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In this paper, we present a novel method for finding an unknown angular 
acceleration of the driving member of the planar hinged-arm mechanism, 
which is based on the reduction of the mechanism and quite arbitrary 
guessing the value of angular acceleration. Using this method, it is possible to 
directly determine the angular acceleration of the driving rotary member of 
the mechanism without the need to calculate the kinematic characteristics of 
the other members. The presented method can be applied to all planar 
mechanisms. The procedure used in this method is much shorter than in the 
case of the general laws of system dynamics. The solution obtained by this 
method is independent of the assumed initial solution, with the exception 
that the assumed solution cannot be zero. 
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1. Introduction 

*One of the fundamental problems in the theory of 
mechanisms is the determination of the acceleration 
of individual members of the mechanism, as well as 
unknown forces in the joints, depending on the 
forces acting on the mechanism. To solve such 
problems, the general laws of body dynamics are 
generally applied (Beer and Johnston, 1997; 
Goldstein, 1991; Pytel and Kiusalaas, 1996; 
Chaudhary and Chaudhary, 2016).  

The aim of this work is to present a new method 
in which the angular acceleration of the driving 
rotary member the mechanism can be determined 
directly, independently of the force determination in 
the kinematic pairs of the mechanism. To do this, we 
will use a method of mechanism reduction while 
arbitrary guessing the unknown angular acceleration 
of the driving member. This new method can 
generally be applied to all planar mechanisms. 

2. Primary and secondary acceleration of the 
mechanism  

The acceleration of an arbitrary point Kj,i of the 
planar mechanism (i-th point of the j-th member of 
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the mechanism) with one degree of freedom of 
motion is: 

 

𝑎⃗𝑗,𝑖 =
𝑑2𝜌⃗⃗⃗𝑗𝑖

𝑑𝑡2
=

𝑑2𝜌⃗⃗⃗𝑗𝑖

𝑑𝜑1
2 𝜑̇1

2 +
𝑑𝜌⃗⃗⃗𝑗𝑖

𝑑𝜑1
𝜑̈1,                                                 (1) 

 

where, 𝜌⃗𝑗𝑖- is position vector (radius vector) of point, 

𝐾𝑗𝑖 , 𝜑̇1, 𝜑̈1 are projections of the angular speed and 

angular acceleration of the driving rotary member of 
the axis mechanism which is perpendicular to the 
plane (axis z). 

From the Eq. 1, it is seen that the acceleration of a 
point depends, in general, on the angular velocity of 
the driving member (primary acceleration), 
 

𝑎⃗𝑗𝑖
𝑝𝑟

=
𝑑2𝜌⃗⃗⃗𝑗𝑖

𝑑𝜑1
2 𝜑̇1

2                                                                                 (2) 

 
and from the angular acceleration of the driving 
member (secondary acceleration), 
 

𝑎⃗𝑗𝑖
𝑠𝑒𝑐 =

𝑑𝜌⃗⃗⃗𝑗𝑖

𝑑𝜑1
𝜑̈1 .                                                                                (3) 

 
It can be seen that the quotient between the 

secondary acceleration of a point of the mechanism 
and the acceleration of the propulsion member 
𝑎⃗𝑗𝑖

𝑠𝑒𝑐 𝜑̈1⁄  is not dependent on the kinematic state of 

the mechanism. As a matter of fact, it actually 
depends on the position of the mechanism (member 
𝑑𝜌⃗𝑗𝑖 𝑑𝜑1⁄ ). 
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3. Use of a reduced mechanism for dynamic 
mechanism analysis 

A reduced mechanism of a single lever 
mechanism with one degree of freedom of motion is 
obtained when the members of the mechanism are 
drawn parallel to their actual positions at certain 
proportions, where the poles of the current rotation 
of these members are placed in a single point (a pole 
of the reduced mechanism) (Gramblička et al., 2017; 
Voloder and Kljuno, 2018). As an example, it is 
shown in Fig. 1 a four-joint mechanism and its 
reduced mechanism. 

According to the theorem of Zhukovsky 
(Artobolevskij, 1988), for a pole of the reduced 
mechanism, the main moment of all forces acting on 
the mechanism is equal to zero: 
 

𝑀⃗⃗⃗𝑅
∗ = 0                                                                                             (4) 

 

In case of movement of the mechanism, this 
condition can be satisfied if we add the real forces to 
the inertia forces: 
 

𝑀⃗⃗⃗𝑅
∗ + 𝑀⃗⃗⃗𝑅

∗,𝑖𝑛,𝑝𝑟
+ 𝑀⃗⃗⃗𝑅

∗,𝑖𝑛,𝑠𝑒𝑐 = 0,                                                    (5) 
 

where, 𝑀⃗⃗⃗𝑅
∗,𝑖𝑛,𝑝𝑟

- is the main moment due to the 
primary inertial forces acting on the mechanism, in 
the relationship to the pole of the reduced 

mechanism; 𝑀⃗⃗⃗𝑅
∗,𝑖𝑛,𝑠𝑒𝑐  is the main moment due to the 

secondary inertial forces acting on the mechanism, in 
the relationship to the pole of the reduced 
mechanism. 

Here, moment 𝑀⃗⃗⃗𝑗𝑖
∗  of the force 𝐹⃗𝑗𝑖  for the pole of 

the reduced mechanism 𝑃∗ is equal to the product of 
the reduction factor of the member j on which given 
force and torque act for the pole of rotation of the 
observed member of the real mechanism 𝑃∗- shown 
in Fig. 2 (Hufnagl, 1984): 
 

𝑀⃗⃗⃗𝑗𝑖
∗ = 𝛽𝑗 ∙ 𝑀⃗⃗⃗𝑗𝑖                                                                                   (6) 

 
 
 

 
Fig. 1: Four-joint planar mechanism and its reduced 

mechanism 
 
 

 
Fig. 2: The definition of torque for a pole of reduced 

mechanism 

4. The method of guessing 

The main moment due to the secondary inertial 
forces for the pole of the reduced mechanism is 
 

𝑀⃗⃗⃗𝑅
∗,𝑖𝑛,𝑠𝑒𝑐 = ∑ ∑ [𝑝𝑗𝑖

∗ , 𝐹⃗𝑗𝑖
𝑖𝑛,𝑠𝑒𝑐]𝑖𝑗 = − ∑ ∑ 𝑚𝑗𝑖[𝑝⃗𝑗𝑖

∗ , 𝑎⃗𝑗𝑖
𝑠𝑒𝑐],𝑖𝑗       (7) 

 

where, 𝑝𝑗𝑖
∗ - is the radius of the vector of the point 𝐾𝑗𝑖

∗  

in which the force 𝐹⃗𝑗𝑖  acts concerning the pole of the 

reduced mechanism 𝑃∗. According to Eq. 7 and Eq. 3, 
we have 
 

𝑀⃗⃗⃗𝑅
∗,𝑖𝑛,𝑠𝑒𝑐 = − ∑ ∑ 𝑚𝑗𝑖 [𝑝𝑗𝑖

∗ ,
𝑑𝜌⃗⃗⃗𝑗𝑖

𝑑𝜑1
𝜑̈1]𝑖𝑗 .                                        (8) 

 

In the same way, for some guessed acceleration 
𝜀1

𝑔𝑢𝑒𝑠𝑠
 of member 1 of the mechanism, the moment of 

reduced mechanism due to secondary inertial forces 
will be: 

 

𝑀⃗⃗⃗𝑅
∗,𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠𝑠

= − ∑ ∑ 𝑚𝑗𝑖 [𝑝𝑗𝑖
∗ ,

𝑑𝜌⃗⃗⃗𝑗𝑖

𝑑𝜑1
𝜑̈1

𝑔𝑢𝑒𝑠𝑠
] .𝑖𝑗            (9) 

 

Now, according to (8) and (9), we have: 
 

𝑀⃗⃗⃗𝑅
∗,𝑖𝑛,𝑠𝑒𝑐 =

𝜑̈1

𝜑̈1
𝑔𝑢𝑒𝑠𝑠 ∙ 𝑀⃗⃗⃗𝑅

∗,𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠𝑠
.                                            (10) 

 

Incorporating the obtained Eq. 10 into Eq. 5, we get: 
 

𝑀⃗⃗⃗𝑅
∗ + 𝑀⃗⃗⃗𝑅

∗,𝑖𝑛,𝑝𝑟
+

𝜑̈1

𝜑̈1
𝑔𝑢𝑒𝑠𝑠 ∙ 𝑀⃗⃗⃗𝑅

∗,𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠𝑠
= 0,                          (11) 

 

from which we can determine the unknown 
acceleration of driving member 1 as, 
 

 𝜑̈1 = −
𝑀⃗⃗⃗𝑅

∗ +𝑀⃗⃗⃗𝑅
∗,𝑖𝑛,𝑝𝑟

𝑀⃗⃗⃗𝑅
∗,𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠𝑠 ∙ 𝜑̈1

𝑔𝑢𝑒𝑠𝑠
.                                                    (12) 

 

The obtained expression represents the quotient 
of two collinear vectors, which represents a quotient 
of the projection of these vectors on the axis z, 
vertical to the plane of the mechanism, 
 

𝜑̈1 = −
𝑀𝑅,𝑧+

∗ 𝑀𝑅,𝑧
∗,𝑖𝑛,𝑝𝑟

𝑀𝑅,𝑧
∗,𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠𝑠 ∙ 𝜑̈1

𝑔𝑢𝑒𝑠𝑠
.                                                     (13) 

 

In case the drive member is not rotational, index 
1 can refer to any rotary member of the mechanism 
and in this way, we can determine the angular 
acceleration of that member. 
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It is important to emphasize that the assumed 
angular (𝜑̈1

𝑔𝑢𝑒𝑠𝑠
) can have any value other than zero. 

If this assumed value were equal to zero, an 
indefinite solution would be obtained for 𝜑̈1. The 
following example is presented to illustrate the 
application of the above method, t. 

5. Example 

The lever 1 in the horizontal plane in Fig. 3 has at 
any given moment the angular velocity 1, with an 
angular moment M1 acting on it. A slider 2 of 
negligible mass, which is hinged to the lever 3, can 
slide on the lever. For an arbitrary angle of the lever 
, determine the acceleration of the lever by applying 
general laws of dynamics, as well as by the method 
of guessing.  

The following data are given: Geometric 
measures h and ; the mass m3; the moment of 
inertia of lever 1 for the axis of rotation J1A. 

 

 
Fig. 3: Mechanism of the given example 

5.1. A classic solution by applying general laws of 
dynamics 

For lever 1, we will apply the law on changing the 
momentum of the motion of the system (Fig. 4). 
 

𝐽1𝐴 ∙ 𝜀1 = 𝑀1 − 𝐹𝐵(2,1) ∙  
ℎ

𝑐𝑜𝑠𝜑
.                                                  (14) 

 

 
Fig. 4: Use of the law on changing moment of motion for 

point A on member 1 

 
By applying the law of movement of the center of 

inertia to the slider 2 (Fig. 5), we get: 
 
𝐹𝐵(1,2) ∙ 𝑐𝑜𝑠∅ − 𝑋𝐵(3,2) =  𝑚2 ∙ 𝑎2.                                          (15) 

 

However, since,  
 
𝑚2 = 0,  

becomes, 
 
𝐹𝐵(1,2) ∙ 𝑐𝑜𝑠∅ − 𝑋𝐵(3,2) =  0.                                                     (16) 

 

 
Fig. 5: Use of the law of the motion of the center of inertia 

on member 2 
 

By applying the law of the center of inertia on 
slider 3 (Fig. 6) we get: 
 
𝑚3 ∙ 𝑎3 = 𝑋𝐵(2,3)                                                                         (17) 

 

 
Fig. 6: Use of the law of the motion of the center of inertia 

on member 3 

 
For point B, we can write, 
 
𝑋𝐵 = ℎ ∙ 𝑡𝑔∅,                                                                                (18) 
 

so the velocity becomes, 
 

𝑥̇𝐵 =
ℎ

𝑐𝑜𝑠2∅
∙ 𝜔1 ,                                                                            (19) 

 

and acceleration, 
 

𝑎3 = 𝑥̈𝐵 = ℎ ∙
−2𝑐𝑜𝑠∅∙(−𝑠𝑖𝑛∅)

𝑐𝑜𝑠4∅
∙ 𝜔1

2 +
ℎ

𝑐𝑜𝑠2∅
∙ 𝜀1 = ℎ ∙

2𝑠𝑖𝑛∅

𝑐𝑜𝑠3∅
𝜔1

2 +
ℎ

𝑐𝑜𝑠2∅
∙ 𝜀1.                                                                                        (20) 

 

From (17) we get: 
 

𝑚3 ( ℎ ∙
2𝑠𝑖𝑛∅

𝑐𝑜𝑠3∅
𝜔1

2 +
ℎ

𝑐𝑜𝑠2∅
∙ 𝜀1) = 𝑋𝐵(2,3),                                (21) 

 
where, 
 
𝐹𝐵(1,2) = 𝐹𝐵(2,1), 𝑋𝐵(2,3) = 𝑋𝐵(3,2).  

 

From Eqs. 14, 15 and 20, we can determine 
unknown 𝜀1, 𝐹𝐵(1,2)and 𝑋𝐵(2,3).  

Eq. 16 gives: 
 
𝑋𝐵(3,2) = 𝐹𝐵(1,2) ∙ 𝑐𝑜𝑠∅,                                                              (22) 

 
so by incorporating Eq. 22 into Eq. 20, we get: 
 

𝑚3 ( ℎ ∙
2𝑠𝑖𝑛∅

𝑐𝑜𝑠3∅
𝜔1

2 +
ℎ

𝑐𝑜𝑠2∅
∙ 𝜀1) = 𝐹𝐵(1,2) ∙ 𝑐𝑜𝑠∅.                   (23) 

 
By combining Eq. 15 and 23, we get: 
 

B
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𝑚3

𝑐𝑜𝑠∅
( ℎ ∙

2𝑠𝑖𝑛∅

𝑐𝑜𝑠3∅
𝜔1

2 +
ℎ

𝑐𝑜𝑠2∅
∙ 𝜀1) =

𝑐𝑜𝑠∅

ℎ
(𝑀1 − 𝐽1𝐴 ∙ 𝜀1)  

 

and finally, 
 

𝜀1 =  
𝑀1𝑐𝑜𝑠4∅−2𝑡𝑔∅∙𝑚3∙ℎ2∙𝜔1

2

𝑚3ℎ2+𝑐𝑜𝑠4∅∙𝐽1𝐴
                                                        (24) 

5.2. The solution of the problem by the method of 
guessing 

Fig. 7 shows the reduced mechanism of the given 
mechanism, with the reduction factor of member 1 
𝛽1 = 1. 

 

 
Fig. 7: The reduced mechanism of the given mechanism 

 
According to Eq. 20, the primary component of 

acceleration of point B is: 
 

𝑥̈𝐵
𝑝𝑟

=  ℎ ∙
2𝑠𝑖𝑛∅

𝑐𝑜𝑠3∅
∙ 𝜔1

2,                                                                   (25) 

 

so the primary inertial force of member 3 is: 
 

𝐹𝐵3
𝑖𝑛,𝑝𝑟

= 𝑚3 𝑥̈𝐵
𝑝𝑟

= 𝑚3ℎ ∙
2𝑠𝑖𝑛∅

𝑐𝑜𝑠3∅
∙ 𝜔1

2.                                       (26) 

 

The secondary inertial force is given by, 
 

𝑥̈𝐵
𝑠𝑒𝑐 =

ℎ

𝑐𝑜𝑠2∅
∙ 𝜀1,                                                                          (27) 

 

so the secondary inertial force of member 3 is: 
 

𝐹𝐵3
𝑖𝑛,𝑠𝑒𝑐 = 𝑚3 𝑥̈𝐵

𝑠𝑒𝑐 = 𝑚3 ∙
ℎ

𝑐𝑜𝑠2∅
𝜀1.                                           (28) 

 

If we arbitrary suppose that  ∅̈1
𝑔𝑢𝑒𝑠𝑠

= 1 𝑠−2, then, 
 

𝐹3
𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠

= 𝑚3  ∙
ℎ

𝑐𝑜𝑠2∅
.                                                           (29) 

 

From the reduced mechanism in Fig. 7. We can write 
 

𝑃∗𝐵2
∗̅̅ ̅̅ ̅̅ ̅ =

𝑃∗𝐵1
∗̅̅ ̅̅ ̅̅ ̅

𝑐𝑜𝑠∅
=

𝛼1∙𝐴𝐵̅̅ ̅̅

𝑐𝑜𝑠∅
=

1∙
ℎ

𝑐𝑜𝑠∅

𝑐𝑜𝑠∅
=

ℎ

𝑐𝑜𝑠2∅
.                                     (30) 

 
Incorporating the obtained values into the Eq. 14, 

we get: 
 

∅̈1 = −
𝑀1,𝑧

∗ +𝐹𝐵3
𝑖𝑛,𝑝𝑟

∙𝑃∗𝐵2
∗̅̅ ̅̅ ̅̅ ̅

𝑀1,𝑧
∗,𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠𝑠

+𝐹3
𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠

∙𝑃∗𝐵2
∗̅̅ ̅̅ ̅̅ ̅

∙ 1 =

−
−𝛽1∙𝑀1+𝐹3

𝑖𝑛,𝑝𝑟
∙𝑃∗𝐵2

∗̅̅ ̅̅ ̅̅ ̅

𝛽1∙𝐽1𝐴∙∅̈1
𝑔𝑢𝑒𝑠𝑠

+𝐹3
𝑖𝑛,𝑠𝑒𝑐,𝑔𝑢𝑒𝑠

∙𝑃∗𝐵2
∗̅̅ ̅̅ ̅̅ ̅

=
1∙𝑀1−𝑚3ℎ∙

2𝑠𝑖𝑛∅

𝑐𝑜𝑠3∅
∙𝜔1

2∙
ℎ

𝑐𝑜𝑠2∅

1∙𝐽1𝐴∙1+𝑚3 ∙
ℎ

𝑐𝑜𝑠2∅
∙

ℎ

𝑐𝑜𝑠2∅

,  

∅̈1 =
𝑀1∙𝑐𝑜𝑠4∅−2𝑡𝑔∅∙𝑚3∙ℎ2∙𝜔1

2

𝑚3∙ℎ2+𝑐𝑜𝑠4∅∙𝐽1𝐴 
.                                                      (31) 

 

From the above analysis, we see that the result is 
the same as that obtained by applying the general 
laws of dynamics (Eq. 24). 

6. Conclusion 

Using the primary and secondary acceleration of 
points of a planar mechanism, as well as the 
reduction of the mechanism, an expression is 
obtained for direct determination of the unknown 
acceleration of the driving rotational member of the 
mechanism by the novel method of guessing. In this 
way, if we do not want to, we do not have to 
determine the unknown characteristics of the 
motion of other members of the mechanism, as well 
as the hidden forces in the joints of the mechanism. 
The method can generally be applicable to all planar 
mechanisms.  

By applying this novel method, the solution is 
obtained faster and more effective than using a 
classic method. This is demonstrated from the 
shown illustrative example. 
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