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Maximum order complexity is an important tool for measuring the 
nonlinearity of a pseudorandom sequence. There is a lack of tools for 
predicting the strength of a pseudorandom binary sequence in an effective 
and efficient manner. To this end, this paper proposes a neural network (NN) 
based model for measuring the strength of a pseudorandom binary sequence. 
Using the shrinking generator (SG) keystream as pseudorandom binary 
sequences and then calculating the unique window size (UWS) as a 
representation of maximum order complexity, we can demonstrate that the 
proposed model provides more accurate and efficient measurements than 
the classical method for predicting maximum order complexity. By using 
UWS, which is a method of pseudorandomness measurement, we can identify 
with higher accuracy the level of pseudorandomness of given binary 
sequences. As there are different randomness tests and predicting methods, 
we present a prediction model that has high accuracy in comparison with 
current methods. This method can be used to evaluate the ciphers’ 
pseudorandom number generator (PRNG) and can also be used to evaluate 
the internal components by investigating their binary output sequence 
pseudorandomness. Our aim is to provide an application for NN 
pseudorandomness and in cryptanalysis in general, as well as demonstrating 
the models’ mathematical description and implementations. Therefore, 
applying NN models to predict UWS utilizes two layers of pseudorandomness 
testing of binary sequences and is an essential cryptanalysis tool that can be 
extended to other fields such as pattern recognition. 
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1. Introduction 

*Maximum order complexity is an important tool 
for measuring the nonlinearity of a pseudorandom 
sequence. The maximum order complexity of a given 
sequence is referred to as the function acting as the 
shortest nonlinear feedback shift register (FSR). The 
FSR can generate this sequence (Jansen, 1989). A 
greater length of the FSR is better; hence, this 
sequence is more resistant to attack and more 
pseudorandom. 

In this regard, to be able to predict the maximum 
order complexity is important for determining how 

                                                 
* Corresponding Author.  
Email Address: a.alamer@latrobe.edu.au (A. Alamer) 

https://doi.org/10.21833/ijaas.2020.04.005 
 Corresponding author's ORCID profile:  

https://orcid.org/0000-0002-1249-6424 
2313-626X/© 2020 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

this sequence has a random appearance (Erdmann 
and Murphy, 1997; Jansen, 1991). 

By calculating the unique window size (UWS) 
(Boztas and Alamer, 2015) as a representative of 
maximum order complexity, as will be explained 
later, we will be able to establish the measurement 
of pseudorandomness. 

Once the UWS has been calculated, we have an 
overview of the behavior of binary sequence 
pseudorandomness. Using different degrees of UWS, 
as will be shown, and utilizing a predicting tool will 
add an advance step to generalize the measurements 
with the given data. This, in turn, allows us to 
establish the efficiency of the cipher used in the 
encryption. This study uses the keystream generated 
by the shrinking generator as a binary sequence. 
This is because the study of binary sequence 
pseudorandomness is the building block for 
determining the efficiency of ciphers (Xiao et al., 
2019). 
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1.1. Contribution of this study 

The main contributions of this study are as 
follows: 

 
1. Use the UWS as a representative maximum order 

complexity tool for the shrinking generator 
keystream (binary sequence). 

2. Introduce a neural-network-based model for 
predicting the UWS. This will help in evaluating 
the strength of the cipher in the study, which can 
be used for similar ciphers with some 
modifications to the model. Furthermore, using 
NN models for maximum order complexity to the 
best of our knowledge is a new approach in this 
regard. 
 
In addition, it can be used for internal cipher 

components, other than the keystream, that also 
generate binary sequences, and hence, will help in 
evaluating the strength of cipher components. 

Furthermore, this will inspire other applications 
of NN models in cryptography, especially in 
encryption, and insecurity in general, such as in 
securing communications. 

The paper is organized as follows: Section 1 
provides the background of the study; Section 2 
introduces SG and UWS and also provides a brief 
overview of NNs; section 3 reviews the current 
literature in the field of NNs with a focus on its 
implementation in security; section 4 discusses the 
proposed NN models and their implementation; 
section 5 discusses the observations of the models 
and the results; and the conclusions are drawn in 
section 6. 

2. Background 

This section reviews the necessary information 
and background to understand the basic structure of 
a NN model. As well as, necessary information and 
background to understand the basic structure of a 
NN model. By focusing on the information associated 
with our study of the pseudorandom binary 
sequence resulting from the calculation of UWS, with 
their significance clarified. We also discuss the SG 
cipher, where we describe its principle, which is the 
source of the data we obtained. We also discuss the 
SG cipher, where we describe its principle, which is 
the source of the data we obtained. 

2.1. Unique window size 

The UWS is a type of maximum order complexity 
tool that is used in this study. This concept can be 
defined by assuming that the maximum order 
complexity of a given sequence S is m. Then, the UWS 
for S is m+1. We use the UWS as a nonlinear 
measurement of a binary sequence that illustrates 
how such a sequence has a high level of security. 
This is necessary for cryptosystems as we need a 
pseudorandom sequence for these types of security 

applications. For more information on the statistical 
behavior and distributions of UWS, please refer to 
(Boztas and Alamer, 2015). 

2.1.1. Importance of unique window size 

UWS is a tool for measuring the strength and 
randomness of a given sequence, even though we use 
it for an SG as an example. However, it is applicable 
for testing any ciphers that can generate a sequence 
with a random appearance. 

The prediction model can be helpful for the two 
LFSRs choices for shrinking generating and where 
the choice of the LFSRs combinations will result in a 
small or large UWS, so the user can choose the LFSRs 
pair that resulted in a large UWS. 

By analyzing this, we can detect possible attacks 
on the given combinations. This is a good direction 
for further investigation as the sequence with a low 
UWS can be easily simulated. Furthermore, it can be 
vulnerable to certain attacks such as a correlation 
attack (Golić, 2001) and a divide and conquer attack 
(Johansson, 1998). 

Researchers can adapt NN for different purposes 
needed for prediction of, for example, other 
randomness measures. The prediction of UWS is an 
example that was implemented in the security field 
(Erdmann and Murphy, 1997). 

2.2. Neural networks 

NNs are a useful cryptographic tool that can 
assess an algorithm to generate a binary sequence, 
making it useful in certain industries, such as 
security, and the vital role of NN in pattern 
recognition is discussed by Bishop (2006). 

NNs have previously been used for generating 
secret keys for given ciphers. However, to the best of 
our knowledge, there are very few studies on the use 
of NN as a tool to measure the pseudorandomness of 
a binary sequence (Li et al., 2017). A NN simulates 
the behavior of neurons in the brain. It can deal with 
complex processes, and an algorithm can be 
developed that can be used to model and predict 
complex data and compare this data with the 
original input data. For example, to measure the 
accuracy of a model, an algorithm is trained and 
modified by a number of steps until the optimal 
model is obtained. This can be done by selecting a 
powerful algorithm for learning and providing 
suitable and correct inputs (Hagan et al., 1996). NNs 
can be applied to cancer prediction (Khan et al., 
2001), weather forecasting (Chen et al., 1992), image 
recognition (Su et al., 2019), music production 
(Zatorre et al., 2007), and stock market prediction 
(Kimoto et al., 1990), to name a few. They can also be 
applied in encryption where they can be used to 
select secret keys, as well as in other cryptographic 
applications. Predicting the UWS is a challenging task 
as it is calculated using a pseudorandom binary 
sequence. Therefore, predicting the UWS using NN 
will contribute to determining the security of a given 
binary sequence (Hertz et al., 1991). The purpose of 
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this study is to evaluate the use of NN as a method 
for evaluating the strength of a pseudorandom 
sequence. A multi-layer model is used to determine 
the best prediction model. 

2.3. Shrinking generator 

SG is a cipher that implements two primitive 
polynomials acting as linear feedback shift registers 
(LSFRs). To illustrate the concept, assume that LFSRa 

is the input LFSR and LFSRb is the controlling LFSR. 
Thus, the binary input from LFSRa will be controlled 
by LFSRb in such a way that if the input bit of LFSRb is 
1s, then the bits from LFSRa will be selected. 
Otherwise, it will not appear in the keystream 
sequence. Table 1 lists the selection role for the LFSR 
pairs. In an SG, LFSRa is linear and LFSRb makes the 
keystream sequence to be a nonlinear sequence 
(Coppersmith et al., 1993). 

 
Table 1: SG keystream bits selection rule 

LFSRa LFSRb Keystream bits output 
1 1 1 
0 1 0 
1 0 Not appear 
0 0 Not appear 

 

As SG is a lightweight stream cipher, it can be 
used in small systems with limited power resources, 
such as in RFID systems. The shrinking concept is 
important to the study of data management and data 
selection rules. In addition, an analysis needs to be 
performed to identify limitations and establish an 
optimal testing model to be used for a chosen cipher. 
In an SG, the prediction model can illustrate the best 
combination of LFSR pairs that can generate a large 
UWS and prevent combinations with a lower UWS. 
An interesting SG variant is a self-shrinking 
generator (SSG) (Meier and Staffelbach, 1994), which 
uses a similar design concept with the difference 
being that SSG uses one LFSR and selection and bit 
input is performed in this LFSR. 

Jansen (1991), in his study of any given maximum 
order complexity, stated that some sequences have a 
subsequence with nonlinear complexity. If the 
occurrence of these subsequences is large, this will 
eventually weaken the nonlinearity strength, which 
is not desirable for the randomness needed for the 
given sequence. Hence, it is not attractive in 
cryptographic practice. This is important for the 
sequence to have high nonlinear complexity. 

To explain UWS in this context, assume we have a 
sequence S with length N. We look for a subsequence 
of S with a sliding window of length W (W=the 
number of bits of this subsequence). Then, we 
choose a sliding window having a length of n bits 
starting from the first bits of the sequence S (from 
the most left). Then, we take the same m starting 
from the second bits and leave out the first bit, then 
m starting from the third bit and leave out the 
second bits, etc. Therefore, if we determine the 
repetition of states (one or more states appear more 
than once) by sliding one bit at a time, we can select 
another sliding window with length m+1. This 

process is repeated n times till every state 
(subsequence) is unique (without repetition). At this 
stage, we chose W=m+n as our UWS. 

 
Example 1: X2+ X+1, work as LFSRA acting as input 
LFSR (a primitive polynomial of degree 2, 𝑋^𝑖 
represent the taps position 𝑖 is the tap place in LFSR 
polynomial, the taps in this example at 2nd and first 
bits); 
 
X5+ X3+ X2+ X+1(LFSRB as control LFSR), UWS = 15 
11110110101110101000110101101111011110111101010
1 
 

Here, we can see that every state is unique for a 
sliding window of length w=15. If the length of the 
sliding window is less than 15, e.g., 14, the 
subsequence 11011110111101 is repeated twice. If 
the length of the sliding window is 12 or 13, more 
states are repeated. 

Here, we can see that UWS is another important 
measurement tool of cipher strength as when 
UWS<15, the states are repeated twice, as in the case 
with w=14. With brute force calculation, it is possible 
to find the remaining states (Ritter, 1991). Thus, if 
we can define UWS, we can find subsequences with 
UWS<15. In addition, finding the correlation between 
the repeated states and remaining states can lead to 
a correlation attack, and the correlation between the 
repeated sequence and SG LFSRs pairs can be 
investigated. Table 2 lists the number of simulations 
per SG degree to obtain the UWS. 
 
Table 2: Number of simulations per UWS degree for the SG 

UWS degree Number of Simulations 
7 20 
8 24 
9 24 

10 72 
11 208 
12 216 
13 840 
14 1280 
15 1280 
16 6360 
17 13080 
18 13896 
19 48600 
20 70416 
21 245628 

 

A long keystream attack is a type of security 
attack. To perform a long keystream attack, 
knowledge regarding the length of the keystream is 
required as this type of attack assumes that the 
attacker has access to long portions of the 
keystream, as well as with the need of the LFSR to 
have a large number of taps (Hell and Johansson, 
2006; Mihaljević, 1996). UWS can be used as a 
measurement tool to evaluate the strength of the 
sequence. 

3. Related work 

Erdmann and Murphy (1997) introduced in an 
approximate maximal order complexity distribution 
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for a pseudorandom sequence and compared the 
distributions obtained in their simulations with 
actual distribution to develop statistical tests. They 
emphasized the importance of finding such a 
distribution for measuring the strength of a 
pseudorandom sequence. 

Sun et al. (2017) investigated the maximum order 
complexity for a given sequence with the aim of 
determining the relationship between the maximum 
order complexity and the number of periodic 
sequences that can be generated with maximum 
order complexity to use that as an indicator of the 
nonlinearity strength of the sequence. However, in 
our approach, not only is the UWS generated by the 
cipher (SG in our case), which is based on the 
maximum order complexity, but the UWS is also 
predicted with high accuracy by implementing the 
NN model. 

Sun and Winterhof (2019) also found that the 
maximum order complexity is a better complexity 
measure compared with expansion complexity, 
which was applied to the Thue−Morse sequence and 
the Rudin−Shapiro sequence. 

Kinzel and Kanter (2002) were inspired by public 
cryptography methods using a public key exchange, 
which was introduced by Diffie and Hellmann 
(1976). Using these methods, the public key can be 
shared in an insecure channel and is accessible to the 
public. A discrete logarithm was used for the public 
key, making it difficult for devices with limited 
computation power to handle, especially in cases 
where a large number of public keys were chosen. 
Thus investigated interactive NNs to investigate 
secret key exchange through a public channel. In 
addition, Godhavari et al. (2005) implemented an 
interactive NN to generate the secret key over a 
public channel using the DES algorithm. 

Meidl and Niederreiter (2016) demonstrated 
multiple sequences over a given finite field by 
analyzing two groups of nonlinear complexity with 
interactive differences between them. In addition, to 
create a probability of joint nonlinear complexity 
over a given fixed finite field, they introduced joint 
probability based on their parameters with special 
conditions. 

To summarize, it is important to have a clear 
understanding of the nonlinear complexity and 
behavior of a binary sequence and to analyze the 
optimal methods to evaluate it. The prediction of 
UWS is an important direction in this regard. 

With respect to studies on the applications of NN 
to security, Allam and Abbas (2011) presented a 
binary tree algorithm that can be implemented by a 
mutual learning process to ensure secure 
communication through the exchange of keys 
between groups in public cryptography methods. 
They showed that the complexity of their algorithm 
is logarithmic and depends on the number of parties 
they synchronized together. In addition, they 
introduced the possibility of using NNs for secure 
key sharing. Furthermore, Fan and Wang (2018) 
explained how NN is a powerful prediction tool by 
using an NN to find the correlation between the 

pseudorandom data (especially binary data) and 
used this to predict the bits based on the 
neighboring bits. In their study, they dealt with 
multiple pseudorandom sequences and they showed 
how NN can learn from a given dataset to predict the 
outcomes in testing data. 

Introducing a new method for predicting the 
maximum order complexity (UWS in our case) for 
the pseudorandomness of a binary sequence by NNs 
models with high accuracy is a new and important 
direction for evaluating the cryptosystems used as 
well as predicting the pseudorandomness for the 
binary sequences in general. 

4. Proposed neural-network-based prediction for 
pseudorandom sequences 

We ran the calculation of UWS for the SG 
keystream (Example 1 shows how UWS was 
calculated) on EC2, which is a service provided by 
Amazon Web Services for cloud computing, such as 
UWS with degree 20 (UWS20). We used a cloud 
server (EC2) as it enables us to simultaneously run 
multiple data files, thus reducing the time required 
for calculating UWS. A large number of simulations 
are required for computing UWS, for example, 
UWS20 has a data size 70416, which requires 70416 
simulations. 

We used Linux on EC2 for calculating UWS. A 
similar procedure was employed for UWS with 
degree 21 as well as for all UWS with degrees 
ranging from 7 to 19, as discussed later. Let the 
primitive polynomial X17+X5+X3+X2+1 as LFSRA and 
X3+X2+1 is LFSRB. 

Then the SG degree is 20 by adding the leftmost 
power from the LFSRs (17+3), Similarly, when the 
highest powers of the other combinations of LFSRA 

and LFSRB are added, they sum to 20. Then, we 
obtain all 70416 possible UWS for SG with degree 
20(UWS20). The independent variables within the 
prediction model are input degree, input weight, 
control degree, and control weight. The dependent 
variable is the UWS, as shown in the following 
example. 

 
Example 2: Let us take the following example: LFSRA 
(input LFSR) as (X13+X9+X8+X6+X4+X2+1), and LFSRB 
(control LFSR) as (X7 + X6 + X4 + X2 + 1), then the input 
LFSRA degree=17, LFSRA weight=7, control LFSRB 

degree=7 and LFSRB weight=5, in this case UWS=39. 
For the sake of clarity, let us assume that we have 

two SG polynomial combination samples for UWS20, 
as shown in Table 3. 

To analyze the results, the NN model was 
implemented using Keras (2019) as a tool with 
Tensorflow (2019) as a backend. The UWS with 
degree 20 (UWS20) was computed (Example 1) for 
the keystream sequences generated by the SG cipher, 
and all possible combinations of LFSRs of the SG 
were obtained. There were 70416 possible 
combinations, and we calculated the UWS20 for all 
the combinations with the NN model using a ReLU 
activation function for the outer layer, and the ReLU 
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activation function for the hidden layers (Table 4). 
We obtained a prediction with high accuracy as 
shown in Table 5 in addition to UWS21 for 
comparison. 

 
Table 3: UWS20 sample for illustration 

Input 
Degree 

Input 
Weight 

Control 
Degree 

Control 
Weight 

UWS20 

3 3 17 3 42 
3 3 17 7 39 
7 5 13 7 44 

11 7 9 7 42 
13 7 7 5 39 
17 5 3 3 36 
9 7 11 7 45 

17 5 3 3 37 
 

Table 4: Model summary from the output of Python code 
on Keras 

Layer (type) Output Shape Param # 
dense_1 (Dense) (None, 100) 500 
dense_2 (Dense) (None, 50) 5050 
dense_3 (Dense) (None, 20) 1020 
dense_4 (Dense) (None, 10) 210 
dense_5 (Dense) (None, 1) 11 

Total params: 6,791, Trainable params: 6,791 

 

Table 5: UWS20 and UWS21 model comparison 
 UWS20 UWS21 
 Model Model 

Number of Layers 4 4 
Number of nodes 100,50,20,10 100,50,20,10 

Learning rate 0.0001 0.0001 
MSE 0.0088 0.0064 

training set 56333 196502 
Accuracy 94.30% 91.90% 

5. Implementation 

We use multiple functions of the Keras library in 
Python to build our model. These features help us 
optimize the performance of the model and training 
time. These functions are listed below:  

 
1. Earlystopping: This function stops the training of 

the model if the accuracy of the model does not 
show any improvement after a pre-defined 
number of epochs.  

2. Sequential: This function helps define the model 
type of NN. A NN can have multiple layers, and 
this function helps the model learn each layer. 

3. Dense: This function adds a fully connected layer 
to the NN model and makes the neurons in the 
layer to be connected to the neurons in the next 
layer.  

4. Optimizer.Adagrad: This function defines the 
optimizer for training the model.  

5. Compile: This function defines the parameters for 
the model.  

6. Fit: This function trains the model by updating 
the weights in the model. 

5.1. Mathematical description of the NN model 

Let us consider a matrix MN, where M is the 
number of UWS simulations, and N is the number of 
features, which include input degree, control degree, 
input weight, and control weight. We have D number 

of layers in the NN, and these layers include the 
input layer, output layer, and G number of hidden 
layers, where each hidden layer is for learning the 
input data. A greater number of layers in the NN will 
help in learning more complex data. The relationship 
between the input layer and the first hidden layer is 
represented by matrix multiplication. However, if we 
start from first principles, we can assume there is 
just one example, and it is a column vector of size N 
∗1. 

If N=3 and we assume that the first hidden layer 
had H1 =4, each layer will be fully connected so that 
every neuron in the hidden layer is influenced by 
every neuron in the input. layer. Let H1j be the jth 

neuron of the hidden layer j. Consequently, the 
output is calculated as the dot product of the input 
layer neurons and the weights connected to the jth 

neuron of the hidden layer. Thus, let 𝑤1𝑖𝑗  be the 

weight from input neuron i to hidden layer neuron j, 
xij is the example feature (independent variable); 
thus: 
 
𝐻1𝑖𝑗 = ∑ 𝑊1𝑖𝑗 . 𝑋𝑖𝑗

𝑁
𝑖=1 ,  

 
and 𝑊 denotes the weights matrix. 
 

We can represent this in the multiplication 
matrix, where each row denotes the result of the 
hidden layer for each example: 

 
𝐻1 = 𝑋 ∗ 𝑊1

𝑇 
 

W1 is a matrix that is N×H1, where N denotes the 
number of features for an input example and H1 

denotes the number of neurons for the hidden layer. 
We transpose X because each example is in a column 
for the mathematics to work, but the original matrix 
X is a row matrix. For NNs, each layer is represented 
as a matrix of weights. For our particular case with 
input data (for UWS20), the first hidden layer has 
100 neurons, the second layer has 50 neurons, the 
third layer has 20 neurons, the fourth layer has 10 
neurons, and the output layer has 1 neuron. 

After this operation, to model the nonlinearities 
in the data, this goes through an activation function. 
In our case, we used the rectifier linear unit (ReLU) 
activation function (Zoufal et al., 2019) a single value 
x it is defined as follows: 

 
R(x)= max(0, x)  

 
as follow: 
 

{
𝑅(𝑥) = 𝑥         𝑖𝑓 𝑥 > 1

𝑅(𝑥) = 0              𝑒𝑙𝑠𝑒    
 

 
Note our datasets are positive integers; hence, 

using ReLu presents advantages as our data do not 
have negative values. 

Therefore, the ReLU activation function works on 
a per-element basis. Thus, we apply this to each 
output value of H1. Thus: 
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𝐻1 ́ = 𝜎 (𝐻1), 𝜎  

 
is the activation function(R). For the second output 
layer, we repeat the same operation. 
 
𝐻2 =  𝐻1

́ ∗ 𝑊2
𝑇 , 

 
H2 contains the outputs for the second hidden layer, 
considering the activation function. 
 
𝐻2  ́ = 𝜎 (𝐻2). 
 

The same procedure is used for the third layer 
finally; we have the output layer: 
 
𝐻0 =  𝐻3

́ ∗ 𝑊4
𝑇 . 

 
In summary, the output layer is set to the total 

number of expected outputs from our model will be 
a Matrix with a single column contains UWS (UWS20 
has 70416 elements). In this case, we are estimating 
a single quantity so that there is just one output 
neuron for that layer. The number of input neurons 
in the input layer is the same as the number of 
features. 

The number of neurons in the hidden layer is 
usually the average of the input and output neurons. 

Thus, for our case, the number of neurons is 
4+1

2
=

2.5; thus, we round this off to 3 neurons. However, 
the performance was poor. Therefore, we tried to 
increase the number of layers by 1 so that there are 
4 hidden layers. The first hidden layer has 100 
neurons because of a lack of available features. We 
want each neuron to provide a good representation 
of the lack of available features. The second layer has 
50 neurons, the third layer has 20 neurons, and the 
last hidden layer has 10 neurons and this layer is 
known as a "bottleneck" layer. Thus, once we learn 
the complex representations, we force the network 
to remember the best things about representation. 

5.2. Determining optimal weight matrices 

To determine the optimal weight matrices, we 
have to define a cost function that determines the 
penalty in case the predicted outputs are dissimilar, 
given the NN structure with the true output values. 

In our case, we defined the mean squared error or 
the sum of the squared errors. The output of H4 will 
be a matrix of M×1, where M is the total number of 
examples, and there is just one column for the 
predicting output (UWS). 

To calculate the cost function, let yi be the true 
output value for xi, and H4i is the predicted output for 
i. Therefore, 
 

𝐶 =  
1

2𝑀
∑(𝐻4𝑖 − 𝑦𝑖)2

𝑀

𝑖=1

 

 
Thus, we multiply by 1/𝑀 because we want to 

find the mean, and we additionally 1/𝑀 divide by 2 
when optimizing (finding) the derivative. 

Given a batch of training examples, Keras will 
optimize the weights by minimizing the cost 
function. These sets of weights can be found 
analytically by using pseudo inverse, but this will 
consume a considerable amount of memory, 
particularly if there are a lot of examples that require 
a lot of computational time. 

The alternative is to use a method called 
backpropagation that systematically determines the 
weights, one layer at a time. This leads to a method 
called gradient descent, which is an iterative method 
to determine the minimum of a function. The 
procedure can be described as follows: 

 
1. Set the weights of each hidden layer to random. 
2. Decide on a batch of examples to feed into the 

network. The batch size directly affects the 
weights. The larger the batch size, the more 
accurate the weights. This will hopefully lead to 
faster convergence. Smaller batch sizes are 
sometimes used because the network can be very 
deep (a large number of layers) and the number 
of examples can also be high. 

3. Do a forward pass, which involves taking 
examples and finding the outputs of each layer as 
well as the output layer. 

4. Compute the backward pass (backpropagation) 
where the inputs from step #2, as well as the 
current weights, are used to update and find the 
gradients with respect to the weights 

5. Compute an update for gradient descent. 
6. Repeat steps 2 to 5 until the network converges 

(The cost function should decrease over time and 
we can stop if it does not change considerably or 
if we impose a maximum number of 
iterations/epochs). One epoch amounts to the 
number of batches of examples we need to go 
through in the entire dataset once. For example, if 
there are 1024 examples and the batch size was 
32, a total of 32 iterations would need to be 
performed for 1 epoch (because of 32×32=1024). 

 
In our case, the batch size is 8, and the number of 

epochs is 100. The number of examples is 70416. 
Therefore, the number of iterations per epoch is 
70416/100=8802. As we need to consider all 
examples, we select 8802 examples per epoch. The 
total number of iterations will be 
8802×100=880200. 

6. Scaling the dataset for training 

The dataset is scaled so that the model can learn 
faster. 

The MinMax scaling method scales the feature set 
between values [0, 1] by using the following formula: 
 
𝑋_𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑋𝑖 −  𝑋_𝑚𝑖𝑛)/(𝑋_𝑚𝑎𝑥 −  𝑋_𝑚𝑖𝑛) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 

 
 i=The element number on which the 

transformation is occurring. 
 Xi =The value of the ith element for the selected 

feature. 
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 X_max=The maximum value (among the dataset) of 
the feature. 

 X_min=The minimum value (among the dataset) of 
the feature. 

 X_scaled=The transformed value (among the 
dataset) of the feature. 

 
The sklearn library provides a function 

MinMaxScaler () for this purpose. 

6.1. Splitting the dataset for training and testing 

The datasets are generally split for training and 
testing. Generally, 80 sets are used for training, and 
20 sets are used for testing. The validation split ratio 
is used for dividing the datasets. 

 
X_train, X_test, y_train, y_test=train_test_split (X, 

y, test_size=0.20, random_state=123) 

6.2. Estimation of performance of the proposed 
model 

We used a custom-built accuracy calculating 
measure to evaluate the performance of the model. 
The accuracy of the model is 91.90% as per the 
calculations (for UWS21) (Table 5). 

6.2.1. Performance estimation code 

Using python coding to estimate how code is 
performing, by using: test data, unscaling the data 
for better performance, obtaining the deviation from 
original data than finding the accuracy 
measurement. 

 
1 Obtaining the predicted values for the test data 
y_pred=model.predict(X_test) 
2 Unscaling the predictions: By unscaling the original and 

the predicted output (using the range and the min values 
from the original dataset) 

y_predscaled=[int(i*rangel+rangebot) for i in y_pred] 
3 Unscaling the test: Obtaining the deviation values from the 

original dataset. 
y_testscaled=[float(i*rangel+rangebot) for i in y_test] 
dev=[] 
for i in range(len(y_pred)): 
Dev.append(abs((y_predscaled[i]-
y_testscaled[i]))/y_testscaled[i]) 
4 Obtaining the accuracy number: The efficiency of the 

model is measured using the deviation=1-
sum(absolute_error)/sum(true_value) 

1 - sum(dev)/len(dev) 

 
The average deviation of the actual value from 

the predicted value is 5.6% (across the test dataset) 
The accuracy of the proposed prediction model is 

high when predicting the UWS, which is an 
important tool for measuring the pseudorandomness 
of a given binary sequence. Hence, this model will 
help designers in choosing the best cipher 
components, which make attacks complex and 
resource-consuming (Dubrova and Hell, 2017; 
Turan, 2012). 

UWS is important for understanding the binary 
sequence, if it is predictable, and is another tool 
among other methods recently proposed for the 
same purpose (Mérai et al., 2017). 

7. Prediction results 

The prediction accuracy for UWS with degree 20 
was 94.3% of the test data and that for UWS with 
degree 21 was 91.9%. Table 5 summarizes the 
findings for the 2 NN models with degrees 20 and 21. 

From Table 5, we can see that the mean squared 
error of the model as the cost function is 0.0.0064 for 
UWS21 (for example) on the MinMax scaled dataset 
(see 5.1). The MSE is quite low and suggests that the 
model is very good, as listed in Table 5, in addition to 
the results in Table 5, we combine all datasets from 
UWS7 to UWS19 in one dataset, and using one NN 
model for the Joint datasets (Table 2) for the number 
of samples for each UWS degree), to see the 
difference once we train one model to contain 
different UWS degrees, with combined dataset of size 
85900, and training 80% of which is used for 
training (68720), hence the accuracy is 93.7%, with 
a learning rate 0.001 and MSE=0.0028 which is very 
low and the number of hidden layers is the same as 
in the UWS20 and UWS21 models. The reason 
behind using one model is that we want to 
investigate if the model is accurate when using UWS 
with degrees varying from 7 to 19 so as to determine 
whether the model is still valid compared with the 
results in Table 5 (using separate models for UWS20 
and UWS21). 

7.1. Model features influence 

There are multiple ways of calculating the 
importance of features. It is important to understand 
the most independent variables that influence model 
accuracy. By evaluating the properties of the futures 
after the model fitting, as we want to determine 
which among them has the most impact in the 
predicting results. Thus, we would not change the 
model or change the predictions we will obtain for a 
given value of the feature. Instead, we want to 
determine how randomly shuffling a single column 
of validation data, leaving the target and all other 
columns in place, would affect the accuracy of 
predictions. Randomly reordering a single column 
should result in less accurate predictions, as the 
resulting data no longer correspond to anything 
observed in the real world. Model accuracy 
especially suffers if we shuffle a column that the 
model relied on heavily for predictions. In this case, 
shuffling control degrees would result in inaccurate 
predictions. If we shuffled control weight instead, 
the resulting predictions would not be as inaccurate. 

As per the analysis, we are confident that a 
control degree is the most important feature in 
deciding the value of the dependent variable (the 
influence value is the highest: 0.0077) followed by 
input degree, input weight, control weights for UWS 
with degree 21 as listed in Table 6. 
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Table 6: UWS21: Influence of features in the prediction 
Feature Influence 

Control Degree 0.0371 ± 0.0002 
Input Degree 0.0293 ± 0.0004 
Input Weight 0.0066 ± 0.0001 

Control Weight 0.0045 ± 0.0001 

 

In the following the implemented code for the 
evaluation of the model features influence on the 
prediction results:  

 
{ 
perm=PermutationImportance(model, 
random_state=1,scoring="neg_mean_squared_error").fit(X_t
est, y_test) 
eli5.show_weights(perm,feature_names=dataset.columns.tol
ist()[:4]) 
} 

 
Therefore, knowledge on the important inputs 

(independent variables) and finding the most 
important variable will have a greater impact on the 
forecasting result. It will also provide a clear idea of 
the sources of strength and weakness in the 
cryptosystem, which will also reflect on our ability to 
develop it. In addition to this, with further research 
and investigation in this direction, it may be possible 
to develop a mathematical relationship to analyze 
and represent how to obtain a more random 
sequence. Moreover, our approach can be applied to 
any source that can produce a random sequence by 
knowing the strengths and weaknesses based on the 
components of the source by calculating the UWS, 
because of the bigger the size the better. Thus, we 
can test and select the best encryption systems. 

7.2. Overall observation 

The NN in our research has clearly demonstrated 
that it is an effective tool for prediction, which is 
reflected in its ability to measure the effectiveness of 
any cryptosystem, based on a pseudorandom binary 
sequence as the pseudorandomness measurements 
for the binary sequences which can be produced by 
this system. Thus, it serves as a measuring tool as 
well as a system that can be developed with more 
research and investigation to advance the encryption 
systems used. Therefore, NNs help in analyzing the 
strength of the security system used based on the 
sequence it produces. By measuring the model’s 
ability to predict, the strength of the cryptographic 
system can be determined, and thus, the system can 
be developed by designers to be more resistant to 
prediction. It also helps users in selecting the best 
encryption systems and the most effective to resist 
attacks, not for obtaining that the applications of the 
NN are being expanded to different fields, especially 
in information protection systems. This will assist in 
future development. Calculating and measuring UWS 
predictability will help in the design of ciphers with 
larger complexities with respect to nonlinearities, 
which is a necessary condition for sequence 
pseudorandomness as the larger the UWS is the 
better; the complexities of attacks will also be 

greater (Dubrova and Hell, 2017) in the future, 
indicating that ciphers using nonlinear feedback shift 
registers should be investigated in depth owing to 
their increasing usage. Further, the sequences 
generated by these ciphers need to have high values 
for maximum-order complexity (Turan, 2012). As 
the NN models can generate results with high speed, 
it would be advantageous to investigate the 
subsequences of a given binary sequence, which is 
an interesting direction for future research on linear-
complexity profiles (Brandstätter and Winterhof, 
2006), as well as to evaluate NN model applicability 
as large correlation measures of automatic 
sequences (Mérai and Winterhof, 2018).  

8. Comparison with prior studies 

In the discussion section, we presented related 
works and explored the similarities with existing 
research. Here we add more comparisons with 
previous studies to differentiate our approach using 
NN based models for testing pseudorandomness. 

Uğuz et al. (2019) introduced statistical tests to 
find the level of randomness for given binary 
sequences. They computed the longest run, and they 
found that the sequence has an equal probability of 
zeros and ones. They reserved generalizations for 
future work. Our results provide a more generalized 
approach, which is applicable to any binary 
sequence, even if it is produced without equal 
probability. 

Wang and Nicol (2015), in their study, found that 
it is necessary to add new statistical methods. Hence, 
they suggested tests based on statistical tests to 
evaluate the pseudorandomness. In our methods, we 
provided a tool to measure the pseudorandomness 
and found UWS, which can lead to finding the 
shortest FSR that can reproduce the same sequence. 

Liang et al. (2017) used an algebraic and 
statistical approach to find the weight distribution of 
the sequence based on their Boolean function 
representation. They provided an estimation for the 
weight distribution, and they recommended further 
research to arrive at a better distribution. Another 
study by Liu and Mesnager (2019) and Tang and Liu 
(2019) used a similar approach and focused on 
classifying the weights in a certain order to discover 
if the Boolean function is balanced. 

Those studies aimed at finding a better 
distribution that will lead to a better prediction of 
pseudorandomness of a given sequence; while in our 
study, by implementing NN models with the use of 
SG and PRNG, we might be able to predict the UWS. 

In short, we have a more generalized approach 
that can be applied to any binary sequence 
generated by any given PRNGs. We also have a 
higher prediction accuracy with a minimum margin 
of errors. 

9. Conclusion 

NNs have been proven as good prediction tools 
for UWS, which can help in investigating the 
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strengths of pseudorandom binary sequences and 
their generators. Our approach is applicable to any 
sequence generator, such as a cipher, which can help 
designers and users who require such sequences or 
ciphers for specific applications. NNs are very 
efficient prediction tools even when the data have 
random features. In the specific case investigated in 
our work, the data are discrete and cannot be 
represented by a continuous statistical distribution, 
making it difficult to implement basic and classical 
statistical analysis methods efficiently and with 
reasonable accuracy. Hence, the NN is an efficient 
and powerful alternative, as shown by our findings. 
Some future directions for this work that are worth 
investigating will further strengthen and generalize 
this method for obtaining the UWS on the SG 
keystream are as follows: 

 
1.  Applying the proposed model to the keystreams of 

other ciphers, for example, other stream ciphers 
(e.g., Trivium, Mickey) and block ciphers such as 
AES, DES. 

2.  Applying the model to binary sequences generated 
by internal cipher components, such as FSR and 
LFSR. In the SG case, for example, LFSRs will 
generate binary sequences. Calculating the UWSs 
for these sequences and applying the model would 
be of interest for evaluating the strengths of the 
internal components.  

3.  An additional direction for research (not related to 
security) could be facial or image recognition. By 
converting the input images and features to binary 
sequences and applying the proposed approach, 
with some modifications to the prediction model, 
an alternative tool for pattern recognition can be 
realized as it has a number of important 
applications. 
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