
 International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

29

A new neural-network-based model for measuring the strength of a
pseudorandom binary sequence

Ahmed Alamer 1, 2, *, Ben Soh 1

1Department of Computer Science and Information Technology, School of Engineering and Mathematical Sciences, La Trobe
University, Bundoora, Australia
2Department of Mathematics, College of Science, Tabuk University, Tabuk, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 18 October 2019
Received in revised form
17 January 2020
Accepted 17 January 2020

Maximum order complexity is an important tool for measuring the
nonlinearity of a pseudorandom sequence. There is a lack of tools for
predicting the strength of a pseudorandom binary sequence in an effective
and efficient manner. To this end, this paper proposes a neural network (NN)
based model for measuring the strength of a pseudorandom binary sequence.
Using the shrinking generator (SG) keystream as pseudorandom binary
sequences and then calculating the unique window size (UWS) as a
representation of maximum order complexity, we can demonstrate that the
proposed model provides more accurate and efficient measurements than
the classical method for predicting maximum order complexity. By using
UWS, which is a method of pseudorandomness measurement, we can identify
with higher accuracy the level of pseudorandomness of given binary
sequences. As there are different randomness tests and predicting methods,
we present a prediction model that has high accuracy in comparison with
current methods. This method can be used to evaluate the ciphers’
pseudorandom number generator (PRNG) and can also be used to evaluate
the internal components by investigating their binary output sequence
pseudorandomness. Our aim is to provide an application for NN
pseudorandomness and in cryptanalysis in general, as well as demonstrating
the models’ mathematical description and implementations. Therefore,
applying NN models to predict UWS utilizes two layers of pseudorandomness
testing of binary sequences and is an essential cryptanalysis tool that can be
extended to other fields such as pattern recognition.

Keywords:
Neural network
Binary sequence
Pseudorandomness
Stream cipher
Shrinking generator
Randomness testing

© 2020 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Maximum order complexity is an important tool
for measuring the nonlinearity of a pseudorandom
sequence. The maximum order complexity of a given
sequence is referred to as the function acting as the
shortest nonlinear feedback shift register (FSR). The
FSR can generate this sequence (Jansen, 1989). A
greater length of the FSR is better; hence, this
sequence is more resistant to attack and more
pseudorandom.

In this regard, to be able to predict the maximum
order complexity is important for determining how

* Corresponding Author.
Email Address: a.alamer@latrobe.edu.au (A. Alamer)

https://doi.org/10.21833/ijaas.2020.04.005
 Corresponding author's ORCID profile:

https://orcid.org/0000-0002-1249-6424
2313-626X/© 2020 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

this sequence has a random appearance (Erdmann
and Murphy, 1997; Jansen, 1991).

By calculating the unique window size (UWS)
(Boztas and Alamer, 2015) as a representative of
maximum order complexity, as will be explained
later, we will be able to establish the measurement
of pseudorandomness.

Once the UWS has been calculated, we have an
overview of the behavior of binary sequence
pseudorandomness. Using different degrees of UWS,
as will be shown, and utilizing a predicting tool will
add an advance step to generalize the measurements
with the given data. This, in turn, allows us to
establish the efficiency of the cipher used in the
encryption. This study uses the keystream generated
by the shrinking generator as a binary sequence.
This is because the study of binary sequence
pseudorandomness is the building block for
determining the efficiency of ciphers (Xiao et al.,
2019).

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.alamer@latrobe.edu.au
https://doi.org/10.21833/ijaas.2020.04.005
https://orcid.org/0000-0002-1249-6424
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2020.04.005&domain=pdf&

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

30

1.1. Contribution of this study

The main contributions of this study are as
follows:

1. Use the UWS as a representative maximum order

complexity tool for the shrinking generator
keystream (binary sequence).

2. Introduce a neural-network-based model for
predicting the UWS. This will help in evaluating
the strength of the cipher in the study, which can
be used for similar ciphers with some
modifications to the model. Furthermore, using
NN models for maximum order complexity to the
best of our knowledge is a new approach in this
regard.

In addition, it can be used for internal cipher

components, other than the keystream, that also
generate binary sequences, and hence, will help in
evaluating the strength of cipher components.

Furthermore, this will inspire other applications
of NN models in cryptography, especially in
encryption, and insecurity in general, such as in
securing communications.

The paper is organized as follows: Section 1
provides the background of the study; Section 2
introduces SG and UWS and also provides a brief
overview of NNs; section 3 reviews the current
literature in the field of NNs with a focus on its
implementation in security; section 4 discusses the
proposed NN models and their implementation;
section 5 discusses the observations of the models
and the results; and the conclusions are drawn in
section 6.

2. Background

This section reviews the necessary information
and background to understand the basic structure of
a NN model. As well as, necessary information and
background to understand the basic structure of a
NN model. By focusing on the information associated
with our study of the pseudorandom binary
sequence resulting from the calculation of UWS, with
their significance clarified. We also discuss the SG
cipher, where we describe its principle, which is the
source of the data we obtained. We also discuss the
SG cipher, where we describe its principle, which is
the source of the data we obtained.

2.1. Unique window size

The UWS is a type of maximum order complexity
tool that is used in this study. This concept can be
defined by assuming that the maximum order
complexity of a given sequence S is m. Then, the UWS
for S is m+1. We use the UWS as a nonlinear
measurement of a binary sequence that illustrates
how such a sequence has a high level of security.
This is necessary for cryptosystems as we need a
pseudorandom sequence for these types of security

applications. For more information on the statistical
behavior and distributions of UWS, please refer to
(Boztas and Alamer, 2015).

2.1.1. Importance of unique window size

UWS is a tool for measuring the strength and
randomness of a given sequence, even though we use
it for an SG as an example. However, it is applicable
for testing any ciphers that can generate a sequence
with a random appearance.

The prediction model can be helpful for the two
LFSRs choices for shrinking generating and where
the choice of the LFSRs combinations will result in a
small or large UWS, so the user can choose the LFSRs
pair that resulted in a large UWS.

By analyzing this, we can detect possible attacks
on the given combinations. This is a good direction
for further investigation as the sequence with a low
UWS can be easily simulated. Furthermore, it can be
vulnerable to certain attacks such as a correlation
attack (Golić, 2001) and a divide and conquer attack
(Johansson, 1998).

Researchers can adapt NN for different purposes
needed for prediction of, for example, other
randomness measures. The prediction of UWS is an
example that was implemented in the security field
(Erdmann and Murphy, 1997).

2.2. Neural networks

NNs are a useful cryptographic tool that can
assess an algorithm to generate a binary sequence,
making it useful in certain industries, such as
security, and the vital role of NN in pattern
recognition is discussed by Bishop (2006).

NNs have previously been used for generating
secret keys for given ciphers. However, to the best of
our knowledge, there are very few studies on the use
of NN as a tool to measure the pseudorandomness of
a binary sequence (Li et al., 2017). A NN simulates
the behavior of neurons in the brain. It can deal with
complex processes, and an algorithm can be
developed that can be used to model and predict
complex data and compare this data with the
original input data. For example, to measure the
accuracy of a model, an algorithm is trained and
modified by a number of steps until the optimal
model is obtained. This can be done by selecting a
powerful algorithm for learning and providing
suitable and correct inputs (Hagan et al., 1996). NNs
can be applied to cancer prediction (Khan et al.,
2001), weather forecasting (Chen et al., 1992), image
recognition (Su et al., 2019), music production
(Zatorre et al., 2007), and stock market prediction
(Kimoto et al., 1990), to name a few. They can also be
applied in encryption where they can be used to
select secret keys, as well as in other cryptographic
applications. Predicting the UWS is a challenging task
as it is calculated using a pseudorandom binary
sequence. Therefore, predicting the UWS using NN
will contribute to determining the security of a given
binary sequence (Hertz et al., 1991). The purpose of

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

31

this study is to evaluate the use of NN as a method
for evaluating the strength of a pseudorandom
sequence. A multi-layer model is used to determine
the best prediction model.

2.3. Shrinking generator

SG is a cipher that implements two primitive
polynomials acting as linear feedback shift registers
(LSFRs). To illustrate the concept, assume that LFSRa

is the input LFSR and LFSRb is the controlling LFSR.
Thus, the binary input from LFSRa will be controlled
by LFSRb in such a way that if the input bit of LFSRb is
1s, then the bits from LFSRa will be selected.
Otherwise, it will not appear in the keystream
sequence. Table 1 lists the selection role for the LFSR
pairs. In an SG, LFSRa is linear and LFSRb makes the
keystream sequence to be a nonlinear sequence
(Coppersmith et al., 1993).

Table 1: SG keystream bits selection rule

LFSRa LFSRb Keystream bits output
1 1 1
0 1 0
1 0 Not appear
0 0 Not appear

As SG is a lightweight stream cipher, it can be
used in small systems with limited power resources,
such as in RFID systems. The shrinking concept is
important to the study of data management and data
selection rules. In addition, an analysis needs to be
performed to identify limitations and establish an
optimal testing model to be used for a chosen cipher.
In an SG, the prediction model can illustrate the best
combination of LFSR pairs that can generate a large
UWS and prevent combinations with a lower UWS.
An interesting SG variant is a self-shrinking
generator (SSG) (Meier and Staffelbach, 1994), which
uses a similar design concept with the difference
being that SSG uses one LFSR and selection and bit
input is performed in this LFSR.

Jansen (1991), in his study of any given maximum
order complexity, stated that some sequences have a
subsequence with nonlinear complexity. If the
occurrence of these subsequences is large, this will
eventually weaken the nonlinearity strength, which
is not desirable for the randomness needed for the
given sequence. Hence, it is not attractive in
cryptographic practice. This is important for the
sequence to have high nonlinear complexity.

To explain UWS in this context, assume we have a
sequence S with length N. We look for a subsequence
of S with a sliding window of length W (W=the
number of bits of this subsequence). Then, we
choose a sliding window having a length of n bits
starting from the first bits of the sequence S (from
the most left). Then, we take the same m starting
from the second bits and leave out the first bit, then
m starting from the third bit and leave out the
second bits, etc. Therefore, if we determine the
repetition of states (one or more states appear more
than once) by sliding one bit at a time, we can select
another sliding window with length m+1. This

process is repeated n times till every state
(subsequence) is unique (without repetition). At this
stage, we chose W=m+n as our UWS.

Example 1: X2+ X+1, work as LFSRA acting as input
LFSR (a primitive polynomial of degree 2, 𝑋^𝑖
represent the taps position 𝑖 is the tap place in LFSR
polynomial, the taps in this example at 2nd and first
bits);

X5+ X3+ X2+ X+1(LFSRB as control LFSR), UWS = 15
11110110101110101000110101101111011110111101010
1

Here, we can see that every state is unique for a
sliding window of length w=15. If the length of the
sliding window is less than 15, e.g., 14, the
subsequence 11011110111101 is repeated twice. If
the length of the sliding window is 12 or 13, more
states are repeated.

Here, we can see that UWS is another important
measurement tool of cipher strength as when
UWS<15, the states are repeated twice, as in the case
with w=14. With brute force calculation, it is possible
to find the remaining states (Ritter, 1991). Thus, if
we can define UWS, we can find subsequences with
UWS<15. In addition, finding the correlation between
the repeated states and remaining states can lead to
a correlation attack, and the correlation between the
repeated sequence and SG LFSRs pairs can be
investigated. Table 2 lists the number of simulations
per SG degree to obtain the UWS.

Table 2: Number of simulations per UWS degree for the SG

UWS degree Number of Simulations
7 20
8 24
9 24

10 72
11 208
12 216
13 840
14 1280
15 1280
16 6360
17 13080
18 13896
19 48600
20 70416
21 245628

A long keystream attack is a type of security
attack. To perform a long keystream attack,
knowledge regarding the length of the keystream is
required as this type of attack assumes that the
attacker has access to long portions of the
keystream, as well as with the need of the LFSR to
have a large number of taps (Hell and Johansson,
2006; Mihaljević, 1996). UWS can be used as a
measurement tool to evaluate the strength of the
sequence.

3. Related work

Erdmann and Murphy (1997) introduced in an
approximate maximal order complexity distribution

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

32

for a pseudorandom sequence and compared the
distributions obtained in their simulations with
actual distribution to develop statistical tests. They
emphasized the importance of finding such a
distribution for measuring the strength of a
pseudorandom sequence.

Sun et al. (2017) investigated the maximum order
complexity for a given sequence with the aim of
determining the relationship between the maximum
order complexity and the number of periodic
sequences that can be generated with maximum
order complexity to use that as an indicator of the
nonlinearity strength of the sequence. However, in
our approach, not only is the UWS generated by the
cipher (SG in our case), which is based on the
maximum order complexity, but the UWS is also
predicted with high accuracy by implementing the
NN model.

Sun and Winterhof (2019) also found that the
maximum order complexity is a better complexity
measure compared with expansion complexity,
which was applied to the Thue−Morse sequence and
the Rudin−Shapiro sequence.

Kinzel and Kanter (2002) were inspired by public
cryptography methods using a public key exchange,
which was introduced by Diffie and Hellmann
(1976). Using these methods, the public key can be
shared in an insecure channel and is accessible to the
public. A discrete logarithm was used for the public
key, making it difficult for devices with limited
computation power to handle, especially in cases
where a large number of public keys were chosen.
Thus investigated interactive NNs to investigate
secret key exchange through a public channel. In
addition, Godhavari et al. (2005) implemented an
interactive NN to generate the secret key over a
public channel using the DES algorithm.

Meidl and Niederreiter (2016) demonstrated
multiple sequences over a given finite field by
analyzing two groups of nonlinear complexity with
interactive differences between them. In addition, to
create a probability of joint nonlinear complexity
over a given fixed finite field, they introduced joint
probability based on their parameters with special
conditions.

To summarize, it is important to have a clear
understanding of the nonlinear complexity and
behavior of a binary sequence and to analyze the
optimal methods to evaluate it. The prediction of
UWS is an important direction in this regard.

With respect to studies on the applications of NN
to security, Allam and Abbas (2011) presented a
binary tree algorithm that can be implemented by a
mutual learning process to ensure secure
communication through the exchange of keys
between groups in public cryptography methods.
They showed that the complexity of their algorithm
is logarithmic and depends on the number of parties
they synchronized together. In addition, they
introduced the possibility of using NNs for secure
key sharing. Furthermore, Fan and Wang (2018)
explained how NN is a powerful prediction tool by
using an NN to find the correlation between the

pseudorandom data (especially binary data) and
used this to predict the bits based on the
neighboring bits. In their study, they dealt with
multiple pseudorandom sequences and they showed
how NN can learn from a given dataset to predict the
outcomes in testing data.

Introducing a new method for predicting the
maximum order complexity (UWS in our case) for
the pseudorandomness of a binary sequence by NNs
models with high accuracy is a new and important
direction for evaluating the cryptosystems used as
well as predicting the pseudorandomness for the
binary sequences in general.

4. Proposed neural-network-based prediction for
pseudorandom sequences

We ran the calculation of UWS for the SG
keystream (Example 1 shows how UWS was
calculated) on EC2, which is a service provided by
Amazon Web Services for cloud computing, such as
UWS with degree 20 (UWS20). We used a cloud
server (EC2) as it enables us to simultaneously run
multiple data files, thus reducing the time required
for calculating UWS. A large number of simulations
are required for computing UWS, for example,
UWS20 has a data size 70416, which requires 70416
simulations.

We used Linux on EC2 for calculating UWS. A
similar procedure was employed for UWS with
degree 21 as well as for all UWS with degrees
ranging from 7 to 19, as discussed later. Let the
primitive polynomial X17+X5+X3+X2+1 as LFSRA and
X3+X2+1 is LFSRB.

Then the SG degree is 20 by adding the leftmost
power from the LFSRs (17+3), Similarly, when the
highest powers of the other combinations of LFSRA

and LFSRB are added, they sum to 20. Then, we
obtain all 70416 possible UWS for SG with degree
20(UWS20). The independent variables within the
prediction model are input degree, input weight,
control degree, and control weight. The dependent
variable is the UWS, as shown in the following
example.

Example 2: Let us take the following example: LFSRA
(input LFSR) as (X13+X9+X8+X6+X4+X2+1), and LFSRB
(control LFSR) as (X7 + X6 + X4 + X2 + 1), then the input
LFSRA degree=17, LFSRA weight=7, control LFSRB

degree=7 and LFSRB weight=5, in this case UWS=39.
For the sake of clarity, let us assume that we have

two SG polynomial combination samples for UWS20,
as shown in Table 3.

To analyze the results, the NN model was
implemented using Keras (2019) as a tool with
Tensorflow (2019) as a backend. The UWS with
degree 20 (UWS20) was computed (Example 1) for
the keystream sequences generated by the SG cipher,
and all possible combinations of LFSRs of the SG
were obtained. There were 70416 possible
combinations, and we calculated the UWS20 for all
the combinations with the NN model using a ReLU
activation function for the outer layer, and the ReLU

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

33

activation function for the hidden layers (Table 4).
We obtained a prediction with high accuracy as
shown in Table 5 in addition to UWS21 for
comparison.

Table 3: UWS20 sample for illustration

Input
Degree

Input
Weight

Control
Degree

Control
Weight

UWS20

3 3 17 3 42
3 3 17 7 39
7 5 13 7 44

11 7 9 7 42
13 7 7 5 39
17 5 3 3 36
9 7 11 7 45

17 5 3 3 37

Table 4: Model summary from the output of Python code
on Keras

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 100) 500
dense_2 (Dense) (None, 50) 5050
dense_3 (Dense) (None, 20) 1020
dense_4 (Dense) (None, 10) 210
dense_5 (Dense) (None, 1) 11

Total params: 6,791, Trainable params: 6,791

Table 5: UWS20 and UWS21 model comparison
 UWS20 UWS21
 Model Model

Number of Layers 4 4
Number of nodes 100,50,20,10 100,50,20,10

Learning rate 0.0001 0.0001
MSE 0.0088 0.0064

training set 56333 196502
Accuracy 94.30% 91.90%

5. Implementation

We use multiple functions of the Keras library in
Python to build our model. These features help us
optimize the performance of the model and training
time. These functions are listed below:

1. Earlystopping: This function stops the training of

the model if the accuracy of the model does not
show any improvement after a pre-defined
number of epochs.

2. Sequential: This function helps define the model
type of NN. A NN can have multiple layers, and
this function helps the model learn each layer.

3. Dense: This function adds a fully connected layer
to the NN model and makes the neurons in the
layer to be connected to the neurons in the next
layer.

4. Optimizer.Adagrad: This function defines the
optimizer for training the model.

5. Compile: This function defines the parameters for
the model.

6. Fit: This function trains the model by updating
the weights in the model.

5.1. Mathematical description of the NN model

Let us consider a matrix MN, where M is the
number of UWS simulations, and N is the number of
features, which include input degree, control degree,
input weight, and control weight. We have D number

of layers in the NN, and these layers include the
input layer, output layer, and G number of hidden
layers, where each hidden layer is for learning the
input data. A greater number of layers in the NN will
help in learning more complex data. The relationship
between the input layer and the first hidden layer is
represented by matrix multiplication. However, if we
start from first principles, we can assume there is
just one example, and it is a column vector of size N
∗1.

If N=3 and we assume that the first hidden layer
had H1 =4, each layer will be fully connected so that
every neuron in the hidden layer is influenced by
every neuron in the input. layer. Let H1j be the jth

neuron of the hidden layer j. Consequently, the
output is calculated as the dot product of the input
layer neurons and the weights connected to the jth

neuron of the hidden layer. Thus, let 𝑤1𝑖𝑗 be the

weight from input neuron i to hidden layer neuron j,
xij is the example feature (independent variable);
thus:

𝐻1𝑖𝑗 = ∑ 𝑊1𝑖𝑗 . 𝑋𝑖𝑗

𝑁
𝑖=1 ,

and 𝑊 denotes the weights matrix.

We can represent this in the multiplication
matrix, where each row denotes the result of the
hidden layer for each example:

𝐻1 = 𝑋 ∗ 𝑊1

𝑇

W1 is a matrix that is N×H1, where N denotes the
number of features for an input example and H1

denotes the number of neurons for the hidden layer.
We transpose X because each example is in a column
for the mathematics to work, but the original matrix
X is a row matrix. For NNs, each layer is represented
as a matrix of weights. For our particular case with
input data (for UWS20), the first hidden layer has
100 neurons, the second layer has 50 neurons, the
third layer has 20 neurons, the fourth layer has 10
neurons, and the output layer has 1 neuron.

After this operation, to model the nonlinearities
in the data, this goes through an activation function.
In our case, we used the rectifier linear unit (ReLU)
activation function (Zoufal et al., 2019) a single value
x it is defined as follows:

R(x)= max(0, x)

as follow:

{
𝑅(𝑥) = 𝑥 𝑖𝑓 𝑥 > 1

𝑅(𝑥) = 0 𝑒𝑙𝑠𝑒

Note our datasets are positive integers; hence,

using ReLu presents advantages as our data do not
have negative values.

Therefore, the ReLU activation function works on
a per-element basis. Thus, we apply this to each
output value of H1. Thus:

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

34

𝐻1 ́ = 𝜎 (𝐻1), 𝜎

is the activation function(R). For the second output
layer, we repeat the same operation.

𝐻2 = 𝐻1

́ ∗ 𝑊2
𝑇 ,

H2 contains the outputs for the second hidden layer,
considering the activation function.

𝐻2 ́ = 𝜎 (𝐻2).

The same procedure is used for the third layer
finally; we have the output layer:

𝐻0 = 𝐻3

́ ∗ 𝑊4
𝑇 .

In summary, the output layer is set to the total

number of expected outputs from our model will be
a Matrix with a single column contains UWS (UWS20
has 70416 elements). In this case, we are estimating
a single quantity so that there is just one output
neuron for that layer. The number of input neurons
in the input layer is the same as the number of
features.

The number of neurons in the hidden layer is
usually the average of the input and output neurons.

Thus, for our case, the number of neurons is
4+1

2
=

2.5; thus, we round this off to 3 neurons. However,
the performance was poor. Therefore, we tried to
increase the number of layers by 1 so that there are
4 hidden layers. The first hidden layer has 100
neurons because of a lack of available features. We
want each neuron to provide a good representation
of the lack of available features. The second layer has
50 neurons, the third layer has 20 neurons, and the
last hidden layer has 10 neurons and this layer is
known as a "bottleneck" layer. Thus, once we learn
the complex representations, we force the network
to remember the best things about representation.

5.2. Determining optimal weight matrices

To determine the optimal weight matrices, we
have to define a cost function that determines the
penalty in case the predicted outputs are dissimilar,
given the NN structure with the true output values.

In our case, we defined the mean squared error or
the sum of the squared errors. The output of H4 will
be a matrix of M×1, where M is the total number of
examples, and there is just one column for the
predicting output (UWS).

To calculate the cost function, let yi be the true
output value for xi, and H4i is the predicted output for
i. Therefore,

𝐶 =
1

2𝑀
∑(𝐻4𝑖 − 𝑦𝑖)2

𝑀

𝑖=1

Thus, we multiply by 1/𝑀 because we want to

find the mean, and we additionally 1/𝑀 divide by 2
when optimizing (finding) the derivative.

Given a batch of training examples, Keras will
optimize the weights by minimizing the cost
function. These sets of weights can be found
analytically by using pseudo inverse, but this will
consume a considerable amount of memory,
particularly if there are a lot of examples that require
a lot of computational time.

The alternative is to use a method called
backpropagation that systematically determines the
weights, one layer at a time. This leads to a method
called gradient descent, which is an iterative method
to determine the minimum of a function. The
procedure can be described as follows:

1. Set the weights of each hidden layer to random.
2. Decide on a batch of examples to feed into the

network. The batch size directly affects the
weights. The larger the batch size, the more
accurate the weights. This will hopefully lead to
faster convergence. Smaller batch sizes are
sometimes used because the network can be very
deep (a large number of layers) and the number
of examples can also be high.

3. Do a forward pass, which involves taking
examples and finding the outputs of each layer as
well as the output layer.

4. Compute the backward pass (backpropagation)
where the inputs from step #2, as well as the
current weights, are used to update and find the
gradients with respect to the weights

5. Compute an update for gradient descent.
6. Repeat steps 2 to 5 until the network converges

(The cost function should decrease over time and
we can stop if it does not change considerably or
if we impose a maximum number of
iterations/epochs). One epoch amounts to the
number of batches of examples we need to go
through in the entire dataset once. For example, if
there are 1024 examples and the batch size was
32, a total of 32 iterations would need to be
performed for 1 epoch (because of 32×32=1024).

In our case, the batch size is 8, and the number of

epochs is 100. The number of examples is 70416.
Therefore, the number of iterations per epoch is
70416/100=8802. As we need to consider all
examples, we select 8802 examples per epoch. The
total number of iterations will be
8802×100=880200.

6. Scaling the dataset for training

The dataset is scaled so that the model can learn
faster.

The MinMax scaling method scales the feature set
between values [0, 1] by using the following formula:

𝑋_𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑋𝑖 − 𝑋_𝑚𝑖𝑛)/(𝑋_𝑚𝑎𝑥 − 𝑋_𝑚𝑖𝑛) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖

 i=The element number on which the

transformation is occurring.
 Xi =The value of the ith element for the selected

feature.

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

35

 X_max=The maximum value (among the dataset) of
the feature.

 X_min=The minimum value (among the dataset) of
the feature.

 X_scaled=The transformed value (among the
dataset) of the feature.

The sklearn library provides a function

MinMaxScaler () for this purpose.

6.1. Splitting the dataset for training and testing

The datasets are generally split for training and
testing. Generally, 80 sets are used for training, and
20 sets are used for testing. The validation split ratio
is used for dividing the datasets.

X_train, X_test, y_train, y_test=train_test_split (X,

y, test_size=0.20, random_state=123)

6.2. Estimation of performance of the proposed
model

We used a custom-built accuracy calculating
measure to evaluate the performance of the model.
The accuracy of the model is 91.90% as per the
calculations (for UWS21) (Table 5).

6.2.1. Performance estimation code

Using python coding to estimate how code is
performing, by using: test data, unscaling the data
for better performance, obtaining the deviation from
original data than finding the accuracy
measurement.

1 Obtaining the predicted values for the test data
y_pred=model.predict(X_test)
2 Unscaling the predictions: By unscaling the original and

the predicted output (using the range and the min values
from the original dataset)

y_predscaled=[int(i*rangel+rangebot) for i in y_pred]
3 Unscaling the test: Obtaining the deviation values from the

original dataset.
y_testscaled=[float(i*rangel+rangebot) for i in y_test]
dev=[]
for i in range(len(y_pred)):
Dev.append(abs((y_predscaled[i]-
y_testscaled[i]))/y_testscaled[i])
4 Obtaining the accuracy number: The efficiency of the

model is measured using the deviation=1-
sum(absolute_error)/sum(true_value)

1 - sum(dev)/len(dev)

The average deviation of the actual value from

the predicted value is 5.6% (across the test dataset)
The accuracy of the proposed prediction model is

high when predicting the UWS, which is an
important tool for measuring the pseudorandomness
of a given binary sequence. Hence, this model will
help designers in choosing the best cipher
components, which make attacks complex and
resource-consuming (Dubrova and Hell, 2017;
Turan, 2012).

UWS is important for understanding the binary
sequence, if it is predictable, and is another tool
among other methods recently proposed for the
same purpose (Mérai et al., 2017).

7. Prediction results

The prediction accuracy for UWS with degree 20
was 94.3% of the test data and that for UWS with
degree 21 was 91.9%. Table 5 summarizes the
findings for the 2 NN models with degrees 20 and 21.

From Table 5, we can see that the mean squared
error of the model as the cost function is 0.0.0064 for
UWS21 (for example) on the MinMax scaled dataset
(see 5.1). The MSE is quite low and suggests that the
model is very good, as listed in Table 5, in addition to
the results in Table 5, we combine all datasets from
UWS7 to UWS19 in one dataset, and using one NN
model for the Joint datasets (Table 2) for the number
of samples for each UWS degree), to see the
difference once we train one model to contain
different UWS degrees, with combined dataset of size
85900, and training 80% of which is used for
training (68720), hence the accuracy is 93.7%, with
a learning rate 0.001 and MSE=0.0028 which is very
low and the number of hidden layers is the same as
in the UWS20 and UWS21 models. The reason
behind using one model is that we want to
investigate if the model is accurate when using UWS
with degrees varying from 7 to 19 so as to determine
whether the model is still valid compared with the
results in Table 5 (using separate models for UWS20
and UWS21).

7.1. Model features influence

There are multiple ways of calculating the
importance of features. It is important to understand
the most independent variables that influence model
accuracy. By evaluating the properties of the futures
after the model fitting, as we want to determine
which among them has the most impact in the
predicting results. Thus, we would not change the
model or change the predictions we will obtain for a
given value of the feature. Instead, we want to
determine how randomly shuffling a single column
of validation data, leaving the target and all other
columns in place, would affect the accuracy of
predictions. Randomly reordering a single column
should result in less accurate predictions, as the
resulting data no longer correspond to anything
observed in the real world. Model accuracy
especially suffers if we shuffle a column that the
model relied on heavily for predictions. In this case,
shuffling control degrees would result in inaccurate
predictions. If we shuffled control weight instead,
the resulting predictions would not be as inaccurate.

As per the analysis, we are confident that a
control degree is the most important feature in
deciding the value of the dependent variable (the
influence value is the highest: 0.0077) followed by
input degree, input weight, control weights for UWS
with degree 21 as listed in Table 6.

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

36

Table 6: UWS21: Influence of features in the prediction
Feature Influence

Control Degree 0.0371 ± 0.0002
Input Degree 0.0293 ± 0.0004
Input Weight 0.0066 ± 0.0001

Control Weight 0.0045 ± 0.0001

In the following the implemented code for the
evaluation of the model features influence on the
prediction results:

{
perm=PermutationImportance(model,
random_state=1,scoring="neg_mean_squared_error").fit(X_t
est, y_test)
eli5.show_weights(perm,feature_names=dataset.columns.tol
ist()[:4])
}

Therefore, knowledge on the important inputs

(independent variables) and finding the most
important variable will have a greater impact on the
forecasting result. It will also provide a clear idea of
the sources of strength and weakness in the
cryptosystem, which will also reflect on our ability to
develop it. In addition to this, with further research
and investigation in this direction, it may be possible
to develop a mathematical relationship to analyze
and represent how to obtain a more random
sequence. Moreover, our approach can be applied to
any source that can produce a random sequence by
knowing the strengths and weaknesses based on the
components of the source by calculating the UWS,
because of the bigger the size the better. Thus, we
can test and select the best encryption systems.

7.2. Overall observation

The NN in our research has clearly demonstrated
that it is an effective tool for prediction, which is
reflected in its ability to measure the effectiveness of
any cryptosystem, based on a pseudorandom binary
sequence as the pseudorandomness measurements
for the binary sequences which can be produced by
this system. Thus, it serves as a measuring tool as
well as a system that can be developed with more
research and investigation to advance the encryption
systems used. Therefore, NNs help in analyzing the
strength of the security system used based on the
sequence it produces. By measuring the model’s
ability to predict, the strength of the cryptographic
system can be determined, and thus, the system can
be developed by designers to be more resistant to
prediction. It also helps users in selecting the best
encryption systems and the most effective to resist
attacks, not for obtaining that the applications of the
NN are being expanded to different fields, especially
in information protection systems. This will assist in
future development. Calculating and measuring UWS
predictability will help in the design of ciphers with
larger complexities with respect to nonlinearities,
which is a necessary condition for sequence
pseudorandomness as the larger the UWS is the
better; the complexities of attacks will also be

greater (Dubrova and Hell, 2017) in the future,
indicating that ciphers using nonlinear feedback shift
registers should be investigated in depth owing to
their increasing usage. Further, the sequences
generated by these ciphers need to have high values
for maximum-order complexity (Turan, 2012). As
the NN models can generate results with high speed,
it would be advantageous to investigate the
subsequences of a given binary sequence, which is
an interesting direction for future research on linear-
complexity profiles (Brandstätter and Winterhof,
2006), as well as to evaluate NN model applicability
as large correlation measures of automatic
sequences (Mérai and Winterhof, 2018).

8. Comparison with prior studies

In the discussion section, we presented related
works and explored the similarities with existing
research. Here we add more comparisons with
previous studies to differentiate our approach using
NN based models for testing pseudorandomness.

Uğuz et al. (2019) introduced statistical tests to
find the level of randomness for given binary
sequences. They computed the longest run, and they
found that the sequence has an equal probability of
zeros and ones. They reserved generalizations for
future work. Our results provide a more generalized
approach, which is applicable to any binary
sequence, even if it is produced without equal
probability.

Wang and Nicol (2015), in their study, found that
it is necessary to add new statistical methods. Hence,
they suggested tests based on statistical tests to
evaluate the pseudorandomness. In our methods, we
provided a tool to measure the pseudorandomness
and found UWS, which can lead to finding the
shortest FSR that can reproduce the same sequence.

Liang et al. (2017) used an algebraic and
statistical approach to find the weight distribution of
the sequence based on their Boolean function
representation. They provided an estimation for the
weight distribution, and they recommended further
research to arrive at a better distribution. Another
study by Liu and Mesnager (2019) and Tang and Liu
(2019) used a similar approach and focused on
classifying the weights in a certain order to discover
if the Boolean function is balanced.

Those studies aimed at finding a better
distribution that will lead to a better prediction of
pseudorandomness of a given sequence; while in our
study, by implementing NN models with the use of
SG and PRNG, we might be able to predict the UWS.

In short, we have a more generalized approach
that can be applied to any binary sequence
generated by any given PRNGs. We also have a
higher prediction accuracy with a minimum margin
of errors.

9. Conclusion

NNs have been proven as good prediction tools
for UWS, which can help in investigating the

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

37

strengths of pseudorandom binary sequences and
their generators. Our approach is applicable to any
sequence generator, such as a cipher, which can help
designers and users who require such sequences or
ciphers for specific applications. NNs are very
efficient prediction tools even when the data have
random features. In the specific case investigated in
our work, the data are discrete and cannot be
represented by a continuous statistical distribution,
making it difficult to implement basic and classical
statistical analysis methods efficiently and with
reasonable accuracy. Hence, the NN is an efficient
and powerful alternative, as shown by our findings.
Some future directions for this work that are worth
investigating will further strengthen and generalize
this method for obtaining the UWS on the SG
keystream are as follows:

1. Applying the proposed model to the keystreams of

other ciphers, for example, other stream ciphers
(e.g., Trivium, Mickey) and block ciphers such as
AES, DES.

2. Applying the model to binary sequences generated
by internal cipher components, such as FSR and
LFSR. In the SG case, for example, LFSRs will
generate binary sequences. Calculating the UWSs
for these sequences and applying the model would
be of interest for evaluating the strengths of the
internal components.

3. An additional direction for research (not related to
security) could be facial or image recognition. By
converting the input images and features to binary
sequences and applying the proposed approach,
with some modifications to the prediction model,
an alternative tool for pattern recognition can be
realized as it has a number of important
applications.

Acknowledgment

We would like to thank “Lito P. Cruz” for the
valuable Neural Network comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of
interest.

References

Allam AM and Abbas HM (2011). Group key exchange using neural
cryptography with binary trees. In the 24th Canadian
Conference on Electrical and Computer Engineering, IEEE,
Niagara Falls, Canada: 000783-000786.
https://doi.org/10.1109/CCECE.2011.6030562

Bishop CM (2006). Pattern recognition and machine learning.
Springer-Verlag, New York, USA.

Boztas S and Alamer A (2015). Statistical dependencies in the Self-
Shrinking Generator. In the Seventh International Workshop
on Signal Design and its Applications in Communications,
IEEE, Bengaluru, India: 42-46.
https://doi.org/10.1109/IWSDA.2015.7458410

Brandstätter N and Winterhof A (2006). Linear complexity profile
of binary sequences with small correlation measure. Periodica
Mathematica Hungarica, 52(2): 1-8.
https://doi.org/10.1007/s10998-006-0008-1

Chen ST, Yu DC, and Moghaddamjo AR (1992). Weather sensitive
short-term load forecasting using nonfully connected artificial
neural network. IEEE Transactions on Power Systems, 7(3):
1098-1105.
https://doi.org/10.1109/59.207323

Coppersmith D, Krawczyk H, and Mansour Y (1993). The
shrinking generator. In the Annual International Cryptology
Conference, Springer, Santa Barbara, USA: 22-39.
https://doi.org/10.1007/3-540-48329-2_3

Diffie W and Hellman ME (1976). New directions in cryptography.
IEEE Transactions on Information Theory, 22(6): 644–654.
https://doi.org/10.1109/TIT.1976.1055638

Dubrova E and Hell M (2017). Espresso: A stream cipher for 5G
wireless communication systems. Cryptography and
Communications, 9(2): 273-289.
https://doi.org/10.1007/s12095-015-0173-2

Erdmann D and Murphy S (1997). An approximate distribution for
the maximum order complexity. Designs, Codes and
Cryptography, 10(3): 325-339.
https://doi.org/10.1023/A:1008295603824

Fan F and Wang G (2018). Learning from pseudo-randomness
with an artificial neural network–Does god play pseudo-dice?
IEEE Access, 6: 22987-22992.
https://doi.org/10.1109/ACCESS.2018.2826448

Godhavari T, Alamelu NR, and Soundararajan R (2005).
Cryptography using neural network. In the Annual IEEE India
Conference-Indicon, IEEE, Chennai, India: 258-261.
https://doi.org/10.1109/INDCON.2005.1590168

Golić JD (2001). Correlation analysis of the shrinking generator. In
the Annual International Cryptology Conference, Springer,
Santa Barbara, USA: 440-457.
https://doi.org/10.1007/3-540-44647-8_26

Hagan MT, Demuth HB, Beale MH, and De Jesús O (1996). Neural
network design. PWS Publisher, Boston, USA.

Hell M and Johansson T (2006). Two new attacks on the self-
shrinking generator. IEEE Transactions on Information
Theory, 52(8): 3837-3843.
https://doi.org/10.1109/TIT.2006.878233

Hertz J, Krogh A, and Palmer RG (1991). Introduction to the theory
of neural computation. Addison Wesley Longman Publishing,
Boston, USA.
https://doi.org/10.1063/1.2810360

Jansen CJ (1991). The maximum order complexity of sequence
ensembles. In the Workshop on the Theory and Application of
Cryptographic Techniques, Springer, Brighton, UK: 153-159.
https://doi.org/10.1007/3-540-46416-6_13

Jansen CJA (1989). Investigations on nonlinear streamcipher
systems: Construction and evaluation methods. Ph.D.
Dissertation, Technical University of Delft, Delft, Netherlands.

Johansson T (1998). Reduced complexity correlation attacks on
two clock-controlled generators. In the International
Conference on the Theory and Application of Cryptology and
Information Security, Springer, Beijing, China: 342-356.
https://doi.org/10.1007/3-540-49649-1_27

Keras (2019). Keras: The python deep learning library. Available
online at:
https://bit.ly/32k8qYV

Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, and
Meltzer PS (2001). Classification and diagnostic prediction of
cancers using gene expression profiling and artificial neural
networks. Nature Medicine, 7(6): 673-679.
https://doi.org/10.1038/89044
PMid:11385503 PMCid:PMC1282521

https://doi.org/10.1109/CCECE.2011.6030562
https://doi.org/10.1109/IWSDA.2015.7458410
https://doi.org/10.1007/s10998-006-0008-1
https://doi.org/10.1109/59.207323
https://doi.org/10.1007/3-540-48329-2_3
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/s12095-015-0173-2
https://doi.org/10.1023/A:1008295603824
https://doi.org/10.1109/ACCESS.2018.2826448
https://doi.org/10.1109/INDCON.2005.1590168
https://doi.org/10.1007/3-540-44647-8_26
https://doi.org/10.1109/TIT.2006.878233
https://doi.org/10.1063/1.2810360
https://doi.org/10.1007/3-540-46416-6_13
https://doi.org/10.1007/3-540-49649-1_27
https://bit.ly/32k8qYV
https://doi.org/10.1038/89044

Ahmed Alamer, Ben Soh/International Journal of Advanced and Applied Sciences, 7(4) 2020, Pages: 29-38

38

Kimoto T, Asakawa K, Yoda M, and Takeoka M (1990). Stock
market prediction system with modular neural networks. In
the IJCNN International Joint Conference on Neural Networks,
IEEE, San Diego, USA: 1-6.
https://doi.org/10.1109/IJCNN.1990.137535

Kinzel W and Kanter I (2002). Interacting neural networks and
cryptography. In: Kramer B (Ed.), Advances in solid state
physics: 383-391. Springer, Berlin, Germany.
https://doi.org/10.1007/3-540-45618-X_30

Li P, Li J, Huang Z, Li T, Gao CZ, Yiu SM, and Chen K (2017). Multi-
key privacy-preserving deep learning in cloud computing.
Future Generation Computer Systems, 74: 76-85.
https://doi.org/10.1016/j.future.2017.02.006

Liang H, Chen W, and Tang Y (2017). A class of binary cyclic codes
and sequence families. Journal of Applied Mathematics and
Computing, 53(1-2): 733-746.
https://doi.org/10.1007/s12190-016-0993-z

Liu J and Mesnager S (2019). Weightwise perfectly balanced
functions with high weight wise nonlinearity profile. Designs,
Codes and Cryptography, 87(8): 1797-1813.
https://doi.org/10.1007/s10623-018-0579-x

Meidl W and Niederreiter H (2016). Multisequences with high
joint nonlinear complexity. Designs, Codes and Cryptography,
81(2): 337-346.
https://doi.org/10.1007/s10623-015-0142-y

Meier W and Staffelbach O (1994). The self-shrinking generator.
In: Blahut RE, Costello DJ, Maurer U, and Mittelholzer T (Eds.),
Communications and cryptography: 287-295. Springer,
Boston, USA.
https://doi.org/10.1007/978-1-4615-2694-0_28
PMid:8203104

Mérai L and Winterhof A (2018). On the pseudorandomness of
automatic sequences. Cryptography and Communications,
10(6): 1013-1022.
https://doi.org/10.1007/s12095-017-0260-7

Mérai L, Niederreiter H, and Winterhof A (2017). Expansion
complexity and linear complexity of sequences over finite
fields. Cryptography and Communications, 9(4): 501-509.
https://doi.org/10.1007/s12095-016-0189-2

Mihaljević MJ (1996). A faster cryptanalysis of the self-shrinking
generator. In the Australasian Conference on Information
Security and Privacy, Springer, Wollongong, Australia: 182-
189.
https://doi.org/10.1007/BFb0023298

Ritter T (1991). The efficient generation of cryptographic
confusion sequences. Cryptologia, 15(2): 81-139.
https://doi.org/10.1080/0161-119191865812

Su J, Vargas DV, and Sakurai K (2019). One pixel attack for fooling
deep neural networks. IEEE Transactions on Evolutionary
Computation, 23(5): 828-841.
https://doi.org/10.1109/TEVC.2019.2890858

Sun Z and Winterhof A (2019). On the maximum order complexity
of the Thue-Morse and Rudin-Shapiro sequence.
arXiv:1910.13723v1 [math.CO].
https://doi.org/10.1080/23799927.2019.1566275

Sun Z, Zeng X, Li C, and Helleseth T (2017). Investigations on
periodic sequences with maximum nonlinear complexity.
IEEE Transactions on Information Theory, 63(10): 6188-
6198.
https://doi.org/10.1109/TIT.2017.2714681

Tang D and Liu J (2019). A family of weight wise (almost)
perfectly balanced Boolean functions with optimal algebraic
immunity. Cryptography and Communications, 11: 1185-
1197.
https://doi.org/10.1007/s12095-019-00374-6

TensorFlow (2019). An open source machine learning framework.
Available online at:
https://bit.ly/3c3YSWs

Turan MS (2012). On the nonlinearity of maximum-length NFSR
feedbacks. Cryptography and Communications, 4(3-4): 233-
243.
https://doi.org/10.1007/s12095-012-0067-5

Uğuz M, Doğanaksoy A, Sulak F, and Koçak O (2019). R-2
composition tests: A family of statistical randomness tests for
a collection of binary sequences. Cryptography and
Communications, 11(5): 921-949.
https://doi.org/10.1007/s12095-018-0334-1

Wang Y and Nicol T (2015). On statistical distance based testing of
pseudo random sequences and experiments with PHP and
Debian OpenSSL. Computers and Security, 53: 44-64.
https://doi.org/10.1016/j.cose.2015.05.005

Xiao Z, Zeng X, Li C, and Jiang Y (2019). Binary sequences with
period N and nonlinear complexity N−2. Cryptography and
Communications, 11(4): 735-757.
https://doi.org/10.1007/s12095-018-0324-3

Zatorre RJ, Chen JL, and Penhune VB (2007). When the brain plays
music: Auditory–motor interactions in music perception and
production. Nature Reviews Neuroscience, 8(7): 547-558.
https://doi.org/10.1038/nrn2152 PMid:17585307

Zoufal C, Lucchi A, and Woerner S (2019). Quantum generative
adversarial networks for learning and loading random
distributions. npj Quantum Information, 5(1): 1-9.
https://doi.org/10.1038/s41534-019-0223-2

https://doi.org/10.1109/IJCNN.1990.137535
https://doi.org/10.1007/3-540-45618-X_30
https://doi.org/10.1016/j.future.2017.02.006
https://doi.org/10.1007/s12190-016-0993-z
https://doi.org/10.1007/s10623-018-0579-x
https://doi.org/10.1007/s10623-015-0142-y
https://doi.org/10.1007/978-1-4615-2694-0_28
https://doi.org/10.1007/s12095-017-0260-7
https://doi.org/10.1007/s12095-016-0189-2
https://doi.org/10.1007/BFb0023298
https://doi.org/10.1080/0161-119191865812
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1080/23799927.2019.1566275
https://doi.org/10.1109/TIT.2017.2714681
https://doi.org/10.1007/s12095-019-00374-6
https://bit.ly/3c3YSWs
https://doi.org/10.1007/s12095-012-0067-5
https://doi.org/10.1007/s12095-018-0334-1
https://doi.org/10.1016/j.cose.2015.05.005
https://doi.org/10.1007/s12095-018-0324-3
https://doi.org/10.1038/nrn2152
https://doi.org/10.1038/s41534-019-0223-2

	A new neural-network-based model for measuring the strength of apseudorandom binary sequence
	1. Introduction
	1.1. Contribution of this study

	2. Background
	2.1. Unique window size
	2.1.1. Importance of unique window size

	2.2. Neural networks
	2.3. Shrinking generator

	3. Related work
	4. Proposed neural-network-based prediction for pseudorandom sequences
	5. Implementation
	5.1. Mathematical description of the NN model
	5.2. Determining optimal weight matrices

	6. Scaling the dataset for training
	6.1. Splitting the dataset for training and testing
	6.2. Estimation of performance of the proposed model
	6.2.1. Performance estimation code

	7. Prediction results
	7.1. Model features influence
	7.2. Overall observation

	8. Comparison with prior studies
	9. Conclusion
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References

