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In this article, we introduce degenerate poly-Genocchi polynomials and
numbers. We derive summation formulas, recurrence relations, and
identities of these polynomials by using summation techniques series. Also,
we establish symmetric identities by using power series methods,
respectively.
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1. Introduction

Genocchi polynomials are very frequently used in
various problems in pure and applied mathematics
related to functional equations, number theory,
complex analytic number theory, Homotopy theory
(stable Homotopy groups of spheres), differential
topology (differential structures on spheres), theory
of modular forms (Eisenstein series), p-adic analytic
number theory (p-adic L-functions), quantum
physics (quantum Groups). For instance, generating
functions for Genocchi polynomials with their
congruence  properties, recurrence relations,
computational formulae and symmetric sum
involving these polynomials have been studied by
many authors in recent years such as Young (2008),
Araci (2014), Araci et al. (2011), Agikgoz et al
(2011), Araci et al. (20144, 2014b), Haroon and Khan
(2018), Khan et al. (2017, 2018), Khan and Haroon
(2016), and Araci (2012).

The well-known degenerate exponential function
(Kim et al,, 2019; Kim and Ryoo, 2018) is defined by

e () =1+ MZ)%, e (z) = e} (2), (u € R). (1.1)

Since

1
lim(1 + uz)» = e
u-0
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The degenerate type Bernoulli and Euler
polynomials are defined by (Carlitz, 1979; Carlitz,
1956):

n s
n — z U= o N E
@1k (2) = (1+,¢zﬁ—1 (1 +pz)r = X0 Bs(; ) 3, (1.2)
and
T(2) = — 2 (1 + p2)k = 52 () = (13
NG (2) = (1+uz)%—1( pz)r = Yoo €s(n; 1) 5 (1.3)

Thus, we have
lim B (x; 1) = Bg(n), lim €5(n; 1) = Es(n).
u—0 u—0

In the year 2016, Lim (2016) introduced the
generalized degenerate type Genocchi polynomials

Gj(m (n; u) are defined by

2z 4 n 2z P 1
(eﬂ(z)n) auw@=\"—"5 ) A+u)e=

(1+uz)k-1

S 6P 0% (4
so that
G]_(P)(n; W = é'zo ({9) Gs(p)(#) (%) . (1.5)

]j—s

From Eq. 1.4, we note that

. P

J n
lim Y&, Gj(p)(n; ) Z—l = lim (7221 > (14 uz)+
u—0 b0\ (et

= ( 2z )p ez = Z;.;O Gj(P)(n)%‘ (see(1 — 25)).

eZ+1

The degenerate poly-Bernoulli and poly-Genocchi
polynomials are defined by (Khan, 2016a; Kim et al.,
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2019; Kim and Kim, 2015; Kim et al., 2014a; 2014b;
Kim and Ryoo, 2018; Lim, 2016):

Lig(1—-e™%) r]
eu(z)-1 (Z)

Li(1
M) (4 4 e = 320 B i = (1.6)
(1+uz)k-1

the classical polylogarithm function Li, (z) is

Liy(2) = 52, &, (v € Z)(see[18 — 24]) (1.7)
soforv <1,
Li,(z) = —=In(1 — 2),Liy(z) = LL 1(2) =

Kim et al. (2015, 20144, 2014b) and Khan (2016b,

2016¢c) introduced polytype (Bernoulli and
Genocchi) polynomials are defined by

R i
OB gt = 32, BV, (18)
and

. P A 1
AL De 3, 6VOL. v e D), (1.9)

Forv = 1in Eq. 1.8) and Eq. 1.9, we get

eZ-1

Li;(1-e™%) o d
et = Lot =52, Bi(OF, (1.10)

and

2Liy(1-e~% 2z
1( ) efz

= et =30, GO (1.11)

ez+1 i1t
From Eq. 1.10 and Eq. 1.11, we have
B (&) = Bi(©), 6V (§) = G;(®).
We recall the following definition as follows:

o The first kind of Stirling numbers are given by

I $1G.@)ad, (j = 0).
(1.12)

(@)j=a@a=1)(a—j+1D=

o The second kind of Stirling numbers are defined by
generating function

24

(e = 1P =p!Xg=p S2(a,p) (1.13)

A generalized falling factorial sum t,(j;p) is
defined by Young (2008):

(n+1)
o i 2K 1-((pz) *
Tieo (s = = (1.14)

1+(1+uz)#

where lim,_,q7,(j; #) = T, (j). This article is as
follows. We consider the degenerate type poly-
Genocchi polynomials Gj(v) (¢; 1) and construct some

basic properties and derive some implicit formulae
and symmetric identities for the degenerate poly-

Genocchi polynomials by using different analytical
means of their respective generating functions.

2. Degenerate poly-Genocchi polynomials

Let u € C,v € Z. We introduce the degenerate
poly-Genocchi polynomials and numbers are given

by

LD (1 4 gy = 50 602, 21)
(1+uz)ﬂ+1 J:
so that
67 &R =Ty (VRO (=) | /™
j=k
(2.2)
When ¢ = 0in Eq. 2.1, G|} = G (0). Note that

G = Gu(®),
and
lim 6 (& ) = 6, v € ), 23)
u—0

where Gj(v)@) are called the poly-Genocchi
polynomials.

Theorem 2.1: Let u € C,v € Z,and j = 0. Then

Gj(z)(f; W= Zﬁzo (; Bstp & . (2.4)

s+1°17S

Proof: Using Eq. 2.1, we see

o ;
S0 66w 5 =2 (4 e

(I+puz)t+1
_ 2(1+uz)§
(1+uz)i+1
Iy ohe mm s v dv (25)

(v=2)— times

for v = 2in Eq. 2.5, we find

; £
© 2 zJ 2(1+uz)t fw
j=0 Gj( )(Ei H)F = T fo

(1+uz)t+1

) 2(1+uz)#
1
(1+uz)R+1

= (320 2255 (57 B0 %)
=0 (Zizo (;) :;SI J= -s(§; #))

Bgz
Yooy

= (3520 35
(

v

which gives the asserted result of Eq. 2.4.

Theorem 2.2: Letu € C,v € Z,and j = 0. Then

G =2 ()

(Tt ) 6 Ew (2.6)
s (S5 1) .

qk(s+1)

Proof: Eq. 2.1, we find
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. £
. J Liy(1—e7 %)\ [ 2z(1+puz)k
2o GG 5 = (1 )(“ “f)) (2.7)

z (1+uz)B+1

now

Liy(1-e z) (1-e™%)1

- 1o (D1 _
- Zq 1 qk :; a=1"px (l—e Z)q
1 ¢oo s
=15 Sl (DS e 0
1 © -1 q+s s
=13 T S S G

1 q+s+1 S. +1
=32, (ES“ C— qaena) (2:8)

s+1

From Eq. 2.7 and Eq. 2.8, we have

o AWMig N2 _
Zj:o ij (f'ﬂ)ﬁ =

oo ()T Sy (s+1,q)\ 2°
25:0 (Zf}ill qk q! z );(

s+1

0 v zJ
o 6V Ew %),
which proves the result of Eq. 2.6.

Theorem 2.3: Let u € C,v € Z,and j = 0. Then

e E+uw+ G“’(&-m]
=31_, () (ZS - CD G D1S,(s,q +

(a+Dk

D)(=3)  Cwi 29)

B s

Proof: Using the definition in Eq. 2.1, we have

OG(”)(5+1u) +z 0 G (& #)

Zle(l e Z) 2Li,(1— e Z)

a1+ yz) Z + a+ yz)u

(1+p.z)#+1
= 2Li, (1 — e ?)(1 + uz)x
£

(1-e™ )q s
= 220 g ()

— s—1 (=DI*
=224 (Z (q+1)k

=2 (Zs ) (ZS 1 ((q+1)k

0)9)(2720 (-9, %),

yields the result in Eq. 2.9.

(1+uz)#+1

(s + 1D)!S,(s,q + 1))?(1 + ,uz)%

(@+ D!S(s,q +

Theorem 2.4: Letc € N,v € Z,and j = 0. Then

6V u)
_ yd-1 yvil J) jmv—1 (CDVFHsIS, (v+1,5)
= : skv+1
v+
G2 (T‘ 5)- (2:10)
Proof: Using Eq. 2.1, we find
§+1
o 2Liy(1-e™%)
20 6060 E = 20D (14 ry e
: (1+pz)t+1
P 1+
=S ()
(1+uz)k+1
Liy(1-e~? Lac]
= ()i 2t -
(1+uz)kH+1

(Zv . ( v+1( 1)5':'”15 52(V+1,S)) i_‘l’)

v+1
© -1
( j=0 cJ Z

(l+$ p.) Z])’

J!

which gives the result in Eq. 2.10.

Theorem 2.5: Letv € Z and n = 0, then
67 + ) = 3o (D610 (5) - (2.11)

Proof: Using Eq. 2.1, we see

£+1

2LL,,(1 e )(1 +HZ) m

© J
I GINE:
(1+,uz)ﬂ+1

= (3720 6w %) (270 W (2) 5)

Jj
On comparing the coefficients of %, we get the

resultin Eq. 2.11.

Theorem 2.6: Let v € Zand n = 0. Then

6 Ew =Ty (DD (076 & — win.

(2.12)
Proof: Using Eq. 2.1, we find

ZLL,,(l e~ %)

0 J
A GINES (1+uz) ® (1+pz)e
: (1+uz)ﬂ+1

= (ij‘;o (& w j—’) (23;0 (_ K)T ﬂ)

u r!
which completes the result in Eq. 2.12.

Theorem 2.7: Letv € Zand n = 0, then

y
G-t
(2.13)

6 ¢+ L% =Y, 60En ()

Proof: Using Eq. 2.1, we see

220 GG+ L5 - T 6V G w5 =

i (1_p—Z g 1
BWAZED (1 4 pz)u((1 + pz)i — 1)
(1+uz)F+1

= (32 G(”)(f-u)if)(zr o (-2, ) -
)yl OG(”(f hE:
=302 G(”(f w(-3) o

=0 Gj(V) (f; ﬂ) F.

G-nrt
which gives the result in Eq. 2.13.

3. General identities

Here, we establish general identities for the
degenerate poly-Genocchi polynomials Gj(v) (& w) by

applying the generating function. We start the some
identities as follows.

Theorem 3.1: Letv € Z,a,b > 0,and n = 0. Then

S (Db a6 (b&; )G (ag; )
=3y (arbi 76 (g G (bE; . 3.1)
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Proof: Suppose

i (1—e=a2) i (1— z 2ab§
A(z)=<““““i Ly (1e” )(1+uz)~. (3.2)
((1+uz)ﬁ+1)((1+uz)ﬁ+1)
A@) = T 605 1) T, 6 (a8 )“’Z’

= Z?'éo Joo (Dal™ rbTG,-(_Vi(bf: A CIHINE ;-
Similarly, we can show that

A@) = T2 608 225, 6 (b )(‘”)
0 X1y (D)arbi rcj(_”l(af: DG CADES
which proves the identity in Eq. 3.1.

Remark 3.1: Letting b = 1, Theorem 4.1reduces the
following result

Seo D/ 6GE W6 (@ )
=¥/ (a6 (@& w6 & w. (33)

Theorem 3.2: Letv € Z,a,b > 0,and n = 0. Then

2o D)@ b 6 (bE; 1) Ty (Drila — 116 (an; )
=¥, (D)a"bi~ TG(V)(af WYy (Db —
1,6 (bn;, ). (3.4)

Proof: We now use

B(z) =
ab ab(é+n)

ALiy (e Lty (=e M) (A-(-(uz) K)atpz) F

((1+u2)”+1)((1+;42)#+1)2

to find that

B(Z) _ <2le(1 e~a%) ) (1 + MZ) u 1-(- (1+p_z))u
(1+,uz)ﬂ+1 (1+uz)ﬂ+1
X (72%(1 ) ) A+ uz) "

(1+uz)i+1

0 6080 42 5 7, (a -
12 ye, o an e
=520 6050 2 5,
1:#)65”1ﬂ(an);

=0 (Db ti(a —

B() =252 (Zo0 (D062 (05310 Bico (Jrila = 1067, (an) ) 5. (35)

Using a similar plan, we get

B@) =520 (Sl (Db 6@ Sz ()il — LG 0m) 2, (3.6)

which yields the desired result.
4. Concluding remark

In this paper, we consider the modified
degenerate poly-Genocchi polynomials are defined
employing the following generating function

2Li,(1— e —27)

) (1 + pzyi = 20 G (& #)— (4.1)

(1+uz)#+1
Thus, by Eq. 4.1, we easily get G(v)(f'u) =0.
When & =0, G(V)(,u) = G(V)(O w) are called the

modified degenerate Genocchi numbers. For v =1,
we note that

2Li;(1—e"%2 ® J
O (1 4 gy = 5 Gyl (42)

(1+uz)#+1

Hence
G (& w = Gi(&mw, (= 0)b
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