𝑛−3

±1±𝑥𝑛−1𝑥𝑛−3
, xn+1 =

𝑥𝑛−9

±1±𝑥𝑛−4𝑥𝑛−9
. Then later, 

Elsayed et al. (2017) generalized this work, where 
they gave a detailed analytical study and behavior of 

the solutions of xn+1 =
𝛼𝑥𝑛−3

𝐴+𝐵𝑥𝑛−1𝑥𝑛−3
 and investigated 

many of its properties such as local stability and 
global attractivity of its equilibrium points. Ghazel et 
al. (2017) considered the difference equations 

xn+1 =
𝐶𝑥𝑛−5

𝐴+𝐵𝑥𝑛−2𝑥𝑛−5
, where they obtained the solution 

of this equation, investigated its asymptotic 
behavior, determined its forbidden set, and 
discussed the existence of periodic solutions. Wang 
et al. (2017c) studied the max-type difference 

equation xn+1 = max {
𝐴

𝑥𝑛
,

𝐴

𝑥𝑛−1
, 𝑥𝑛−2}. Later Wang et 

al. (2018) investigated the boundedness and 
asymptotic behavior of systems of max-type 
difference equation. Their work generalizes and 
improves many results concerning systems of max-
type non-linear difference equations. The sufficient 
conditions obtained in their paper provide flexibility 
for applications and analysis of such systems. 

The aim of this paper is to give a great 
generalization to the study of the qualitative 
behavior of nonlinear rational difference equations. 
We consider a general class of difference equations 
of the form: 
 

𝑥𝑛+1 =
𝑥𝑛−2𝑞+1

𝐴+𝐵𝑥𝑛−2𝑞+1𝑥𝑛−𝑞+1
,                                                              (1) 

 

where 𝐴 and 𝐵 are arbitrary constants and with 
arbitrary initial data 𝑥−2𝑞+1  =  𝑎−2𝑞+1 , 𝑥−2𝑞+2  =

 𝑎−2𝑞+2, . . . , 𝑥0 = 𝑎0. We give a detailed analytical 

study of this difference equation. Where we obtain 
the solution of this equation and investigate its 
convergence. We also investigate its asymptotic 
behavior, determine its forbidden set, and discuss 
the existence of its periodic solutions. The order of 
this difference equation, namely 2𝑞, is kept as an 
arbitrary parameter. This allows us to make a 
significant contribution to the study of difference 
equations. We were able to generalize and improve 
results about many forms of difference equations 
such as the ones studied in Aloqeili (2006), Cinar 
(2004a), Elsayed (2011a, 2011b, 2011c), and Ghazel 
et al. (2017). For instance, taking 𝑞 =  1, 𝐴 =  1/𝑎, 
and 𝐵 = 𝑏/𝑎 in Eq. 1, yields the second order 
difference equation that was considered in Cinar 
(2004b). On the other hand, substituting 𝑞 =  3 and 
replacing 𝐴 and 𝐵 by 𝐴/𝐶 and 𝐵/𝐶 respectively 
produce the sixth order difference equation 
considered in Ghazel et al. (2017). 

In the next section, we introduce some basic 
definitions and primary results that will be needed 
in later sections. Section 3, discusses the equilibrium 
points and their stability. We show that Eq. 1 has 
either one equilibrium point, namely �̅�  =  0, or three 

equilibrium points, �̅�  =  0 , ∓√(1 − 𝐴)/𝐵. The 

stability of these equilibrium points is also 
investigated. Theorem (4.1) gives complete 
analytical expressions for the solutions of Eq. 1, and 
the good sets are described in Theorem (4.2). In 
Section 5, we present a detailed study for the 
convergence of the solutions of Eq. 1, and the 
periodicity of these solutions is dealt with in Section 
6. In the last section, some numerical simulations are 
given to support the theoretical results. 

2. Preliminaries 

A difference equation of order 𝑘 is an equation of 
the form: 
 
𝑥𝑛+1 = 𝐹(𝑥𝑛, 𝑥𝑛−1, ⋯ , 𝑥𝑛−(𝑘−1)) , 𝑛 = 0, 1, 2,.                     (2) 

 

where 𝐹 = 𝐹(𝑢0, 𝑢1, ⋯ , 𝑢𝑘−1) is a function that maps 
some set 𝐼𝑘  into 𝐼. The set 𝐼 is usually an interval of 
real numbers or a union of intervals. A solution of Eq. 
2 is a sequence (𝑥𝑛)𝑛≥−𝑘+1that satisfies Eq. 2 for all 
𝑛 ≥  0. The vector 𝑣0(𝑥)  =  (𝑥0 , 𝑥−1 , . . . , 𝑥−𝑘+1)  ∈
 𝐼𝑘   is called the vector of initial conditions associate 
with the solution (𝑥𝑛)𝑛≥−𝑘+1of Eq. 2. 

A point �̅� ∈ 𝑅 is called an equilibrium point of Eq. 
2, if �̅� = 𝐹(�̅�, �̅�, ⋯ , �̅�). If the function 𝐹 is 
continuously differentiable in some open 
neighborhood of �̅�, then the linearized equation of 
Eq. 2 about �̅� is given by: 
 

𝑦𝑛+1 = ∑
𝜕𝐹

𝜕𝑢𝑝
(�̅�, �̅�, ⋯ , �̅�)𝑦𝑛−𝑝

𝑘−1
𝑝=0 ,                                             (3) 

 

and the characteristic equation of Eq. 3 about �̅� is 
given by: 
 

𝜆𝑘 − ∑
𝜕𝐹

𝜕𝑢𝑝
(�̅�, �̅�, ⋯ , �̅�)𝜆𝑘−1−𝑝 = 0𝑘−1

𝑝=0 .                                     (4) 

 

In the sequel, the norm of a vector 𝑢 ∈  𝐼𝑘  is 
defined as ‖𝑢‖ = ∑ |𝑢𝑖|

𝑘−1
𝑖=0 , and for an equilibrium 

point �̅� ∈  𝐼 we denote, by 𝑣(�̅�)  ∈  𝐼𝑘, the vector 
𝑣(�̅�)  =  (�̅�, �̅�, . . . , �̅�). 

 
Definition 2.1 (Stability): 
1. An equilibrium point �̅� of Eq. 2 is called locally 

stable if, for every 𝜀 >  0, there exists 𝛿 >  0 such 
that, if (𝑥𝑛)𝑛≥−𝑘+1 is a solution of Eq. 2 with 
|𝑣0(𝑥)  −  𝑣(�̅�)| <  𝛿, then |𝑥𝑛  − �̅� |  <  𝜀, for all 
𝑛 ≥  0. If �̅� is not locally stable, then it is called 
unstable. 

2. An equilibrium point �̅� of Eq. 2 is called locally 
asymptotically stable if it is locally stable, in 
addition there exists 𝛾 >  0 such that 𝑙𝑖𝑚𝑛 𝑥𝑛  = �̅� 
for all solutions (𝑥𝑛)𝑛≥−𝑘+1 of Eq. 2 with |𝑣0(𝑥)  −
 𝑣(�̅�)| <  𝛿. 

3. If 𝑙𝑖𝑚𝑛 𝑥𝑛  = �̅� for all solutions (𝑥𝑛)𝑛≥−𝑘+1 of Eq. 2, 
then �̅� is called a global attractor. 
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4. If �̅� is both locally stable and global attractor, then 
it is called globally asymptotically stable. 

 
Definition 2.2: Let �̅� be an equilibrium point of Eq. 2 
and let 𝛬 be the set of all roots of the characteristic 
Eq. 4 about �̅�. Then: 

 
1.  �̅� is said to be hyperbolic if |𝜆|  ≠  1 for all 𝜆 ∈  𝛬, 

otherwise it is called nonhyperbolic; 
2.  �̅� is called saddle if there are two roots 𝜆1, 𝜆2 ∈ 𝛬 

such that 𝜆1  <  1 and 𝜆2  >  1; 
3.  �̅� is called repeller if |𝜆|  >  1 for all 𝜆 ∈  𝛬. 

 
The next theorem, obtained by Kocic and Ladas 

(1993), is called the Linearized Stability Theorem. 
 

Theorem 2.1: Let �̅� be an equilibrium point of Eq. 2 
and let 𝛬 be the set of all roots of the characteristic 
Eq. 4 about �̅�. 

 
1.  If 𝜆 <  1, for all 𝜆 ∈  𝛬, then �̅� is locally 

asymptotically stable. 
2.  If 𝜆 >  1, for some 𝜆 ∈  𝛬, then �̅� is unstable. 

 
Definition 2.3: A solution (𝑥𝑛)𝑛≥−𝑘+1 of Eq. 2 is said 
to be periodic with period 𝑝 or a periodic−𝑝 solution 
if: 
 
𝑥𝑛+𝑝  =  𝑥𝑛 , ∀𝑛 ≥  −𝑘 +  1.                                                     (5) 

 

A solution is called periodic with prime period 𝑝 
if 𝑝 is the smallest positive integer for which Eq. 5 
holds.  

3. Stability analysis of the equilibrium points 

In this section, we discuss the nature of the 
equilibrium points of the difference equation given 
by 
 

𝑥𝑛+1 = 𝐹(𝑥𝑛, 𝑥𝑛−1, ⋯ , 𝑥𝑛−2𝑞+1),,,                                            (6) 

 

where 𝐹 is the continuous function defined on ℝ2𝑞 as 

𝐹(𝑢0, 𝑢1, ⋯ , 𝑢2𝑞−1) =
u2q−1

A+Bu2q−1uq−1
 

 
Theorem 3.1: Let (𝑥𝑛)𝑛≥−2𝑞+1 be a solution of Eq. 6. 

 
1.  If 𝐵(𝐴 − 1) ≥ 0, then Eq. 6 has a unique 

equilibrium point �̅�1 =  0. 
2.  If 𝐵(𝐴 − 1) < 0, then Eq. 6 has exactly three 

equilibrium points, namely �̅�1 =  0, �̅�2 =

 √(1 − 𝐴)/𝐵, and �̅�3 =  −√(1 − 𝐴)/𝐵. 

 
Proof: The result follows directly from the fact that 
the equilibrium points of Eq. 6 are the real roots of 
the equation �̅�(𝐵�̅�2 − 𝐴 + 1) = 0. 

The partial derivatives of the function 𝐹 with 

respect to 𝑢𝑖 , 𝑖 =  0, 1, . . . , 2𝑞 −  1 are 
𝜕𝐹

𝜕𝑢𝑞−1
=

−B𝑢2q−1
2

(𝐴+𝐵uq−1u2q−1)2, 
𝜕𝐹

𝜕𝑢2𝑞−1
=

𝐴

(A+Buq−1u2q−1)2, and zero 

otherwise. Thus, the characteristic equation of the 

linearized equation of Eq. 6 about an equilibrium 
point �̅� can be simplified to 
 

𝜆2𝑞 +
B�̅�2

(𝐴+𝐵�̅�2)2
𝜆𝑝 −

𝐴

(𝐴+𝐵�̅�2)2
= 0.                                              (7) 

 

Theorem 3.2: Let (𝑥𝑛)𝑛≥−2𝑞+1 be a solution of Eq. 6, 

and let �̅�1, �̅�2, �̅�3 be the equilibrium points given in 
Theorem (3.1). 

 
1.  If |𝐴|  <  1, then �̅�1 is a repeller. 
2.  If |𝐴|  =  1, then �̅�1 is nonhyperbolic. 
3.  If |𝐴|  >  1, then �̅�1 is locally asymptotically stable. 
4.  If 𝐵(𝐴 − 1) < 0, then the equilibrium points �̅�2 

and �̅�3 are nonhyperbolic. Moreover, they are 
unstable provided that |𝐴| > 1. 

 
Proof: From Eq. 7 it results in the characteristic 
equation about �̅�1 = 0 is: 
 

𝜆2𝑞 −
1

A
= 0.                                                                                    (8) 

 

The roots of this equation satisfy |𝜆|2𝑞 = 1/A. 
This proves 1, 2, and 3. Now, assume that 𝐵(𝐴 −
1) < 0. Then the characteristic equation about �̅�2, as 
well as �̅�3, can be written as, 
 
(𝜆𝑞 + 1)(𝜆𝑞 − 𝐴) = 0.                                                                  (9) 
 

Thus |𝜆|  =  1 or |𝜆|  =  𝐴1 𝑞⁄ . So �̅�2 and �̅�3 are 
nonhyperbolic, and if |𝐴| > 1, then they are unstable. 

4. Analytical expressions of (𝒙𝒏)𝒏 

In this section, we give some analytical 
expressions of the sequence (𝑥𝑛)𝑛≥−2𝑞+1. 

 
Theorem 4.1: Let (𝑥𝑛)𝑛≥−2𝑞+1 be a sequence given 

by Eq. 1. Then for each 𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, … , 𝑞} 
and all 𝑛 ≥ 0, we have: 
 

𝑥2𝑞𝑛−𝑟 = 𝑎−𝑟
∏ (𝐴2𝑝+𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘2𝑝−1

𝑘=0 )𝑛−1
𝑝=1

∏ (𝐴2𝑝+1+𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘2𝑝
𝑘=0 )𝑛−1

𝑝=0

                            (10) 

 
and 
 

𝑥2𝑞𝑛−𝑟+𝑞 = 𝑎−𝑟+𝑞 ∏ (
𝐴2𝑝+1+𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘2𝑝

𝑘=0

𝐴2𝑝+2+𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘2𝑝+1
𝑘=0

)𝑛−1
𝑝=0 .           (11) 

 
Proof: Fix 𝑟 ∈  {2𝑞 − 1, 2𝑞 − 2, . . . , 𝑞}, and let 𝑄𝑝  =

𝐴𝑝 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘𝑝−1
𝑘=0 , where 𝑝 is any natural 

number. 
 

Consequently, we need to show that 𝑥2𝑞𝑛−𝑟 =

𝑎−𝑟

∏ 𝑄2𝑝
𝑛−1
𝑝=1

∏ 𝑄2𝑝+1
𝑛−1
𝑝=0

 and 𝑥2𝑞𝑛−𝑟+𝑞 = 𝑎−𝑟+𝑞 ∏ (
𝑄2𝑝+1

𝑄2𝑝+2
)𝑛−1

𝑝=0 . We 

will do this by induction on 𝑛. It is evident that the 
results hold for 𝑛 = 0. Let 𝑛 ≥ 0 be an integer, and 
suppose that the results hold for all nonnegative 
integers 𝑘 ≤  𝑛. We shall now prove that the 
identities hold for the step 𝑛 + 1. 
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𝑥2𝑞(𝑛+1)−𝑟  =  
𝑥2𝑞𝑛−𝑟

𝐴+𝐵 𝑥2𝑞𝑛−𝑟+𝑞𝑥2𝑞𝑛−𝑟
 =

 
𝑎−𝑟(∏ 𝑄2𝑝

𝑛−1
𝑝=1 )/(∏ 𝑄2𝑝+1

𝑛−1
𝑝=0 )

𝐴+𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∏ (
𝑄2𝑝+1

𝑄2𝑝+2
)𝑛−1

𝑝=0 (∏ 𝑄2𝑝
𝑛−1
𝑝=1 )/(∏ 𝑄2𝑝+1

𝑛−1
𝑝=0 )

=

 
𝑎−𝑟 ∏ 𝑄2𝑝

𝑛−1
𝑝=1 ∏ 𝑄2𝑝

𝑛
𝑝=1

𝐴 ∏ 𝑄2𝑝
𝑛
𝑝=1 ∏ 𝑄2𝑝+1

𝑛−1
𝑝=0 +𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∏ 𝑄2𝑝+1 ∏ 𝑄2𝑝

𝑛−1
𝑝=1

𝑛−1
𝑝=0

=

 
𝑎−𝑟 ∏ 𝑄2𝑝

𝑛
𝑝=1

(𝐴𝑄2𝑛+𝐵𝑎−𝑟𝑎−𝑟+𝑞) ∏ 𝑄2𝑝+1
𝑛−1
𝑝=0

=

 
𝑎−𝑟 ∏ 𝑄2𝑝

𝑛
𝑝=1

(𝐴(𝐴2𝑛+𝐵 𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘2𝑛−1
𝑘=0 )+𝐵𝑎−𝑟𝑎−𝑟+𝑞) ∏ 𝑄2𝑝+1

𝑛−1
𝑝=0

=

𝑎−𝑟
∏ 𝑄2𝑝

𝑛
𝑝=1

∏ 𝑄2𝑝+1
𝑛
𝑝=1

  

 

similarly, 
 

𝑥2𝑞(𝑛+1)−𝑟+𝑞  =  
𝑥2𝑞𝑛−𝑟+𝑞

𝐴+𝐵 𝑥2𝑞(𝑛+1)−𝑟𝑥2𝑞𝑛−𝑟+𝑞
=

 
𝑎−𝑟+𝑞 ∏ (

𝑄2𝑝+1

𝑄2𝑝+2
)𝑛−1

𝑝=0

𝐴+𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∏ (
𝑄2𝑝+1

𝑄2𝑝+2
)𝑛−1

𝑝=0 (∏ 𝑄2𝑝
𝑛
𝑝=1 )/(∏ 𝑄2𝑝+1

𝑛
𝑝=0 )

=

 
𝑎−𝑟+𝑞 ∏ 𝑄2𝑝+1

𝑛−1
𝑝=0

(∏ 𝑄2𝑝+1
𝑛−1
𝑝=0 )(𝐴𝑄2𝑛+1 ∏ 𝑄2𝑝+2

𝑛−1
𝑝=0 +𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∏ 𝑄2𝑝

𝑛
𝑝=1 )/(∏ 𝑄2𝑝+1

𝑛
𝑝=0 )

=

 
𝑎−𝑟+𝑞 ∏ 𝑄2𝑝+1

𝑛
𝑝=0

(𝐴𝑄2𝑛+1+𝐵𝑎−𝑟𝑎−𝑟+𝑞) ∏ 𝑄2𝑝
𝑛
𝑝=1

=

 
𝑎−𝑟+𝑞 ∏ 𝑄2𝑝+1

𝑛
𝑝=0

(𝐴(𝐴2𝑛+1+𝐵 𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘2𝑛
𝑘=0 )+𝐵𝑎−𝑟𝑎−𝑟+𝑞) ∏ 𝑄2𝑝

𝑛
𝑝=1

=

𝑎−𝑟+𝑞
∏ 𝑄2𝑝+1

𝑛
𝑝=0

𝑄2𝑛+2 ∏ 𝑄2𝑝
𝑛
𝑝=1

.  

 
This completes the proof. 

Next, we obtain simplified expressions of Eq. 10 
and Eq. 11 when 𝐴 = 1 and 𝐴 ≠ 1. 

 
Corollary 4.1: Let (𝑥𝑛)𝑛≥−2𝑞+1 be a sequence 

defined by Eq. 1 with 𝐴 =  1. Then for 𝑟 = 2𝑞 −
1, 2𝑞 − 2, . . . , 𝑞, 
 

𝑥2𝑞𝑛−𝑟  =  
𝑎−𝑟 ∏ (1+2𝑝𝐵𝑎−𝑟𝑎−𝑟+𝑞)𝑛−1

𝑝=1

∏ (1+(2𝑝+1)𝐵𝑎−𝑟𝑎−𝑟+𝑞)𝑛−1
𝑝=0

                                          (12) 

 

and for 𝑠 = 𝑞 − 1, 𝑞 − 2, . . . , 0, 
 

𝑥2𝑞𝑛−𝑠  = 𝑎−𝑠  ∏ (
1+(2𝑝+1)𝐵𝑎−𝑠−𝑞𝑎−𝑠

1+(2𝑝+2)𝐵𝑎−𝑠−𝑞𝑎−𝑠
)𝑛−1

𝑝=0                               (13) 

 

Corollary 4.2: Let (𝑥𝑛)𝑛≥−2𝑞+1 be a sequence 

defined by Eq. 1 with 𝐴 ≠ 1. Then for 𝑟 = 2𝑞 −
1, 2𝑞 − 2, . . . , 𝑞, 
 

𝑥2𝑞𝑛−𝑟  =  
𝑎−𝑟(1−𝐴) ∏ (𝐵𝑎−𝑟𝑎−𝑟+𝑞−(𝐴−1+𝐵𝑎−𝑟𝑎−𝑟+𝑞)𝐴2𝑝)𝑛−1

𝑝=1

∏ (𝐵𝑎−𝑟𝑎−𝑟+𝑞−(𝐴−1+𝐵𝑎−𝑟𝑎−𝑟+𝑞)𝐴2𝑝+1)𝑛−1
𝑝=0

,    (14) 

 

and for 𝑠 = 𝑞 − 1, 𝑞 − 2, . . . , 0, 
 

𝑥2𝑞𝑛−𝑠  = 𝑎−𝑠  ∏ (
𝐵𝑎−𝑠−𝑞𝑎−𝑠−(𝐴−1+𝐵𝑎−𝑠−𝑞𝑎−𝑠)𝐴2𝑝+1

𝐵𝑎−𝑠−𝑞𝑎−𝑠−(𝐴−1+𝐵𝑎−𝑠−𝑞𝑎−𝑠)𝐴2𝑝 ) .𝑛−1
𝑝=1     (15) 

 

Proof: Since 𝐴 ≠ 1, applying the binomial identity 
yields that 
 

∑ 𝐴𝑘2𝑞−1
𝑘=0 =

1−𝐴2𝑞

1−𝐴
,                                                                       (16) 

∑ 𝐴𝑘2𝑞
𝑘=0 =

1−𝐴2𝑞+1

1−𝐴
,                                                                      (17) 

 

and 

∑ 𝐴𝑘2𝑞+1
𝑘=0 =

1−𝐴2𝑞+2

1−𝐴
.                                                                    (18) 

 

Now Eqs. 14 and 15 can be obtained directly by 
substituting Eqs. 16, 17, and 18 in Eqs. 10 and 11. 

The good set of a difference equation is the set of 
conditions that any initial data must satisfy so that 
the associated solution of the difference equation is 
defined for all natural number 𝑛. The complement of 
the good set is usually called the forbidden set. 
Determining good sets is a problem of great 
importance in the study of difference equations, and 
the interest in this problem has increased recently. 
For general information on good sets and forbidden 
sets of difference equations, we refer the reader to 
Azizi (2012), Grove and Ladas (2005), Kocic and 
Ladas (1993), Kulenovic and Ladas (2002), and 
Rubió-Massegú (2009). The next theorem describes 
the good set of the difference Eq. 1. 

 
Theorem 4.2: The good set of the difference Eq. 1 is: 
 

𝐺 =

{(𝑎−𝑟)0≤𝑟≤2𝑞−1 ∈ ℝ2𝑞|

𝑎−𝑟𝑎−𝑟−𝑞

∉ {
−𝐴𝑝+1

𝐵 ∑ 𝐴𝑘𝑝
𝑘=0

  , 𝑝 ≥ 0} , ∀𝑟 = 𝑞 − 1, … ,0
}  

                                                                                                          (19) 

 

More precisely, if 𝐴 ≠ 1, then, 
 

𝐺 =

{(𝑎−𝑟)0≤𝑟≤2𝑞−1 ∈ ℝ2𝑞|

𝑎−𝑟𝑎−𝑟−𝑞

∉ {
(𝐴−1)𝐴𝑝

𝐵(1−𝐴𝑝)
  , 𝑝 ≥ 1} , ∀𝑟 = 2𝑞 − 1, … , 𝑞

}  

                                                                                                         (20) 

 

and, if 𝐴 = 1, then, 
 
𝐺 =

{(𝑎−𝑟)0≤𝑟≤2𝑞−1 ∈ ℝ2𝑞|

𝑎−𝑟𝑎−𝑟−𝑞

∉ {
−1

𝐵𝑝
  , 𝑝 ≥ 1} , ∀𝑟 = 2𝑞 − 1, … , 𝑞

}.  

                                                                                                         (21) 
 

Proof: Let (𝑥𝑛)𝑛≥ −2𝑞+1 be a sequence defined by Eq. 

1 with initial data 𝑥−2q+1 = 𝑎−2q+1, 𝑥−2q+2 =

𝑎−2q+2, . . . , 𝑥0 = 𝑎0. Then Eqs. 10 and 11 and the 

steps in the proof of Theorem (4.1) imply that (𝑥𝑛) is 
defined for all integer 𝑛 ≥  −2𝑞 + 1 if and only if 

𝑄𝑝  = 𝐴𝑝 + 𝐵 𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘𝑝−1
𝑘=0 ≠ 0 for all 𝑝. So 

𝐴2𝑝+1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘2𝑝
𝑘=0 ≠ 0 and 𝐴2𝑝+2 +

𝐵 𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘2𝑝+1
𝑘=0  ≠ 0, and hence 𝑎−𝑟𝑎−𝑟+𝑞 ≠

−𝐴𝑝+1/(𝐵 ∑ 𝐴𝑘𝑝
𝑘=0 ). Moreover, if 𝑎−𝑟𝑎−𝑟+𝑞 ≠

−𝐴𝑝+1/(𝐵 ∑ 𝐴𝑘𝑝
𝑘=0 )  for all 𝑟 ∈ {2𝑞 − 1, . . . ,0} and all 

𝑝, then 𝑄𝑝  = 𝐴𝑝 + 𝐵 𝑎−𝑟𝑎−𝑟+𝑞 ∑ 𝐴𝑘𝑝−1
𝑘=0 ≠ 0 for all 𝑝, 

and so (𝑥𝑛) is defined for all integer 𝑛 ≥ −2𝑞 + 1. 
Similarly, the good sets in (20) and (21) are obtained 
directly from Corollaries (4.1) and (4.2), respectively . 

5. Convergence 

In this section, we study the asymptotic behavior 
of a solution of difference Eq. 1. 

 
Theorem 5.1: (The case |𝐴| < 1) Let (𝑥𝑛)𝑛≥−2𝑞+1 be 

a solution of Eq. 1. If |𝐴| < 1, then for each 𝑟 ∈
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{0, 1, . . . , 2𝑞 − 1}, the subsequence (𝑥2𝑞𝑛−𝑟)𝑛≥0 

converges. 
 
Proof: We divide the proof into two cases. 
 
Case 1: 𝑟 ∈ {2𝑞 − 1, . . . , 𝑞}. 
If 𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 = 0, then (𝑥2qn−r)𝑛≥0 is 

constant, and hence it converges. Now, assume that 
𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 ≠ 0. Since |𝐴| ≠ 1, we can write 

Eq. 14 as 𝑥2𝑞𝑛−𝑟  =  
𝑎−𝑟

𝐵𝑎−𝑟𝑎−𝑟+𝑞+𝐴
∏ 𝑈𝑝

𝑛−1
𝑝=1 , where 𝑈𝑝 =

1−𝛼𝐴2𝑝

1−𝛼𝐴2𝑝+1 and 𝛼 =
𝐴−1+𝐵𝑎−𝑟𝑎−𝑟+𝑞

𝐵𝑎−𝑟𝑎−𝑟+𝑞
 . The Taylor 

expansion of 𝑈𝑝 gives that 𝑈𝑝 = 1 + 𝛼(𝐴 − 1)𝐴2𝑝  +

𝑜(𝐴2𝑝), which yields 𝑈𝑝~1 + 𝛼(𝐴 − 1)𝐴2𝑝 . Now 

depending on the sign of 𝛼, we can choose an integer 
𝑁 sufficiently large so that either 𝑈𝑝 > 1, for all 𝑝 ≥

 𝑁, or 0 < 𝑈𝑝 < 1, for all 𝑝 ≥  𝑁. Since ∏ (1 +𝑝≥1

𝛼(𝐴 − 1)𝐴2𝑝) converges, by equivalence criterion, it 
follows that ∏ 𝑈𝑝𝑝≥1  converges. Therefore 

(𝑥2qn−r)𝑛≥0 converges.  

 
Case 2: 𝑠 ∈ {𝑞 − 1, . . . ,0}. 
If 𝐴 − 1 + 𝐵𝑎−𝑠−𝑞𝑎−𝑠 = 0, then again (𝑥2qn−s)𝑛≥0 is 

constant, and hence it converges. Now assume that 
𝐴 − 1 + 𝐵𝑎−𝑠−𝑞𝑎−𝑠 ≠ 0. Then Eq. 15 can be written 

as 𝑥2𝑞𝑛−𝑠  =  𝑎−𝑠 ∏ 𝑉𝑝
𝑛−1
𝑝=1 , where 𝑉𝑝 =

1−𝛽𝐴2𝑝+1

1−𝛽𝐴2𝑝   and 

𝛽 =
𝐴−1+𝐵𝑎−𝑠−𝑞𝑎−𝑠

𝐵𝑎−𝑠−𝑞𝑎−𝑠
. Similar to the argument in Case 1, 

we obtain that 𝑉𝑝~1 + 𝛽(1 − 𝐴)𝐴2𝑝. Also depending 

on the sign of 𝛽, we can find an integer 𝑁 so that 
either 𝑉𝑝 > 1, for all 𝑝 ≥  𝑁, or 0 < 𝑉𝑝 < 1, for all 𝑝 ≥

 𝑁. Since ∏ (1 + 𝛽(1 − 𝐴)𝐴2𝑝)𝑝≥1  converges, by 

equivalence criterion ∏ 𝑉𝑝𝑝≥1 converges, and hence 

the subsequence (𝑥2qn−s)𝑛≥0 converges. 

 
Remark 5.1: In Theorem (5.1), we have shown that 
if |𝐴| < 1, then every subsequence (𝑥2qn−r)𝑛≥0, 𝑟 ∈

{2𝑞 − 1, . . . ,0} converges to a real number 𝑙𝑟 . A 
natural question that arises here is whether the 
whole sequence (𝑥𝑛)𝑛≥−2𝑞+1 converges? We will see 

that (𝑥𝑛)𝑛≥−2𝑞+1maybe divergent. Indeed, consider 

the subsequences (𝑥2qn−r)𝑛≥0 and (𝑥2qn−r−q)𝑛≥0 for 

some 𝑟 = 0, 1, . . . , 𝑞 − 1. These subsequences are 
related by the equation, 
 

𝑥2q(n+1)−r−q =
x2qn−r−q

A+B x2qn−r−qx2qn−r
                                            (22) 

 

Taking the limits on 𝑛 in Eq. 22, yields 𝑙−𝑟−𝑞 =
𝑙−𝑟−𝑞

A+B 𝑙−𝑟𝑙−𝑟−𝑞
. Now 𝑙−𝑟−𝑞 ≠ 0, otherwise it will 

contradict the fact that ∏ 𝑈𝑝𝑝≥1  converges. So 

𝑙−𝑟𝑙−𝑟−𝑞 =
1−A

B
. Thus if 𝐵 < 0, then 𝑙−𝑟−𝑞 ≠ 𝑙−𝑟 , and 

so the sequence (𝑥𝑛)𝑛≥−2𝑞+1 diverges. The numerical 

example (Fig. 1) illustrates that 𝑙−𝑟−𝑞  and 𝑙−𝑟 are not 

necessarily equal in the case where |𝐴| < 1, even if 
we choose 𝐵 > 0. 

 

Theorem 5.2: (The case 𝐴 = −1) Let (𝑥𝑛)𝑛≥−2𝑞+1be 

a solution of Eq. 1. If 𝐴 = −1, then the following 
statements are true. 
 
1. For each 𝑟 = 2𝑞 − 1,2𝑞 − 2, . . . , 𝑞, the subsequence 

(𝑥2qn−r) converges if and only if 𝑎−𝑟𝑎−𝑟+𝑞 ∈

(−∞, 𝑚𝑖𝑛(0,2/B)) ∪ (𝑚𝑎𝑥(0,2/B), ∞) ∪  {2/B}. 

2. For each 𝑟 = 𝑞 − 1, 𝑞 − 2, . . . ,0, the subsequence 
(𝑥2qn−r) converges if and only if 𝑎−𝑟𝑎−𝑟−𝑞 ∈

(𝑚𝑖𝑛(0,2/b), 𝑚𝑎𝑥(0,2/B)) ∪  {2/B}. 

 
Proof: 
 
1. Let 𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, . . .  , 𝑞}. Then replacing 𝐴 

in Eq. 14 by −1, gives 𝑥2qn−r =  
𝑎−𝑟

(𝐵𝑎−𝑟𝑎−𝑟+𝑞−1)
𝑛. 

Therefore,( 𝑥2qn−r)
𝑛

converges ⇔ |𝐵𝑎−𝑟𝑎−𝑟+𝑞 −

1| > 1 or 𝐵𝑎−𝑟𝑎−𝑟+𝑞 − 1 = 1 ⟺ 𝑎−𝑟𝑎−𝑟+𝑞 ∈

(−∞, 𝑚𝑖𝑛(0,2/B)) ∪ (𝑚𝑎𝑥(0,2/B), ∞) ∪  {2/B}. 

2. Let 𝑟 ∈ {𝑞 − 1, 𝑞 − 2, . . . , 0}. Similarly, replacing 𝐴 

in  Eq. 15 by −1, yields 𝑥2qn−r =  𝑎−𝑟(𝐵𝑎−𝑟𝑎−𝑟−𝑞 −

1)
𝑛−1

. So ( 𝑥2qn−r)
𝑛

 converges if and only if 

𝑎−𝑟𝑎−𝑟−𝑞 ∈ (𝑚𝑖𝑛(0,2/b), 𝑚𝑎𝑥(0,2/b)) ∪  {2/b}. 

 
The following remark is deduced from the 

computations in the proof of Theorem (5.2). 
 

Remark 5.2: Let (𝑥𝑛)𝑛≥−2𝑞+1be a solution of Eq. 1, 

with 𝐴 = −1. 
 
1.  The following hold for each 𝑟 ∈ {2𝑞 − 1,2𝑞 −

2, . . . , 𝑞}. 
 

(a) If 𝑎−𝑟𝑎−𝑟+𝑞 = 2/𝐵, then the subsequences 

( 𝑥2qn−r)
𝑛≥0

 and ( 𝑥2qn−r+q)
𝑛≥0

are constants, 

indeed 𝑥2qn−r = 𝑎−𝑟 and 𝑥2qn−r+q = 𝑎−𝑟+𝑞 . 

(b) If 𝑎−𝑟𝑎−𝑟+𝑞 ∈ (−∞, 𝑚𝑖𝑛(0,2/B)) ∪ (𝑚𝑎𝑥(0,2/

B), ∞) then ( 𝑥2qn−r)
𝑛≥0

 converges to zero and 

( |𝑥2qn−r+q|)
𝑛≥0

diverges to infinity. 

(c) If 𝑎−𝑟𝑎−𝑟+𝑞 ∈ (𝑚𝑖𝑛(0, 2/B), 𝑚𝑎𝑥(0,2/B)) then 

( 𝑥2qn−r+q)
𝑛≥0

 converges to zero and 

( |𝑥2qn−r|)
𝑛≥0

diverges to infinity. 

 
2.  The whole sequence (𝑥𝑛)𝑛converges if and only if 

𝐵 > 0 and 𝑎−2𝑞+1 = 𝑎−2𝑞+2 = ⋯ = 𝑎0 = ±√2/𝐵. In 

fact, in this case (𝑥𝑛)𝑛≥−2𝑞+1 is constantly equal to 

±√2/𝐵. 

 
Theorem 5.3: (The case 𝐴 = 1) Let (𝑥𝑛)𝑛≥−2𝑞+1be a 

solution of Eq. 1. If 𝐴 = 1, then the sequence 
(𝑥𝑛)𝑛≥−2𝑞+1converges to zero. 

 
Proof: Let 𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, . . .  , 𝑞}. From 
Corollary (4.1), we can write 𝑥2qn−r as 𝑥2𝑞𝑛−𝑟  =

 
𝑎−𝑟

1+𝐵𝑎−𝑟𝑎−𝑟+𝑞
∏ 𝑉𝑝

𝑛−1
𝑝=1 , where 𝑉𝑝 = 1 −

𝐵𝑎−𝑟𝑎−𝑟+𝑞

1+(2𝑝+1)𝐵𝑎−𝑟𝑎−𝑟+𝑞
. There exists 𝑁 ∈ ℕ such that 𝑉𝑝 ∈
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(0,1) for all 𝑝 > 𝑁. So 𝑥2𝑞𝑛−𝑟 can be written as 

𝑥2𝑞𝑛−𝑟  =  
𝑎−𝑟

1+𝐵𝑎−𝑟𝑎−𝑟+𝑞
𝑒𝑥𝑝(∑ 𝑙𝑛𝑉𝑝

𝑛−1
𝑝=𝑁 ). The Taylor 

expansion of 𝑉𝑝 implies that 𝑙𝑛 𝑉𝑝~ −
𝐵𝑎−𝑟𝑎−𝑟+𝑞

1+(2𝑝+1)𝐵𝑎−𝑟𝑎−𝑟+𝑞
, which is the general term of 

divergent infinite series. Since 𝑙𝑛 𝑉𝑝 < 0, the series 

∑ 𝑙𝑛𝑉𝑝𝑝≥𝑁  diverges to −∞, and hence the 

subsequence ( 𝑥2qn−r)
𝑛≥0

converges to zero. Using a 

similar argument, we can show that for all 𝑟 ∈ {𝑞 −

1, 𝑞 − 2, . . . ,0}, the subsequence ( 𝑥2qn−r)
𝑛≥0

 

converges to zero. Therefore the whole sequence 
(𝑥𝑛)𝑛≥−2𝑞+1 converges to zero. 

 
Theorem 5.4: (The case |𝐴| > 1) Let (𝑥𝑛)𝑛≥−2𝑞+1 be 

a solution of Eq. 1. If |𝐴| > 1, then for each 𝑟 ∈ {2𝑞 −
1, 2𝑞 − 2, . . .  ,0} the subsequence 
(𝑥2𝑞𝑛−𝑟)𝑛≥0converges. Moreover, if 𝑟 ∈ {2𝑞 − 1, 2𝑞 −

2, . . .  , 𝑞}, then one of the following statements is 
true. 
 
1. If 𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 = 0, then the subsequences 

( 𝑥2qn−r)
𝑛≥0

 and ( 𝑥2qn−r+q)
𝑛≥0

 are constants. 

2. If 𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 ≠ 0, then the subsequences 

( 𝑥2qn−r)
𝑛≥0

 and ( 𝑥2qn−r+q)
𝑛≥0

 converge to zero. 

 
Proof: Let 𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, . . .  , 𝑞}. We will only 
show the convergence of the subsequences 

( 𝑥2qn−r)
𝑛≥0

. The convergence of subsequence 

( 𝑥2qn−r+q)
𝑛≥0

 can be established using a similar 

argument. If 𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 = 0, then the 

subsequence ( 𝑥2qn−r)
𝑛≥0

 is constant equal 𝑥−𝑟 , and 

so it converges. Assume 𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 ≠ 0 So 

we can write Eq. 14 as 𝑥2𝑞𝑛−𝑟  =

 
𝑎−𝑟

(𝐵𝑎−𝑟𝑎−𝑟+𝑞+𝐴)𝐴𝑛−1
∏ 𝑊𝑝

𝑛−1
𝑝=1 , where 𝑊𝑝 =

(1 −
1

𝛼𝐴2𝑝) (1 −
1

𝛼𝐴2𝑝+1)⁄  and 𝛼 =
𝐴−1+𝐵𝑎−𝑟𝑎−𝑟+𝑞

𝐵𝑎−𝑟𝑎−𝑟+𝑞
. 

Since 𝐴1−𝑛 converges to zero, it suffices to show that 
∏ 𝑊𝑝𝑝≥1  converges. Using the Taylor expansion of 

𝑊𝑝we obtain that 𝑊𝑝~1 +
1

𝛼
(

1

𝐴
− 1)

1

𝐴2𝑝 Now there 

exists 𝑁 ∈ ℕ such that 𝑊𝑝 > 1, for all 𝑝 ≥ 𝑁, or 0 <

𝑊𝑝 < 1, for all 𝑝 ≥ 𝑁. Since ∏ (1 +
1

𝛼
(

1

𝐴
− 1)

1

𝐴2𝑝)𝑝≥1  

converges, by equivalence criterion ∏ 𝑊𝑝𝑝≥1  

converges. This complete the proof.  
 
The following corollary is a direct consequence of 

the previous theorem. 
 

Corollary 5.1: Let (𝑥𝑛)𝑛≥−2𝑞+1be a solution of Eq. 1, 

with |𝐴| > 1. Then the whole sequence (𝑥𝑛)𝑛 
converges if and only if one of the following 
conditions holds: 

 

1. ∏ (𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞) ≠ 0
−𝑞
𝑟=−2𝑞+1 ,  

2. (1 − 𝐴)𝐵 > 0 and 𝑎−2𝑞+1 = 𝑎−2𝑞+2 = ⋯ = 𝑎0 =

±√(1 − 𝐴)/𝐵. 

 

6. Periodicity 

We start this section by stating the following 
lemma that describes sufficient conditions in order 
for Eq. 1 to have a periodic solution. 

 
Lemma 6.1: Let (𝑥𝑛)𝑛≥−2𝑞+1 be a solution of Eq. 1. 

Suppose that for each 𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, . . .  ,0}, 

( 𝑥2qn−r)
𝑛≥0

 converges to a real number 𝑙𝑟 . Let 

(𝑦𝑛)𝑛≥−2𝑞+1 be the periodic−2𝑞 solution whose 

initial 2𝑞 terms are given by 𝑦−𝑟 = 𝑙𝑟 , 𝑟 = 2𝑞 −
1, 2𝑞 − 2, . . .  , 0. Then the sequence (𝑦𝑛)𝑛≥−2𝑞+1 is a 

periodic−2𝑞 solution of Eq. 1. 
 
We call (𝑦𝑛)𝑛≥−2𝑞+1 the periodic−2𝑞 solution 

induced by the (𝑥𝑛)𝑛≥−2𝑞+1. Clearly, every 

periodic−2𝑞 solution induces itself. The periodicity 
results are given in the following Theorem. 

 
Theorem 6.1:  
 
1.  If |𝐴| <  1, then every solution of Eq. 1 induces a 

periodic−2𝑞 solution. 
2.  If 𝐴 = −1, then a non-trivial solution (𝑥𝑛)𝑛≥−2𝑞+1 

of Eq. 1 is periodic−2𝑞 if and only if its initial data 
satisfy 𝑎−𝑟𝑎−𝑟+𝑞 = 2/𝐵 for all 𝑟 ∈ {2𝑞 − 1, . ..  , 𝑞}. 

3.  If 𝐴 = 1, then Eq. 1 has no non-trivial periodic−2𝑞 
solution. 

4.  If |𝐴| >  1, then every solution of Eq. 1 induces a 
periodic−2𝑞 solution. Moreover, a non-trivial 
solution (𝑥𝑛)𝑛≥−2𝑞+1 is itself a periodic−2𝑞 

solution if and only if 𝑎−𝑟𝑎−𝑟+𝑞 = (1 − 𝐴)/𝐵 for all  

𝑟 ∈ {2𝑞 − 1, . ..  , 𝑞}. 

 
Proof: Recall first that a periodic−𝑝 sequence is 
completely determined by giving 𝑝 successive terms. 
 
1.  Suppose that |𝐴| <  1, and let (𝑥𝑛)𝑛≥−2𝑞+1 be a 

solution of Eq. 1. Then, by Theorem (5.1), for each 
𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, . ..  , 0}, the subsequence 

( 𝑥2qn−r)
𝑛≥0

converges to a real number 𝑙𝑟 . So by 

Lemma (6.1), (𝑥𝑛)𝑛≥−2𝑞+1 induces the periodic−2𝑞 

solution 𝑙2𝑞−1, 𝑙2𝑞−2, . . . , 𝑙0, 𝑙2𝑞−1, 𝑙2𝑞−2, . . . , 𝑙0, . ..  

2.  Suppose 𝐴 = −1, and let (𝑥𝑛)𝑛≥−2𝑞+1 be a non-

trivial solution of Eq. 1. Then Theorem (5.2) and 
Remark (5.2) imply that for each 𝑟 ∈ {2𝑞 − 1, 2𝑞 −

2, . ..  , 𝑞}, if 𝑎−𝑟𝑎−𝑟+𝑞 = 2/𝐵 then ( 𝑥2qn−r)
𝑛≥0

 is 

constant. Therefore (𝑥𝑛)𝑛≥−2𝑞+1 is a periodic−2𝑞 

solution. On the other hand, if 𝑎−𝑟𝑎−𝑟+𝑞 ≠ 2/𝐵 for 

some 𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, . ..  , 𝑞}, then either 

( 𝑥2qn−r)
𝑛≥0

or ( 𝑥2qn−r+q)
𝑛≥0

 diverges, and hence 

(𝑥𝑛)𝑛≥−2𝑞+1 is not a periodic−2𝑞 solution. 

3.  Let (𝑥𝑛)𝑛≥−2𝑞+1 be a non-trivial solution of Eq. 1 

with 𝐴 = 1. According to Theorem (5.3), the 
sequence (𝑥𝑛)𝑛≥−2𝑞+1 converges to zero. By 

Lemma (6.1), it follows that the zero sequence is 
the only periodic solution of Eq. 1.  

4.  Let |𝐴| >  1, and let (𝑥𝑛)𝑛≥−2𝑞+1 be a non-trivial 

solution of Eq. 1. So Theorem (5.4) states that for 
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each 𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, . ..  , 0}, the subsequence 

(𝑥2qn−r)
𝑛≥0

 converges, and so (𝑥𝑛)𝑛≥−2𝑞+1 induces 

a periodic−2𝑞 solution of Eq. 1. In addition, 

(𝑥𝑛)𝑛≥−2𝑞+1 is periodic if and only if ( 𝑥2qn−r)
𝑛≥0

 is 

constant for all 𝑟 ∈ {2𝑞 − 1, 2𝑞 − 2, . ..  , 0}. Hence 
the result. 

7. Numerical simulations 

xn+1 =
xn−2q+1

A + Bxn−2q+1xn−q+1
 

where 𝐴 and 𝐵 are arbitrary constants and with 
arbitrary initial data 𝑥−2𝑞+1  =  𝑎−2𝑞+1 , 𝑥−2𝑞+2  =

 𝑎−2𝑞+2, . . . , 𝑥0 = 𝑎0, 𝑞 = 1, 2, . ... 

 
 

1.  The case |𝐴| < 1, 𝑞 = 1 is studied using the 
parameter values 𝐴 = 1/2, 𝐵 =  3 and the initial 
data 𝑎−1 = −2, 𝑎0 = 1. In Fig. 1, it is shown that the 
subsequences (𝑥2𝑛−1)𝑛 and (𝑥2𝑛)𝑛 converge which 
match Theorem (5.1). The solution is bounded. 

 

 

 
Fig. 1: (a) The whole sequence diverges (b) The corresponding subsequences converges 

 
 

2.  The case 𝐴 = −1, 𝑞 = 1, 𝑎−𝑟𝑎−𝑟+𝑞 ∈

(−∞, 𝑚𝑖𝑛(0,2/b)) ∪ (𝑚𝑎𝑥(0,2/b), ∞) is 

investigated using the parameter values 𝐵 = 1/3 
and the initial data 𝑎−1 = −3, 𝑎0 = 1. In Fig. 2, we 
notice that the subsequence (𝑥2𝑛−1)𝑛 converges to 

zero, however the subsequence (|𝑥2n|)𝑛 goes to 
infinity. This is justified analytically in the proof of 
Theorem (5.2) and Remark (5.2). The whole 
solution is unbounded. 
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Fig. 2: (a) The whole sequence diverges (b) The corresponding subsequences are illustrated 

 

3.  The case 𝐴 = 1, 𝑞 = 2 is studied using the 
parameter values 𝐵 =  3 and the initial data 𝑎−3 =
1/2, 𝑎−2 = 3, 𝑎−1 = −2, 𝑎0 = 1. In Fig. 3, it is clear 
that the solution is dumping to zero. This is 
justified analytically in the proof of Theorem (5.3). 

4. The case |𝐴| > 1, 𝑞 = 2, 𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 =  0 

and 𝐴 − 1 + 𝐵𝑎−𝑟𝑎−𝑟+𝑞 ≠  0 can be obtained by 

choosing the parameter values 𝐴 =  5, 𝐵 = 2 and the 
initial data 𝑎−3 = 1, 𝑎−2 = 3, 𝑎−1 = 2, 𝑎0 = 2. Since 
𝐴 − 1 + 𝐵𝑎−3𝑎−1 ≠  0, the subsequences (𝑥4𝑛−3)𝑛 
and (𝑥4𝑛−1)𝑛 converge to zero, and since 𝐴 − 1 +
𝐵𝑎−2𝑎0 ≠  0 the subsequences (𝑥4𝑛−2)𝑛 and (𝑥4𝑛)𝑛 
converge to zero (Fig. 4). These observations are 
coherent to the Theorem (5.4). 
5. The case |𝐴| < 1, 𝑞 = 3 is discussed using the 
parameter values 𝐴=1/2, 𝐵 = 3 and the initial data 
𝑎−5 = 1/4, 𝑎−4 = 2, 𝑎−3 = 1/2, 𝑎−2 = −3, 𝑎−1 = 1, 

𝑎0 = −2. As shown in Fig. 5, the simulation results 
confirm that the subsequences (𝑥6𝑛−𝑟)𝑛, 𝑟 = 0, 1,
. . . , 5 converge, which match Theorem (5.1). 
6. The case 𝐴 = −1, 𝑞 = 3, 𝑎−𝑟𝑎−𝑟+𝑞 ∈

(−∞, 𝑚𝑖𝑛(0,2/B)) ∪ (𝑚𝑎𝑥(0,2/B), ∞), 𝑎−𝑟𝑎−𝑟−𝑞 ∈

(𝑚𝑖𝑛(0,2/B), 𝑚𝑎𝑥(0,2/B)) is illustrated in Fig. 6 in 

which we set the parameter values 𝐵 = 1/2 and the 
initial data 𝑎−5 = −2, 𝑎−4 = 3, 𝑎−3 = 2, 𝑎−2 = 1, 
𝑎−1 = 1, 𝑎0 = 1/2. Since 𝑎−2𝑎−5 ∈ (−∞, 0) ∪
(2/𝐵, ∞), it follows that (𝑥6𝑛−5)𝑛 converges to zero 
and (|𝑥6𝑛−2|)𝑛 goes to infinity, and since 𝑎−1𝑎−4 ∈
(0,2/𝐵), (|𝑥6𝑛−4|)𝑛 goes to infinity and (𝑥6𝑛−1)𝑛 
converges to zero. Also because 𝑎0𝑎−3 ∈ (−∞, 0) ∪
(2/𝐵, ∞), we get (𝑥6𝑛−3)𝑛 converges to zero and 
(|𝑥6𝑛|)𝑛 goes to infinity. This is justified analytically 
in the proof of Theorem (5.2) and Remark (5.2). 

 

 

 
Fig. 3: (a) The whole sequence converges to zero (b) The corresponding subsequences converges to zero 
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Fig. 4: (a) The whole sequence converges to zero (b) The corresponding subsequences converge to zero 

 

 

 
Fig. 5: (a) The whole sequence diverges (b) The corresponding subsequences converge 
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Fig. 6: (a) The whole sequence diverges and unbounded (b) The corresponding subsequences are illustrated 

 

7. The case 𝐴 =  −1, 𝑞 = 3 is investigated using the 
parameter values 𝐵 = 1/2 and the initial data 𝑎−5 =
4, 𝑎−4 = −3 𝑎−3 = −1, 𝑎−2 = 1, 𝑎−1 = −4/3, 𝑎0 = 2. 
We see that 𝑎−2𝑎−5 = 𝑎−1𝑎−4 = 2/𝐵, so (𝑥6𝑛−5)𝑛, 

(𝑥6𝑛−2)𝑛, (𝑥6𝑛−4)𝑛, (𝑥6𝑛−1)𝑛 are constants (Fig. 7). 
However, 𝑎0𝑎−3 ∈ (−∞, 0) ∪ (2/𝐵, ∞). So (𝑥6𝑛−3)𝑛 
converges to zero while (|𝑥6𝑛|)𝑛 goes to infinity 
which matches Theorem (5.2) and Remark (5.2). 

 

 

 
Fig. 7: (a) The whole sequence diverges and unbounded (b) The corresponding subsequences are illustrated 
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8. The case 𝐴 = 1, 𝑞 = 3 is obtained by choosing the 
parameter values 𝐵 =  2 and the initial data 𝑎−5 =
−2, 𝑎−4 = 1, 𝑎−3 = 2, 𝑎−2 = 0.2, 𝑎−1 = 0.3, 𝑎0 = 0.4 

(Fig. 8). The whole sequence (𝑥𝑛)𝑛 converges to 
zero. This is justified analytically in the proof of 
Theorem (5.3). 

 

 

 
Fig. 8: (a) The whole sequence (𝑥𝑛)𝑛 converges to zero (b) The corresponding subsequences converge to zero 

 

8. Conclusion 

In this paper, we have presented a complete 
study of the class of rational difference equations 

xn+1 =
xn−2q+1

A+Bxn−2q+1xn−q+1
 with arbitrary initial data, 

where A and B are arbitrary parameters, and q is an 
arbitrary nonnegative integer. Keeping the order 2q 
as an arbitrary parameter allowed us to make a 
significant contribution and improves and surpasses 
studies of several forms of difference equations that 
have been investigated in the literature. In this study, 
we have given a detailed analytical investigation of 
the convergence of the solutions including their 
dependence on parameters and initial data. We also 
provided a complete discussion of the local and 
global stability of the equilibrium points as well as 
the existence of periodic solutions of this class. At 
the end, numerical simulations have been done to 
confirm the correctness of analytical results. 
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