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This study aims to measure the efficiency of a fishing port terminal in 
utilizing their resources to achieve better productivity and better strategic 
decisions making by incorporating Data Envelopment Analysis (DEA), using 
both BBC and CCR indexes for measuring the efficiency level. Based on the 
CCRI efficiency level of each terminal, four fishing terminals were located at 
an efficient frontier while another 55.56% of the fishing terminals are 
inefficient. For BCCI, 66.66% of the DMU is efficient. By looking at the 
efficiency, this study determines which specific terminals need to augment 
their inputs or outputs to achieve efficiency level. At the same time, this 
study is also looking onto other seaport terminals which have similar 
facilities in term of infrastructures and services like container terminal 
where both fishing terminal and container terminal have cranes, number of 
berth and storage capacity. 
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1. Introduction 

*Malaysia has a vibrant and thriving fisheries 
sector. This sector plays a significant role in the 
national economy include a source of employment, 
foreign exchange and a source of protein for a rural 
population where a large portion of fish produced in 
the country is consumed fresh in the domestic 
market. The fisheries industry plays a vital role in 
providing social and economic stability to the users, 
stakeholders and fishermen as a whole. Fisheries 
resources in Malaysia waters area are made up of 
two categories based on the area where the 
resources are exploited. The inshore waters are 
waters within 30 nautical miles from the shore while 
the areas beyond 30 nautical miles are established as 
deep-sea waters. 

Seaport efficiency is often associated with 
productivity and performance, which interrelated 
with the use of inputs to produce output levels, as 
well as technologies adopted by ports (Merk and 
Dang, 2012). The existing technical efficiency of 
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fisheries has almost exclusively focused on fishing 
vessel and fleet, and more towards fish resources. On 
the other hand, since less empirical work had been 
done pertaining to the case of the fishing port 
terminal, this study hence aiming to fill in the gap by 
measuring the efficiency of the fishing port terminal 
to ensure that there is a long term capability of a 
terminal to support fishing activities and industry. 
This is done by estimating the most efficient fishing 
terminal and its relative differences in equipment, 
production scale and input utilization. As such, it 
would be good if this study could reach related 
stakeholders, like government bodies and terminal 
operators to monitor and make the necessary 
adjustment to improve terminal efficiency. On the 
other hand, this study also intended to measure 
fishing terminal services and propose some 
improvements for future purposes. 

2. Operation of fishing port terminal 

Fish handling operations affect fish quality. Fish is 
a very perishable food commodity that requires 
proper handling and preservation to increase its 
shelf life and retain its quality and nutritional 
attributes (Emere and Dibal, 2013). Handling 
techniques took precedence as well as handling 
equipment that used to unload fish from the vessel 
to processing facility or markets. Fish as a rapidly 
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perishable commodity requires quick transshipment 
and immediate processing to maintain its quality. 
The daily routine of the fishing port has been 
adapted to these requirements (Dopplinger, 1968). 
The first operation took place is where the fish is 
taken to the sorting area. Vessels with fishes arrive 
at the terminal and deliver the catch in the iced 
boxes in the sorting area of auction through their 
own gear or conveyor belts (Agerschou, 2004; 
Dopplinger, 1968). Immediately after the fish being 
sold (after the auction), the fish are transported 
where forklifts load the fish boxes onto lorries or 
refrigerated trucks to processing plants within the 
harbor or transported to the buyer’s place if it is 
outside the port area. 

2.1. Efficiency in fishing terminal 

Efficiency can be defined as the degree of a given 
quality of input that matches the optimal use of 
resources to produce outputs of a given quality 
(Bhagavath, 2006). Noura et al. (2010, 2011) 
described efficiency as an important and 
complicated subject that had also been widely used 
in engineering, management and economy. Efficiency 
is a significant concept for terminals where any 
resources can be saved and used towards providing 
additional facilities and services or to upgrade 
current infrastructure in fishing port or the 
operational system. The economic efficiency of a 
production system is made up of two components 
which are technical and allocative efficiency; 
technical efficiency is the physical component of the 
production system that deals with the maximization 
of output from the physical combination of inputs, 
while, allocative efficiency is the optimization of the 
production process which takes into consideration of 
input-output price relationships. Koopmans (1951) 
referred to technical efficiency as an input-output 
vector that is technically efficient if the increase of 
any output or decreasing of any input is possible 
only by decreasing some other output or increasing 
of some other input. 

Farrell (1957) also proposed that the efficiency of 
a firm consists of two components: technical 
efficiency, which reflects the ability of a firm to 
obtain maximal output from a given set of inputs, 
and allocative efficiency, which reflects the ability of 
a firm to use the inputs in optimal proportions, given 
their prices and production technology. Ajibefun 
(2008) and Kasypi (2013) referred to technical 
efficiency as the ability of a firm to produce the 
maximum quantity of output given an amount of 
input and production technology. The distance 
between its production and the frontier will define 
how an inefficiency of the fishing terminal is 
compared with other terminals. In other words, 
technical efficiency can be referred to as the degree 
with which a fishing port terminal can reduce its use 
of inputs to produce a given set of outputs. 

Fare et al. (1985) measured the efficiency of a 
producer by comparing situation which satisfies the 
procedure’s behavioral goal that includes cost, 

revenue and profit maximization. Cost affects the 
economy, efficiency, productivity, and profitability. A 
producer would satisfy when the firm could increase 
profits by expanding output without additional cost 
or input. A profit-maximizing firm would not be 
satisfied with the production of point E (Fig. 1) 
which is inefficient because the firm could increase 
profits by expanding output to the level associated 
with point F without requiring more input. Point H’ 
represents the production frontier while F and G 
represent efficient points. 

 

 
Fig. 1: Technical efficiency and inefficiency 

 

As mentioned previously, even though there are 
plenty of empirical studies focusing on port 
performance and efficiency, there is less empirical 
work on the subject of the fishing terminal. 
Nonetheless, this study will look into other seaport 
terminals which have similar facilities in term of 
infrastructures and services, especially container 
terminal where both fishing terminal and container 
terminal have cranes, number of the berth, storage 
capacity albeit their uses is quite different. Seaport 
efficiency is often related to productivity and 
performance (Merk and Dang, 2012). Noura et al. 
(2010) also mentioned that by making more efficient 
use of existing facilities; better management, 
improved maintenance and proper operational, it 
could improve the capacity of many fishing ports. 
Fishing port terminal efficiency is an important 
indicator of the port performance, which stimulates 
terminal competitiveness among others and boosts 
port development. Thus, it is vital to support the port 
and terminal activities, by determining the most 
efficient port or terminal, the resource utilization 
and relative differences in technology. 

2.2. Previous studies on DEA and fishing terminal 

As mentioned earlier, the study related to fishing 
terminals with DEA was relatively rare in Malaysia. 
Generally, there is less empirical work on the topic 
that focuses on fishing terminal efficiency. On the 
other hand, DEA has been widely used, not only for 
seaport but also in other sectors such as agriculture 
and electric sector soon after its introduction in 
1978. They recommended it as an excellent 
methodology of operational research for 
performance measurements and evaluations. 
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The performance of port efficiency has been 
measured by many researchers through DEA as well 
as in parametric methods. DEA-CCR and BCC models 
are the most commonly used by researchers to 
capture both CRS and VRS in their analysis. For 
instance, Cullinane et al. (2006) measured the 
efficiency of container ports and found that the CCR 
model yields the lowest average efficiency compares 
to the BCC model. Kasypi (2013) measured the 
efficiency of container terminal operations, involving 
six terminals in Peninsular Malaysia as DMU over 
eight years of observations. The result showed 19 
out of 48 terminals are CCR efficient while 25 
terminals are BCC efficient. Wang et al. (2003) 
examined the efficiency of the world’s leading 
container ports and analyzed a total of 57 
observations. The study employed CCR, BCC input-
oriented and FDH models and found only nine 
terminals are identified to be efficient compared 
with 23 and 37 efficient terminals of BCC and FDH 
respectively. Thangasamy and Deo (2013) analyzed 
the operational efficiency of eight major ports in 
India from 1993 to 2011. The authors used DEA-
Additive CRS and VRS models and the DEA Super 
Efficiency model for their analysis. The result 
showed four out of eight ports are efficient 
throughout the 19 years' observation period for 
DEA-Additive CRS. DEA-Additive VRS in five efficient 
ports where the Chennai port appeared to be 
efficient in the analysis. DEA Super Efficiency model 
is employed to evaluate higher efficiency and it is 
found that JPNT port experienced the highest 
average efficiency value.  

The study suggested inefficient ports to improve 
their equipment and upgrade port infrastructure 
facilities. Munisamy and Jun (2013) analyzed the 
technical and scale efficiency of Asian ports. The 
study obtained data from 69 container ports and 
found only 21 ports are fully efficient. The study 
recommended the utilization of new technologies 
rather than adopting flexibility in management 
through a combination of production factors and 
investment. A study was done by Lu and Wang 
(2013) also found that Chinese container terminals 
are more efficient than Korean terminals due to its 
huge investment of equipment, standard 
infrastructure development and improvement of 
intermodal transportation. Al-Eraqi et al. (2008) 
evaluated the location efficiency of Arabian and 
African seaports using DEA-CCR and BCC models. 
The study observed 22 seaports in the region of East 
Africa and the Middle East from 2000 to 2005. The 
authors found three out of 18 higher productivity 
ports are efficient under the CCR model while six 
ports were efficient under the BCC model. Munisamy 
and Jun (2013) measured the efficiency of 30 
container seaports in Latin America over the period 
2000 to 2008 by using DEA-CCR and BCC models. 
The study investigated the changes that occurred in 
pure technical efficiency, scale efficiency and return 
to scale, as well as investigating the source of 
inefficiency of Central America and Caribbean 
seaports, and identified the seaports operating 

under VRS. On the other hand, a study by 
Ebrahimnejad et al. (2014) used the three-stages of 
DEA to examine the efficiency of coastal container 
terminals in China. In the study, they used traditional 
DEA-BCC model (input-oriented) for stage one; in 
stage two, SFA regression model is employed to 
decompose slack variables; and for the last stage, the 
authors compare the adjusted target average input 
value and actual average input value to exclude 
environmental variables and statistical noise. Based 
on those studies, it shows that the CCR model is 
more inclined towards a lower efficiency as it 
focuses on purely technical and scales efficiency; 
different from the BCC model which is determined 
purely by technical efficiency. Also, the BCC model 
tends to disregard the impact of the scale size by 
only comparing DMUs at a given scale of operation. 

Martic et al. (2009) described that the results 
hinge on the input and output choices and the 
number and homogeneity of the DMUs to be 
estimated. Golany and Roll (1989) suggested refining 
the variables list through three stages: (1) 
judgmental screening; (2) non-DEA quantitative 
analysis; and (3) DEA based analysis. Almost all of 
the previous studies widely treat total throughput as 
dominant indicator for terminal performance 
measurement as what have been done by Wang et al. 
(2003), Al-Eraqi et al. (2008), Cullinane et al. (2006), 
Kasypi (2013), Thangasamy and Deo (2013), and 
Merk and Dang (2012). Previous studies suggested 
total throughput is an appropriate output variable 
for port efficiency benchmarking as it is closely 
related to the need for cargo-related facilities and 
services. In other words, total throughput is the 
measurable benefit generated from inputs and 
terminal.  

Cullinane et al. (2006) pointed out that container 
port production relies upon the efficient use of labor, 
land, and equipment. There are a few ways to define 
labor input. For instance, Thangasamy and Deo 
(2013) collected a number of employees as labor 
input in their respective studies.  Ebrahimnejad et al. 
(2014) used staff quantity to represent the labor 
input. González and Trujillo (2009) employed labor 
factor by the means of employees of port authorities, 
which constitute of administrative staff and technical 
employees. Munisamy and Jun (2013) took total yard 
equipment as the input factor to indicate labor 
resources. In terms of land input, Merk and Dang 
(2012), Cullinane et al. (2006), Lu and Wang (2013), 
and Al-Eraqi et al. (2008) defined the land resources 
by using total quay length and terminal area. 
Cullinane et al. (2006) indicated that total quay 
length is more appropriate compared to the number 
of births because the quay can be reconfigured or 
upgraded in order to meet the market requirements. 
For the equipment input, Wang et al. (2003) 
proposed that the number of gantry cranes, number 
of yard gantry cranes and number of straddle 
carriers are the most suitable to be enveloped into 
the model as input variables for container terminal 
efficiency. On the basis of a terminal depends vitally 
on the efficient use of infrastructure and equipment, 
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Lu and Wang (2013) incorporated quantities of quay 
crane, yard crane and yard tractor per berth into 
their analysis.  

There have some arguments about the size of the 
port or terminal area where the size of port or 
terminal matters for port efficiency. Merk and Dang 
(2012) after comparing the efficiency levels among 
studies world port terminal, suggesting that the size 
of the port and terminal area are imperative for port 
efficiency to compare to quay length and handling 
equipment. Liu (1995) and Notteboom et al. (2000) 
found that port size is significant for port efficiency 
where the larger size of ports tends to be more 
efficient than smaller ports. In similar cases, 
Kennedy et al. (2011) showed that the numbers of a 
terminal crane, yard tractor, quality of port 
infrastructure, quality of cargo handling and 
incurred port charges are critical factors that 
contribute the most to seaport operational efficiency. 
Interestingly, Asil and Fanati Rashidi S (2015) 
showed no clear relationship between port size and 
efficiency since there is a strong correlation between 
volume and efficiency when a terminal area or ship-
to-shore gantries are absent. Coto-Millan et al. 
(2000) also justified that port size is not important 
when associated with efficiency. Both bigger and 
smaller ports may achieve efficiency frontier given 
the utilization of resources and technologies adopted 
by the ports are the most efficient. Thangasamy and 
Deo (2013) proved that there is no significant 
difference between the size and efficiency of the 
port. Hence, this study will look into the relationship 
between port size or terminal area to fishing port 
terminal efficiency. 

3. Formulating methodology 

Kazan and Baydar (2013) described efficiency as 
part of productivity. Even though efficiency is a part 
of productivity, but the term of efficiency and 
productivity are not exactly the same things. 
González and Trujillo (2009) denoted that efficiency 
and productivity are not related even though both 
terms are occasionally treated as the same. In other 
words, productivity is a measure of aggregate output 
over aggregate input. Fig. 2 shows the difference 
between technical efficiency and productivity. The X 
and Y axis measure productivity at a particular data 
point. If a firm operating in point A then shifts to 
point B is technically efficient, the slope of ray would 
be greater and yield higher productivity at point B. 
On the other hand, by shifting to point C, the optimal 
scale to explore the economic scale gives the 
maximum points of possible productivity. Collier et 
al. (2014) concluded that a firm may be technically 
efficient but there could still be room for 
productivity improvement. 

In DEA, efficiency defined as a ratio of the 
weighted sum of outputs to the weighted sum of 
inputs. The ultimate objective of DEA is to determine 
which DMUs are operating on their efficiency 
frontier and which ones are not. In other words, the 
measurement of efficiency using DEA is to identify 

the best practice of DMU through comparison with 
other DMUs and identify the inefficiency factors to 
improve their performance in a competitive 
environment.  

 

 
Fig. 2: Productivity, technical efficiency and scale 

economies (Collier et al., 2014) 

 
DMU that lies on the frontier is considered as 

efficient. In general, the selection of DMUs is 
important in terms of their homogeneity as a set of 
peer entities. Therefore, the peer entities have to 
perform analogous activities and served equal 
objectives, under similar market environments while 
utilizing identical factors. DEA is used to measure the 
relative productivity of a DMU by comparing it with 
other homogeneous units transforming the same 
group of measurable positive inputs into the same 
types of measurable positive outputs. Fig. 3 (below) 
illustrates the DMU and homogeneous units. 

 

 
Fig. 3: DMU and homogeneous units 

 

χ =  [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑓𝑛 ⋯ 𝑥𝑓𝑛

]                    (1) 

y =  [

𝑦11 ⋯ 𝑦1𝑛

⋮ ⋱ ⋮
𝑦𝑓𝑛 ⋯ 𝑦𝑓𝑛

]                    (2) 

 
Suppose there are the following 

𝐷𝑀𝑈𝑠: 𝐷𝑀𝑈1, 𝐷𝑀𝑈2 …  𝑎𝑛𝑑 𝐷𝑀𝑈𝑛. Input and 
output variables for each of these 𝑗 = 1,2 … 𝑛 DMUs 
are selected. Each DMU produces g outputs and f 
inputs. The input and output data for Fig. 3 can be 
demonstrated by matrixes 𝑋 𝑎𝑛𝑑 𝑌 in (1) and (2). 
Where 𝑋𝑘𝑗 refers to 𝑘𝑡ℎ input data of 𝐷𝑀𝑈𝑗, while 
𝑌𝑘𝑗 is the 𝑘𝑡ℎ of the output of 𝐷𝑀𝑈𝑗. The efficiency 
can be expressed as follows: 
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Equations: 
 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
 

 

 

 
∑ =1𝑢𝑟𝑔

𝑛
𝑔 𝑦𝑟𝑔

∑ =1𝑣𝑖𝑓
𝑛
𝑓 𝑥𝑖𝑓

                                                                                           (3) 

 

where; u_rg= weight attached to output g; y_rg= 
quantity of output g; v_if= weight attached to input f; 
x_if= quantity of input f. 
 

Generally, the optimal weight may differ from one 
DMU to another. Hence, the weights in DEA are 
derived from the data instead of being fixed in 
advance (Cooper et al., 2007). Vincova (2005) 
suggested that input and output weights derived by 
means of an optimizing calculation where DMUs can 
be categorized into efficient and inefficient. First of 
all, the fractional programming problem is solved to 
obtain value for the input weights 𝑣𝑖  ί = 1, … , 𝑓) and 
the output weights(𝑢𝑟) (𝑟 = 1, … , 𝑔) as variables. Let 
𝐷𝑀𝑈𝑗 assigned as 𝐷𝑀𝑈𝑜. 

 

𝜃 =  
𝑢1𝑦1𝑜 + 𝑢2𝑦2𝑜 +⋯+ 𝑢𝑔𝑦𝑔

𝑣1𝑥1𝑜 + 𝑣2𝑥2𝑜 +⋯+ 𝑣𝑓𝑥𝑓𝑜
𝑣,𝑢

𝑚𝑎𝑥                                                     (4) 

 
subject to: 

 

 
𝑢1𝑦1𝑗 + …+ 𝑢𝑔𝑦𝑔𝑗

𝑣1𝑥1 + …+ 𝑣𝑓𝑥𝑓𝑗
    ≤ 1(j=1,2,…,n) 

V1, V2,…, Vf≥ 0 
U1, U2,…, Ug≥ 0. 
 

The objective here is to acquire weights (𝑣𝑖) and 
(𝑢𝑟) that maximize the ratio of DMUj. It is subject to 
the constraint that the efficiency score will not 
exceed 100% and the coefficient values are positive 
and non-zero. Next, replace the above fractional 
program by linear program: 
 

𝜃 = 𝜇,𝑣
𝑚𝑎𝑥 𝜇1𝑦1𝑜 + ⋯ +  𝜇𝑔𝑦𝑔𝑜                                                      (5) 

 
subject to: 
 
 𝑣1𝑥1𝑜 + ⋯ +  𝑣𝑓𝑥𝑓𝑜 = 1 
𝜇1𝑦1𝑜 + ⋯ +  𝜇𝑔𝑦𝑔𝑜 ≤ 𝑣1𝑥1𝑗 + ⋯ + 𝑣𝑓𝑥𝑓𝑗  
(𝑗 = 1,2, … 𝑛) 
𝑣1, 𝑣2, … 𝑣𝑓 ≥ 0 
𝜇1, 𝜇2, … 𝜇𝑔 ≥ 0. 

 
Let an optimal solution of (LPo) be (𝑣 = 𝑣∗, 𝜇 =

 𝜇∗) whereas, the optimal solution of (FPo) also be 
(𝑣 = 𝑣∗, 𝑢 =  𝜇∗). The above transformation is a 
result of Charnes-Cooper transformation (Cooper et 
al., 2007). 

3.1. CCR input-oriented model 

DEA-CCR efficiency that measures under constant 
returns to scale (CRS) is introduced by Charnes et al. 
(1978). CCR model inflicts three restrictions on the 
frontier technology which include a constant return 
to scale (CRS), the convexity of the set of feasible 
input-output combinations and strong disposability 

of inputs and outputs (Zamorano, 2004). This model 
assumes a production process that inputs and output 
are independent of the scale of operation. The CSR 
model measures the technical efficiency for each of 
the DMUs. The CCR input-oriented model for 
envelopment (6) and multiplier models (7) are 
illustrated by Cooper et al. (2007) as below: 
 
𝑚𝑖𝑛𝜃                                                                                                 (6) 

 
subject to: 
 
∑ 𝑥𝑖𝑗 𝜆𝑗 ≤ 𝜃𝑥𝑖0

𝑛
𝑗=1                       𝑖 =  1,2   

∑ 𝑦𝑟𝑗 𝜆𝑗 ≥ 𝑦𝑟0 𝑛
𝑗=1                𝑟 =  1,2 

∑  𝜆𝑗 = 1

𝑛

𝑗=1

 

∑ ≥

𝑛

𝑗=1

0  (𝑗 = 1,2, … 𝑛). 

 

Where 𝑥𝑖𝑜  𝑦𝑟0 is the 𝑖𝑡ℎ input and 𝑟𝑡ℎ  is the output 
for a DMUo under evaluation;  𝜆𝑗 is the decision 

variable that DMUj would place on DMUo in 
constructing its efficiency reference set while θ is the 
relative technical efficiency of DMUo. The optimal 
value of θ is not greater than 1. The optimal solution 
θ produces an efficiency score for a particular DMU. 
The process is repeated for each DMUj. The DMU for 
which θ< 1 is inefficient, while DMU which θ= 1 are 
boundary points. In this dual formulation, the 
authors tend to seek efficiency by minimizing the 
efficiency of DMUo subject to two sets of inequality 
where the first inequality emphasizes that the 
weighted sum of inputs of the DMUs should be less 
than or equal to the inputs of DMUo being evaluated. 
On the second inequality, the weighted sum of the 
outputs of the non-focal DMUs should be greater 
than or equal to the focal DMU. The weights are the λ 
values. The λ values would be equal to 1 for the 
efficient DMU, while for DMUs that are inefficient, 
the λ values will be expressed in their efficiency 
reference set. 

 

max (∑ 𝑠
𝑓
𝑖=1 + ∑ 𝑠

𝑔
𝑟=1 )𝑟

+
𝑖

−                                                              (7) 

 
subject to: 
 
∑ 𝑥𝑖𝑗𝜆𝑗 + 𝑠𝑖

− = 𝜃𝑥𝑖𝑜
𝑛
𝑗=1               𝑖 = 1,2, … 𝑓; 

∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟
+𝑛

𝑗=1 =  𝑦𝑟𝑜             𝑟 = 1,2, … 𝑔; 
∑ 𝜆𝑗

𝑛
𝑗=1  = 1 

𝜆𝑗  ≥ 0,    j = 1,2, …n 

𝑠𝑖
− ≥ 0,   i = 1,2, …f 

𝑠𝑟
+ ≥ 0,   r = 1,2, …g. 

 
Cooper et al. (2007) incorporated slack variables 

𝑠𝑖
− (input) and 𝑠𝑟

+ (output) into the model (7) to 
avoid weak efficiency due to non-zero values in their 
maximal value. 

The performance of DMUo is fully efficient if both 
𝜃= 1 and all slacks 𝑠𝑖

−= 𝑠𝑟
+= 0. It is also noted that the 

performance of DMUo is inefficient only if both 𝜃=1 
and 𝑠𝑖

− ≠ 0 and/or 𝑠𝑟
+ ≠ 0 for some input and output. 
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𝑚𝑖𝑛𝜃 − 𝜀(∑ 𝑠
𝑓
𝑖=1 + ∑ 𝑠

𝑔
𝑟=1 )𝑟

+
𝑖

−                                                (8) 
 
subject to: 
 
∑ 𝑥𝑖𝑗𝜆𝑗 + 𝑠𝑖

− = 𝜃𝑥𝑖𝑜
𝑛
𝑗=1        𝑖 = 1,2, … 𝑓; 

∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟
+𝑛

𝑗=1 =  𝑦𝑟𝑜      𝑟 = 1,2, … 𝑔; 

𝜆𝑗 ≥ 0,       𝑗 = 1,2, … 𝑛 

𝑠𝑖
− ≥ 0,       i = 1,2, …f 

𝑠𝑟
+ ≥ 0,        r = 1,2, …g. 

 

Where 𝑠𝑖
− and 𝑠𝑟

+ are slack variables used to 
convert the inequalities in Eq. 6. The ε> 0 is a non-
Archimedean component defined to be smaller than 
any positive real number. DMUo is CCR efficient if 
𝜃∗ = 1, and all slacks 𝑠𝑖

− = 𝑠𝑟
+ = 0, otherwise, DMUo 

is CCR-inefficient which it means that 𝜃∗ < 1.  
For this study, the objective function is to 

maximize the efficiency score h0 for fishing terminal 
j0, subject to constraint, when the same set of u and v 
coefficients (weight) are applied to all other fishing 
terminals. 
 
Max h0= ∑ 𝜇𝑟𝑦𝑟𝑗0

𝑔
𝑟=1                                                               (9) 

 
Subject to: 
 
∑ 𝑣𝑖𝑥𝑖𝑗𝑜 = 1

𝑓
𝑖=1   

∑ 𝜇𝑟𝑦𝑟𝑗 − ∑ 𝑣𝑖 
𝑓
𝑖=1

𝑔
𝑟=1 𝑥𝑖𝑗 ≤ 0          𝑗 = 1, … , 𝑛  

𝜇𝑟 , 𝑣𝑖 ≥ 𝜀 > 0  

3.2. DEA BCC input-oriented model 

Another version of DEA method was suggested by 
Banker et al. (1984) which relaxes the assumption of 
constant return to scale (CRS) and imposes variable 
return to scale (VRS) by adding the constraint 
∑ 𝜆𝑗 = 1𝑛

𝑗=1 . This study also used the VRS model 

because the model isolates pure technical efficiency 
components and scale efficiency related to the size of 
the DMUs. 
 
𝑚𝑖𝑛𝜃                                                                                               (10) 
 

subject to: 
 
∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑜

𝑛
𝑗=1   

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑥0
𝑛
𝑗=1   

∑ 𝜆𝑗 = 1𝑛
𝑗=1   

∑ ≥𝑛
𝑗=1 0  (𝑗 = 1,2, … 𝑛). 

 

Similar to the CCR model, the BCC model also has 
the same concern of inefficient boundary point when 
there are non-zero slacks. However, it can be 
eliminated by citing the slacks and their maximal 
values: 
 

max (∑ 𝑠
𝑓
𝑖=1 + ∑ 𝑠

𝑔
𝑟=1 )𝑟

+
𝑖

−                                                      (11) 
 
Subject to: 
 
∑ 𝑥𝑖𝑗𝜆𝑗 + 𝑠𝑖

− = 𝜃𝑥𝑖𝑜
𝑛
𝑗=1        𝑖 = 1,2, … 𝑓 ∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟

+𝑛
𝑗  =1 =

 𝑦𝑟𝑜      𝑟 = 1,2, … 𝑔;  

∑ 𝜆𝑗
𝑛
𝑗=1 =  1  

𝜆𝑗  ≥ 0,    j = 1,2, …n 

𝑠𝑖
− ≥ 0,   i = 1,2, …f 

𝑠𝑟
+ ≥ 0,   r = 1,2, …g 

 
The slacks obtained are called DEA slacks, where 

𝑠𝑖
− and 𝑠𝑟

+ represent input and output slacks, 
respectively. It is calculated from a second-stage DEA 
calculation. DMU is efficient only if θ= 1 and 𝑠𝑖

−= 𝑠𝑟
+ 

=0 for all i and r. DMU is weakly efficient if θ= 1 and 
𝑠𝑖

−≠ 0 and (or) 𝑠𝑟
+≠ 0 for some 𝑖 𝑎𝑛𝑑 𝑟. Eqs. 10 and 11 

represent two stages the DEA process involved in the 
following Eq. 12. 
 

𝑚𝑖𝑛𝜃 − 𝜀(∑ 𝑠
𝑓
𝑖=1 + ∑ 𝑠

𝑔
𝑟=1 )𝑟

+
𝑖

−                                             (12) 
 

subject to: 
 
∑ 𝑥𝑖𝑗𝜆𝑗 + 𝑠𝑖

− = 𝜃𝑥𝑖𝑜
𝑛
𝑗=1    𝑖 = 1,2, … 𝑓; 

∑ 𝑦𝑟𝑗𝜆𝑗 − 𝑠𝑟
+𝑛

𝑗=1 =  𝑦𝑟𝑜   𝑟 = 1,2, … 𝑔; 

∑ 𝜆𝑗
𝑛
𝑗=1 = 1 

𝜆𝑗  ≥ 0, j= 1,2, …n 

𝑠𝑖
− ≥ 0, i= 1,2, …f 

𝑠𝑟
+ ≥ 0, r= 1,2, …g. 

 

The presence of non-Archimedean 𝜀 in the Eq. 12 
allows the minimization over 𝜃 to anticipate the 
optimization involving the slacks, 𝑠𝑖

− and 𝑠𝑟
+. Hence, 

(12) is calculated in a two-stage process with 
maximal reduction of inputs being achieved first, via 
(10); then, in the second stage, movement onto 
efficient frontier is achieved via invoking the slack 
variables in Eq. 11. Zhu (2014) reminded that it is 
inappropriate to solve Eq. 12 in a single stage by 
specifying an 𝜀 value in Eq. 12.  

From the VRS model, analysis on whether a 
fishing terminal imposes increasing return to scale, 
the constant return to scale, or decreasing return to 
scale becomes possible. There is an increasing return 
to scale when the value of Zjo is greater than zero 
(Zjo> 0), decreasing return to scale if the value of Zjo 
is less than zero (Zjo< 0), while the value of Zjo is 
equal to zero (Zjo= 0) for constant return to scale. 
From that, the number of fishing terminal operating 
at an efficient scale can be estimated.  
 
Max h0=∑ 𝜇𝑟𝑦𝑟𝑗0

𝑔
𝑟=1 + 𝑧𝑗0                                                  (13) 

 
subject to: 
 
∑ 𝑣𝑖𝑥𝑖𝑗𝑜 + 𝑧𝑗0 

𝑓
𝑖=1 = 1  

∑ 𝜇𝑟𝑦𝑟𝑗 
𝑔
𝑟=1                                        𝑗 = 1, … , 𝑛  

− ∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑧𝑗0 
𝑓
𝑖=1 ≤ 0  

𝜇𝑟 , 𝑣𝑖 ≥ 0. 

4. Data source 

This study intends to measure the technical 
efficiency of the fishing terminal by accessing their 
input utilization through the given output. Initially, 
the information regarding the criteria of data was 
collected through a review of related articles. 
Besides that, data were collected from fishing port 
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authorities; including terminal operators and 
fishermen. This study adopts cross-sectional analysis 
and panel data analysis to capture DMUs 
performance for single and multiple time periods. 
The data were refined and the variables were 

identified based on previously selected references as 
well as a selection of characteristics of fishing 
terminals. Statistical summary for collected data for 
input and output variables are presented in Table 1. 

 
Table 1: Statistical summary of input and output variables of fishing terminals 

 Max Min Average Std. Deviation 
Tonnage 91490 1812.5 24821.58 28595.51 
Revenue 136966339 6770851 53184364.70 51259871.90 

Terminal area 330000 5400 115168.33 151921.07 
Berth length 500 180 298.33 143.31 

Draft 7 3.4 5.36 1.5 
Storage area 550 300 443.33 105.30 

Average labor 26 15 21 4.55 
Gate lane 2 2 2 0 
Trolley 16 4 8.33 5.44 
Forklift 2 0 1 0.82 

Shore to sea crane 6 4 5 0.82 
Shore crane 4 2 2.67 0.94 

Slider 20 0 7.67 8.81 
Fish tray 16 9 11.67 3.09 

 

4.1. Correlation between input and output 
variables 

Correlation test is carried out to measure how 
well they are related. The most common measure of 
correlation in statistics is the Pearson Test. The 
result will be between -1 and 1 which gives the 
strength of the relationship and whether the 
relationship is negative or positive. If the coefficient 
value is closer to zero, the greater the variety of data 
points would be, which means the variable has no 
linear relationship or a very weak linear 
relationship. The relationship is negative when the 
value is less than zero and vice versa. Pearson 
correlation test suggests that high correlation ranged 
from 0.5 to 1.0 or -0.5 to -1.0; medium correlation is 
range from 0.3 to 0.5 or -0.3 to -0.5; while low 
correlation range from 0.1 to 0.3 or -0.1 to -0.3.  

The correlation between inputs and outputs 
variable is presented in Table 2. For instance, the 
correlation coefficient of the gate lane with other 
input variables is 0 and this signifies that there is no 
linear relationship between the variables. Besides, 
the result also shows no linear relationship exists 
between shore to sea cranes and shore crane. The 
correlation coefficient of the terminal area indicates 
a high correlation between berth length, average 

labor and shore to sea cranes, whereas the 
correlation between draft and storage area is quite 
low. The correlation between the terminal area and 
forklift is close with zero, indicated that the linear 
correlation is very weak. Berth length correlation 
coefficient shows a low correlation between all the 
variables except for terminal area, average labor, 
number of trolley and shore to sea cranes. The 
correlation results with linear relationship ranking 
are shown in Table 3. 

4.2. Score result of DEA-CCR (Input-oriented 
rating) 

The finding is shown in Table 4, Fig. 4 and Fig. 5 
indicates the scores of efficiency estimated for a 
fishing terminal using the DEA-CCRI model for the 
years 2012, 2013 and 2014 respectively. An 
efficiency score of 1 signifies efficient fishing 
terminals and vice versa. Based on the CCRI 
efficiency level of each terminal, the analysis shows 
that only four fishing terminals were efficient with a 
score of 1, approximately 44.44% over the analyzed 
period. It is obvious that about 55.56% of the fishing 
terminals are inefficient. 

 
Table 2: Correlation between inputs and outputs variables 

 
Terminal 

Area 
Berth 

Length 
Draft 

Storage 
Area 

Avr 
Labour 

Gate 
Lane 

Trolley Forklift 
Shore 
to Sea 
Cranes 

Shore 
Cranes 

Slider 
Fish 
Tray 

Tonnage Revenue 

Terminal 
Area 

1 0.9962 0.1579 0.2584 0.7856 0 -0.4450 0.0126 -0.8723 -0.4890 -0.3629 -0.3695 -0.3452 -0.3476 

Berth 
Length 

0.9962 1 0.2419 0.3416 0.8365 0 -0.5123 0.9970 -0.9115 -0.4111 -0.2804 -0.2872 -0.2730 -0.2668 

Draft 0.1579 0.2419 1 0.9787 0.7248 0 -0.9397 0.9728 -0.6125 0.7697 0.8474 0.8438 0.7408 0.8399 
Storage 

Area 
0.2584 0.3416 0.9787 1 0.8008 0 -0.9801 0.9692 -0.6978 0.7163 0.8063 0.8021 0.6977 0.7915 

Avr 
Labour 

0.7856 0.8365 0.7248 0.8008 1 0 -0.9036 0.6287 -0.9878 0.15554 0.2914 0.2846 0.2328 0.2914 

Gate Lane 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Trolley -0.4449 -0.5212 -0.9397 -0.9801 -0.9036 0 1 -0.9011 0.8260 -0.5636 -0.6673 -0.6678 -0.5759 -0.6624 
Forklift 0.0126 0.09970 0.9728 0.9692 0.6286 0 -0.9011 1 -0.5 0.8660 0.9271 0.9245 0.8101 0.9079 
Shore to 

Sea 
Cranes 

-0.8723 -0.9116 -0.6125 -0.6978 -0.9878 0 0.8260 -0.5 1 0 -0.1391 -0.1321 -0.0972 -0.1429 

Shore 
Cranes 

-0.4890 -0.4112 0.7697 0.7163 0.1555 0 -0.5636 0.8660 0 1 0.9903 0.9912 0.8793 0.9658 

Slider -0.3629 -0.2804 0.8474 0.8063 0.2914 0 -0.6730 0.9271 -0.1391 0.9903 1 0.9999 0.8843 0.9763 
Fish Tray -0.3695 -0.2872 0.8438 0.8021 0.2846 0 -0.6677 0.9245 -0.1321 0.9912 0.9999 1 0.8845 0.9762 
Tonnage -0.3452 -0.2730 0.7408 0.6976 0.2328 0 -0.5759 0.8101 -0.9072 0.8793 0.8843 0.8845 1 0.9326 
Revenue -0.3476 -0.2668 0.8399 0.7915 0.2914 0 -0.6624 0.9079 0.1429 0.9658 0.9762 0.9762 0.9326 1 
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Table 3: Correlation result with linear relationship ranking 

 
Terminal 

Area 
Berth 

Length 
Draft 

Storage 
Area 

Avr 
Labour 

Gate 
Lane 

Trolley Forklift 
Shore to 

Sea 
Cranes 

Shore 
Cranes 

Slider 
Fish 
Tray 

Tonnage Revenue 

Terminal 
Area 

High High Low Low High n/a Medium Weak High Medium Medium Medium Medium Medium 

Berth 
Length 

High High Low Medium High n/a Medium Weak High Medium Low Low Low Low 

Draft Low Low High High High n/a High High High High High High High High 
Storage 

Area 
Low Medium High High High n/a High High High High High High High High 

Avr 
Labour 

High High High High High n/a High High High Low Low Low Low Low 

Gate Lane n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Trolley Medium High High High High n/a High High High High High High High High 
Forklift Weak Weak High High High n/a High High Medium High High High High High 
Shore to 

Sea 
Cranes 

High High High High High n/a Medium Medium High n/a Low Low Weak Low 

Shore 
Cranes 

Medium Medium High High Low n/a High High n/a High High High High High 

Slider Medium Low High High Low n/a High High Low High High High High High 
Fish Tray Medium Low High High Low n/a High High Low High High High High High 
Tonnage Medium Low High High Low n/a High High Weak High High High High High 
Revenue Medium Low High High Low n/a High High Low High High High High High 

 

Table 4: Efficiency result of using DEA-CCRI 

No Year Fishing Terminal Efficiency Score Rank 
1 2012 Chendering (C1) 0.947434 Inefficient 5 

2 2012 
Kuala Kedah 

(K1) 
0.50266 Inefficient 9 

3 2012 Tok Bali (T1) 0.709325 Inefficient 6 
4 2013 Chendering (C2) 1 Efficient 1 

5 2013 
Kuala Kedah 

(K2) 
1 Efficient 1 

6 2013 Tok Bali (T2) 1 Efficient 1 
7 2014 Chendering (C3) 0.708819 Inefficient 7 

8 2014 
Kuala Kedah 

(K3) 
0.547525 Inefficient 8 

9 2014 Tok Bali (T3) 1 Efficient 1 
 

For the year 2012, all terminals were inefficient 
with a score of less than 1. Chendering fishing 
terminal (C1) is considered close to the efficient 
frontier with a score of 0.94743 while other 

terminals like Kuala Kedah (K1) and Tok Bali (T1) 
recorded a much lower value with a score of 0.50266 
and 0.70932 respectively. The inefficiency tends to 
exist due to linear programming nature that seeks to 
maximize the efficiency score. In 2013, all fishing 
terminals appeared to be efficient with an efficiency 
score of 1. For the year 2014, only one fishing 
terminal is efficient, which is Tok Bali while C3 and 
K3 were identified as inefficient with inefficiency 
scores of 0.708819 and 0.547525, respectively. 
During the analyzed period, K1 was found to have 
the lowest efficiency score of 0.50266 in the year 
2012. This may be connected with low landings of 
catch. Tok Bali fishing terminal appeared to be 
efficient in both 2013 and 2014.  

  
 

 
Fig. 4: Efficiency of the fishing terminal for the year 2012 to 2014 

 

It is widely known that Tok Bali is the most 
efficient fishing terminals in Peninsular Malaysia due 
to its strategic location at the South China Sea, 
successful collaboration with investors and effective 
government plans to establish Tok Bali fishing port 
as an industrial area and new growth area for 
investment. Furthermore, the fishing port will be 
expanding with the completion of Tok Bali 
Integrated Fisheries Park (TBIFP) and Tok Bali 
Supply Base (TBSB) projects. TBIFP is expected to 

drive Tok Bali as main fisheries hub for both local 
and export markets, reinforcing its potential to draw 
private investments in the primary processing of 
fish-based products and supporting industries such 
as ice-making factories, with the integration of 
marine eco-tourism and hospitality sectors. The 
average efficiency score of all fishing terminals is 
0.8238. The year in which the efficiency average was 
at its lowest is 2012 with 0.7198; while 2014 with an 
average score of 0.7521. 
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Fig. 5: Efficiency of the fishing terminal for the year 2012–2014 

 
Fig. 6 shows that C1 attained an efficiency of 

0.947434 in the year 2012, followed by a constant 
return to scale in year 2013. Nevertheless, the 
efficiency drops approximately (29.12%) in the 
following year due to the excess amount of input 
variables. Kuala Kedah increased its efficiency by 
49.73% from 0.50266 to 1 in the year 2013 and 
suffered a drop of 45.25% in the year 2014. Tok Bali 
achieves its efficiency score of 0.709325 in 2012, 
followed by an increase of 29.07% in 2013. 

 

 
Fig. 6: Efficiency score by DEA-CCRI for fishing terminals 

4.2.1. The reference set of best practice 

DEA identifies the closest efficient fishing 
terminals located on the frontier for each inefficient 
terminal. These efficient terminals are called peers 
or benchmarks. The benchmarks are created 
through DEA computations. As shown in Table 5, the 
inefficient fishing terminals can use a group of 
efficient terminals as a reference set in order to be at 
an efficient frontier. The reference set in Table 6 
offers two different explanations based on whether 
the terminal is efficient or inefficient. For the 
inefficient fishing terminal, the reference set of best 
practice provides information on which fishing 
terminal have to set as their reference in order to be 
efficient.   

As shown above, efficient fishing terminals may 
consider themselves to be on their own benchmarks. 

For example, the benchmark for T3 is T3 and for K2 
is K2. On the other part, for inefficient terminals, 
their benchmarks stand for one or many efficient 
terminals. C3 observes three efficient terminals as its 
benchmark, namely C2, K2, and T2. While the 
benchmark for T1 is two fishing terminals, T2 and 
T3. This means that both C3 and T3 must use a 
combination of three fishing terminals and two 
fishing terminals respectively in order to achieve the 
level of efficiency. The values of the combination of 
efficient terminals to achieve efficiency to each 
benchmark fishing terminal can be calculated by 
attained λ (lambda) weights which solved from dual 
version of linear program. For instance, C3 will 
attempt to become like C2 more than K2 and T2 
given that respective λ weights of C2 is 0.5323 
compare to the latter, 0.0485 and 0.0265. In 
addition, K1 and K3 observe that K2 is efficient, 
hence K2 is set as benchmark.  

 

Table 5: Benchmarks for input-oriented CCR Model 

 

Table 6: The reference set of best practice to other DMU 
Reference Frequency to other DMU 

Chendering 2013 (C2) 2 
Kuala Kedah 2013 (K2) 3 

Tok Bali 2013 (T2) 2 
Tok Bali 2014 (T3) 1 

 

Table 6 present the frequency of best practice to 
other DMUs. Under the CRS assumption, fishing 
terminal that is most frequently used as a 
benchmark by inefficient terminals is K2 in 2013. 
Hence, it is identified as the peer for 3 inefficient 
fishing terminals. This result is quite surprising, yet 
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No. DMU Score Reference Set 
1 Chendering 2012 (C1) 0.947434 C2 
2 Chendering 2013 (C2) 1 C2 
3 Chendering 2014 (C3) 0.708819 C2 and K2 and T2 
4 Kuala Kedah 2012 (K1) 0.50266 K2 
5 Kuala Kedah 2013 (K2) 1 K2 
6 Kuala Kedah 2014 (K3) 0.547525 K2 
7 Tok Bali 2012 (T1) 0.709325 T2 and T3 
8 Tok Bali 2013 (T2) 1 T2 
9 Tok Bali 2014 (T3) 1 T3 
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reasonable. Kuala Kedah fishing terminal are able to 
utilize minimum input for a given output, given that 
their inputs is relatively small compare to other 
fishing terminals. Chendering and Tok Bali were 
used as a benchmark by 2 inefficient terminals 
respectively in the same year, while in 2014, only T3 
is used as benchmark by inefficient terminals since it 
is the only efficient fishing terminal. Based in Table 
7, it is observed that the terminals that failed to be 
references in 2012 are C1, K1 and T1; as well as C3 
and K3 in year 2014. 

4.2.2. Return to scale 

The return to scale of an inefficient DMU is 
determined at its projected point on the efficient 
frontier. However, it is being argued that the 
evaluation may not be accurate when there are 
multiple projection points. Scale inefficiency can be 
either decreasing return to scale (DRS) or increasing 
return to scale (IRS). The scale inefficiency falls onto 
decreasing return to scale if output increases by less 
than that proportional change in inputs. If output 
increases by more than proportional change in 
inputs, then, it is increasing returns to scale. The 
return to scale can be calculated and examined by 
summing up lambda (λ)’s weight values. A DMU 
exhibits increasing return to scale if the total sum of 
lambda weights ∑λ< 1 and decreasing return to scale 
when ∑λ> 1. DMU is considered for having constant 

return to scale if ∑λ= 1. Increasing, Constant and 
Decreasing Return to Scale under the CRS 
assumption were shown in Table 7. 

Table 7 displays return to scale under constant 
return to scale assumption. For the fishing terminals 
that only have one benchmark in their reference set, 
∑λ is equal to λ weight of that terminal reference. On 
the other hand, for the fishing terminal that has 
more than one terminal in its benchmark set, the 
value of ∑λ of that terminal is calculated by adding λ 
weight of reference terminals. For example, ∑λ value 
of C3 is calculated by adding λ weight of C2, λ weight 
of K2 and λ weight of T2 
(0.532277+0.048549+0.026481= 0.607307). Similar 
to calculation for T1, ∑λ= 0.709325 
(0.708276+0.001049). As one can see, there are four 
fishing terminals that demonstrate a constant return 
to scale, namely C2; K2; T2 and T3 where their ∑λ=1. 
There are five terminals namely, C1; C3; K2; T2 and 
T3 which all identified as BCC inefficient units with 
their ∑λ are 0.947434; 0.607307; 0.50266; 
0.547525; and 0.709325 respectively. These 
inefficient fishing terminals exhibit increasing 
returns to scale where their ∑λ< 1. The fishing 
terminals that operate with IRS could achieve 
efficiency by increasing their scale of operations to 
be as efficient as their peer reference of best 
practice. 

 

Table 7: Increasing, Constant and Decreasing Return to Scale under CRS assumption 
DMUs CRS efficiency score ∑λ RTS λj λj λj 

C1 0.9474 0.9474 IRS 0.9474   
C2 1 1 CRS 1   
C3 0.7088 0.6073 IRS 0.5322 0.0485 0.0264 
K1 0.5026 0.5026 IRS 0.5026   
K2 1 1 CRS 1   
K3 0.5475 0.5475 IRS 0.5475   
T1 0.7093 0.7093 IRS 0.7082 0.0010  
T2 1 1 CRS 1   
T3 1 1 CRS 1   

 

4.2.3. Slack variable analysis 

The slack variable analysis provides a reference 
set of specific recommendations to aid each 
inefficient fishing terminal to become efficient, by 
minimizing the input resources to produce a given 
output. The analysis indicated that the Tok Bali 
fishing terminal in the year 2013 and 2014; and 
Chendering and Kuala Kedah fishing terminal in the 
year 2013 had been relatively efficient. Their ratios 
of input variables to output variables were 
appropriate and their input resources utilization is 
efficient. The constraint is binding when a slack 
variable associated with constraint is 0 which means 
the constraint restricts the possible changes of the 
point. If the constraint is non-binding, the constraint 
does not restrict the possible changes of the point. 

The fishing terminal like C3 was inefficient due to 
inappropriate application of input resources and 
excess amount of resources utilized (Table 8). 
Chendering can improve its efficiency or reduce its 
inefficiency proportionately by reducing its inputs. 

C3 achieved its efficiency score of 0.708819, 
which implies that Chendering should adjust all 
input by 29.12% in order to be technically efficient. 
The result indicates that there is a surplus of almost 
all its input variables. Chendering would require to 
reduce its terminal area by 57729.38 square meter; 
berth length by 73.84 meter; storage area by 55.61 
square meter; average labor by 3.28; gate lane by 
0.20; forklift by 0.12 unit; shore to sea crane by 0.28 
unit; shore crane by 0.15 unit; and fish tray by 1 unit. 
Nevertheless, despite these inputs reduction, it is 
unable to push C3 to the frontier target. Therefore, in 
order to achieve efficiency, the fishing terminal 
should also increase its tonnage by 3.99%. Hence, 
the surplus variables should be adjusted accordingly 
if the terminal would like to reach an efficient state. 
For other inefficient fishing terminals such as C1, K1 
as well as K3, the analysis result shows that there is 
a shortage in tonnage. These three fishing terminals 
cannot reduce any inputs but must augment tonnage 
of fish landing by 47.47%, 90.18% and 67.30% 
respectively. In contrast, the result founds that there 
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are no slack variables for T1. This finding, therefore, 
indicates the inappropriate application of input 

resources and T1 should fully utilize its resources in 
order to be efficient. 

 

Table 8: Slack variable analysis result for inefficient fishing terminals 

 
Chendering 2012 

(C1) 
Kuala Kedah 

2012 (K1) 
Tok Bali 

2012 (T1) 
Chendering 2014 

(C3) 
Kuala Kedah 2014 

(K3) 
Excess T.A 0 0 0 57729.38 0 
Excess B.L 0 0 0 73.84 0 
Excess D 0 0 0 0 0 

Excess S.A 0 0 0 55.61 0 
Excess A.L 0 0 0 3.28 0 
Excess G.L 0 0 0 0.20 0 
Excess T 0 0 0 0 0 
Excess F 0 0 0 0.12 0 

Excess S.T.C 0 0 0 0.28 0 
Excess S.C 0 0 0 0.15 0 
Excess S 0 0 0 0 0 

Excess F.T 0 0 0 0.90 0 
Shortage T 4201.17 1634.44 0 347.72 1510.39 
Shortage R 0 0 0 0 0 

Note: Excess - T.A: Terminal Area; B.L: Berth Length; D: Draft; S.A: Storage Area; A.L: Average Labour; G.L: Gate Lane; T: Trolley; F: Forklift; S.T.C: Shore to Sea 
Crane; S.C: Shore Crane; S: Slider; F.T: Fish Tray; Shortage – T: Tonnage; R: Revenue 

 

4.3. Score result of DEA-BCCI (Input-oriented 
rating) 

DEA-BCCI model measures the pure technical 
efficiency of a DMU at a given scale of operation 
where its frontiers establish piecewise linear and 
concave characteristics which lead to variables 
return to scale. The basic BCCI model is solved using 
DEA-Solver. The results of efficiency estimated are 
presented in Table 9. Based on the BCCI efficiency 
level of each fishing terminal, the analysis indicates 
that six out of nine fishing terminals were efficient 
(score of 1), around 66.66% of the analyzed period. 

It is evident that all fishing terminals found to be 
efficient with a score of 1 (Table 9). This is not 
surprising as in VRS models; more terminals can find 
their way to the frontier. Nevertheless, C1, K1 and T1 
are classified as inefficient although their BCC-
projection is constant. This scenario could happen, 
when the value could not be computed accurately, 
mostly when multiple projections occur. The 
inefficiency may also have influenced by lambda 

weight value that reflects the different return to 
scale possibilities.  

 

Table 9: Efficiency results of using DEA-BCCI 
No Year Fishing Terminal Efficiency Score Rank 
1 2012 Chendering (C1) 1 Inefficient 1 
2 2012 Kuala Kedah (K1) 1 Inefficient 1 
3 2012 Tok Bali (T1) 1 Inefficient 1 
4 2013 Chendering (C2) 1 Efficient 1 
5 2013 Kuala Kedah (K2) 1 Efficient 1 
6 2013 Tok Bali (T2) 1 Efficient 1 
7 2014 Chendering (C3) 1 Efficient 1 
8 2014 Kuala Kedah (K3) 1 Efficient 1 
9 2014 Tok Bali (T3) 1 Efficient 1 

 

Details regarding inefficient units are discussed in 
the next section. Fig. 7 and Fig. 8 are created in order 
to provide more details on the efficiency scores of 
fishing terminals. 

The results indicated that DEA-BCCI obtained 
better results compare to DEA-CCRI. The result is 
predictable as BCCI operates variables returns to 
scale whereas CCRI operates constant return to 
scale. VRS efficiency score is generally higher than 
the CRS efficiency score, particularly for the input 
approach. 

 

 
Fig. 7: Efficiency of the fishing terminal for the year 2012 to 2014 
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Fig. 8: Efficiency of the fishing terminal for the year 2012-2014 

 

4.3.1. The reference set of best practice 

Efficient fishing terminals could be referred to as 
better performers, however not the best. In order to 
distinguish the best of them, one may investigate the 
reference set frequency as an indicator of the best 
performer. It is necessary to understand the 
production process of best practices which may help 
both inefficient and efficient terminals to make 
improvements. However, one should be cautious 
that efficient terminals may represent the best 
existing but not necessarily the best terminal since 
there is always a possibility that a fishing terminal 
can be operated more efficiently. Table 10 and Table 
11 show some results. 

 
Table 10: Benchmarks for input-oriented BCC model 

No. DMU Score Reference Set 
1 C1 1 C2 and C3 
2 C2 1 C2 
3 C3 1 C3 
4 K1 1 K2 
5 K2 1 K2 
6 K3 1 K3 
7 T1 1 T3 
8 T2 1 T2 
9 T3 1 T3 

 

Table 11: The reference set of best practice to other DMU 
Reference Frequency to other DMU 

Chendering 2013 1 
Chendering 2014 1 
Kuala Kedah 2013 1 

Tok Bali 2014 1 
 

As can be seen in Table 10, efficient fishing 
terminals may consider themselves to be their own 
benchmarks. For example, the benchmark for C2 is 
C2 and T3 is T3. On the other hand, for inefficient 
terminals, their benchmarks stand for one or many 
of the efficient terminals. C1 observes two efficient 
terminals as its benchmark, namely Chendering 
2013 (C2), Chendering 2014 (C3). This means that 
C1 must use a combination of two fishing terminals 
in order to achieve efficiency. The values of the 
combination of efficient terminals to achieve 
efficiency and reported next to each benchmark 
fishing terminal can be calculated by attained λ 
(lambda) weights which solved from the dual 

version of a linear program. For instance, C1 will 
attempt to become like C2 more than C3 given that 
respective λ weights of C2 are 0.840808 compare to 
the latter, 0.159182. Besides, one can also find that 
K1 and T1 perceived K2 and T3 as their benchmark 
respectively based on the way they utilize input and 
produce enough output.  

Table 11 presents the frequency in the reference 
set for efficient fishing terminals. The reference set 
provides a basis for what inefficient terminals should 
do to achieve efficiency. Under the VRS assumption, 
the result of the frequency of the reference set 
indicated that C2 and K2 were used as a benchmark 
in 2013. While in 2014, only C3 and T3 were 
appointed as references for an inefficient fishing 
terminal. 

4.3.2. Return to scale (RTS) 

BCC model assumes that the evaluated decision-
making unit characterizes variable return to scale, 
distinguishing between scale and technical 
efficiency. This model identifies only isolated 
technical efficiency for a given scale of operations 
and exhibit either Increasing Return to Scale (IRS) or 
Constant Return to Scale (CRS) or Decreasing Return 
to Scale (DRS) when working in Data Envelopment 
Analysis Program (DEAP). Return to scale is an 
important part of DEA which enables us to 
determine the movement of inefficient fishing 
terminals at the frontier to steer direction. 
Increasing, Constant and Decreasing Return to Scale 
under VRS assumption were shown in Table 12. 

Table 12 displays return to scale under variable 
return to scale assumption. For the fishing terminals 
that have only one benchmark in their reference set 
(Table 10). On the other hand, for the fishing 
terminal that has more than one terminal in its 
benchmark set, the value of ∑λ of that terminal is 
calculated by adding λ weight of reference terminals. 
For detail illustration, ∑λ value of C1, 0.99999, is 
calculated by adding λ weight of C2 and λ weight of 
C3 (0.840808+0.159182= 0.99999). As one can see, 
there are six fishing terminals that demonstrate a 
constant return to scale, namely C2; C3; K2; K3; T2 
and T3 where their ∑λ= 1. For the inefficient 
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terminals, C1, K1 and T1 are identified as BCC 
inefficient with the value of the index of 0.99999 
respectively. The reference units for C1 are C2 and 
C3 with λ weight are 0.840808 and 0.159182, 
showing an increasing return to scale where ∑λ< 1. 
Likewise, for K1 and T1, it shows an increasing 

return to scale that explains an optimum value of 1 
for C1, K1 and T1. Nonetheless, with non-zero 
optimal sums of slacks, those were inefficient in their 
RTS status. Yet, the RTS status of these terminals was 
based on their BCC-projection (i.e., unit B) which is a 
constant value. 

 

Table 12: Increasing, constant and decreasing return to scale under VRS assumption 
DMUs VRS efficiency score ∑λ RTS λj λj 

Chendering 2012 (C1) 1 0.99999 IRS 0.84080 0.15918 
Chendering 2013 (C2) 1 1 CRS 1  
Chendering 2014 (C3) 1 1 CRS 1  

Kuala Kedah 2012 (K1) 1 0.99999 IRS 0.99999  
Kuala Kedah 2013 (K2) 1 1 CRS 1  
Kuala Kedah 2014 (K3) 1 1 CRS 1  

Tok Bali 2012 (T1) 1 0.99999 IRS 0.99999  
Tok Bali 2013 (T2) 1 1 CRS 1  
Tok Bali 2014 (T3) 1 1 CRS 1  

 

4.3.3. Slack variable analysis 

In this study, DEA further identifies slack or 
surplus values. The input reductions are called total 
inefficiencies which comprise not only the number of 
proportional reductions but also on “slack”, which 
indicates for those fishing terminals that cannot 
reach their efficiency frontier regardless of the 
proportional reductions. The slack value is the 
amount of the resource that is not being used while 
the surplus is the extra amount over the constraint 
that is being produced. It is interesting to investigate 
the sources of inefficiency through slack variable 
analysis to identify potential areas of improvement. 
One can find further details as in section 3.8.2. BCC 
efficiency analysis classified that six DMUs were 
relatively efficient for the years 2013 and 2014, 
namely C2; C3; K2; K3; T2 and T3. It shows that their 
ratio of input variables to output variables was 
appropriate and their input resources utilization was 
applied efficiently. The constraint is binding and the 
slack or surplus value equal to zero. Table 13 depicts 
the slack or surplus variables result where three 
fishing terminals were identified as inefficient due to 
inappropriate application of input resources and 
outputs. 

Although these three terminals obtained a score 
of 1, nonetheless it is found that there was such an 
inefficiency under slack variable analysis with non-
zero slacks. C1 was found to have surplus variables 
and a shortage in the output variable. The result 
indicates that C1 would need to reduce its draft 
depth by 0.159182 meters. Nevertheless, despite this 
input reduction, it is unable to move C1 to the 
frontier target. Hence, in order to achieve efficiency, 
the fishing terminal should also enlarge its tonnage 
by 46.53%. From that, it is expected that the result 
will yield an output DEA slack after it shifted to VRS 
frontier by input reduction.  

For other inefficient terminals like K1 and T1, the 
result shows that there is a shortfall in tonnage and 
revenue. K1 and T1 cannot reduce any input but 
have to augment tonnage by 278.34% and 145.75% 
respectively. For other output variables, they must 
increase their revenue by 98.94% and 39.44%. 

 

Table 13: Slack variable analysis result for inefficient 
fishing terminals for DEA-BCCI 

 
Chendering 2012 

(C1) 
Kuala Kedah 

2012 (K1) 
Tok Bali 

2012 (T1) 
Excess T.A 0 0 0 
Excess B.L 0 0 0 
Excess D 0.159182 0 0 

Excess S.A 0 0 0 
Excess A.L 0 0 0 
Excess G.L 0 0 0 
Excess T 0 0 0 
Excess F 0 0 0 
Excess 
S.T.C 

0 0 0 

Excess S.C 0 0 0 
Excess S 0 0 0 

Excess F.T 0 0 0 
Shortage 

T 
4118.15 5044.83 54260.07 

Shortage 
R 

0 6699062 38319682 

Note: Excess-T.A: Terminal Area; B.L: Berth Length; D: Draft; S.A: Storage 
Area; A.L: Average Labour; G.L: Gate Lane; T: Trolley; F: Forklift; S.T.C: 

Shore to Sea Crane; S.C: Shore Crane; S: Slider; F.T: Fish Tray; Shortage–T: 
Tonnage; R: Revenue 

4.3.4. Efficiency and size of the fishing terminal 

It is interesting to examine the relationship 
between efficiency and terminal size under the DEA-
BCCI assumption that a larger terminal size tends to 
score higher efficiency scores. The finding suggested 
that large fishing terminals are not necessarily more 
efficient than smaller ones. This result can be seen 
from Table 13 where Chendering has shown an 
increasing return to scale in 2012 and non-zero slack 
in input and output variable. Therefore, it can be 
concluded that there is no significant relationship 
between terminal size and efficiency, and that 
technical efficiency and terminal size are not the 
main factors of efficiency. 

5. Conclusion 

The empirical result depicts that there is a 
shortfall of output under CRS and VRS slack variable 
analysis. Output augmentation is necessary, 
however, the input function cannot have reduced, 
but more to augment the output to be more efficient. 
This is a challenging task as a fishing port is the only 
port that depends solely on ocean products. Any 
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shortfall of catch or restriction on fishing fleet could 
cause a decrease in the fish landing which would 
eventually affect the performance of fishing port to 
be less economical. Nevertheless, in this case, the 
recommendation is hard to be suggested given that 
this study is conducted under input orientation. The 
only way left is to upgrade or sustain the existing 
inputs to increase the catch. On the output side, port 
management should pay more attention to existing 
fishing vessel capacity in harvesting fish and the size 
of the fishing fleet. To overcome a shortfall in 
revenue, the diversification of port income is 
necessary. Apart from upgrading the existing 
facilities, port management may introduce a multi-
operation facility by exploring other possibilities 
such as hosting marine-related activities. This can be 
done by giving access to the port for other potential 
users such as eco-fishing tourism, marine transport 
and supports offshore fish farming. Fishing port like 
Tok Bali, for example, has the potential to turn into a 
supply base for offshore support activities. For input 
reduction, it is hard to provide any recommendation 
about the reduction of inputs, since it is linked with 
the depth of berth, terminal size, storage area and 
cranes. In order to improve its overall performance, 
new measures could be introduced for income 
sources, as well as fully utilize the inputs. For those 
efficient fishing ports, they need to adapt to 
frequently changing demands of fishermen and 
customers to stay efficient. On the other hand, it is 
advisable for inefficient ports to develop better 
strategies to utilize their input resources effectively. 

Funding 

This study is funded by the Fundamental 
Research Grant Scheme from the Ministry of 
Education Malaysia. 

Compliance with ethical standards 

Conflict of interest 

The authors declare that they have no conflict of 
interest. 

References  

Agerschou H (2004). Fishing ports: Planning and design of ports 
and marine terminals. ICE Publishing, London, UK. 

Ajibefun IA (2008). An evaluation of parametric and non-
parametric methods of technical efficiency measurement: 
Application to small scale food crop production in Nigeria. 
Journal of Agriculture and Social Sciences (Pakistan), 4(3): 95-
100.  

Al-Eraqi AS, Mustafa A, Khader AT, and Barros CP (2008). 
Efficiency of Middle Eastern and East African seaports: 
Application of DEA using window analysis. European Journal 
of Scientific Research, 23(4): 597-612.  

Asil HR and Fanati Rashidi S (2015). Weight control with using 
goal programming in data envelopment analysis. International 
Journal of Advanced and Applied Sciences, 2(3): 1-5. 

Banker RD, Charnes A, and Cooper WW (1984). Some models for 
estimating technical and scale inefficiencies in data 

envelopment analysis. Management Science, 30(9): 1078-
1092.                                      
https://doi.org/10.1287/mnsc.30.9.1078 

Bhagavath V (2006). Technical efficiency measurement by data 
envelopment analysis: An application in transportation. 
Alliance Journal of Business Research, 2(1): 60-72.  

Charnes A, Cooper WW, and Rhodes E (1978). Measuring the 
efficiency of decision making units. European Journal of 
Operational Research, 2(6): 429-444.   
https://doi.org/10.1016/0377-2217(78)90138-8 

Collier TC, Mamula A, and Ruggiero J (2014). Estimation of multi-
output production functions in commercial fisheries. Omega, 
42(1): 157-165.  
https://doi.org/10.1016/j.omega.2013.05.001 

Cooper WW, Seiford LM, and Tone K (2007). A comprehensive 
text with models, applications, references and DEA-solver 
software. 2nd Edition, Springer Science Business Media, New 
York, USA.                                                       
https://doi.org/10.1007/978-0-387-45283-8  

Coto-Millan P, Banos-Pino J, and Rodriguez-Alvarez A (2000). 
Economic efficiency in Spanish ports: Some empirical 
evidence. Maritime Policy and Management, 27(2): 169-174. 
https://doi.org/10.1080/030888300286581 

Cullinane K, Wang TF, Song DW, and Ji P (2006). The technical 
efficiency of container ports: Comparing data envelopment 
analysis and stochastic frontier analysis. Transportation 
Research Part A: Policy and Practice, 40(4): 354-374.  
https://doi.org/10.1016/j.tra.2005.07.003 

Dopplinger F (1968). Project report on a visit to the fishing port of 
Bremerhaven, W. Germany. Project Report No. 25, 
Department of Fisheries of Canada, Ottawa, Canada. 

Ebrahimnejad A, Tavana M, Lotfi FH, Shahverdi R, and Yousefpour 
M (2014). A three-stage data envelopment analysis model 
with application to banking industry. Measurement, 49: 308-
319.                     
https://doi.org/10.1016/j.measurement.2013.11.043 

Emere MC and Dibal DM (2013). A survey of the methods of fish 
processing and preservation employed by artisanal fishermen 
in Kaduna city. Food Science and Quality Management, 11: 16-
22.  

Fare R, Grosskopf S, and Lovell CAK (1985). The measurement of 
efficiency of production. Kluwer-Nijhoff Publishers, Boston, 
USA. https://doi.org/10.1007/978-94-015-7721-2 

Farrell MJ (1957). The measurement of productive efficiency. 
Journal of the Royal Statistical Society: Series A (General), 
120(3): 253-281.                                  
https://doi.org/10.2307/2343100 

Golany B and Roll Y (1989). An application procedure for DEA. 
Omega, 17(3): 237-250.                         
https://doi.org/10.1016/0305-0483(89)90029-7 

González MM and Trujillo L (2009). Efficiency measurement in the 
port industry: A survey of the empirical evidence. Journal of 
Transport Economics and Policy (JTEP), 43(2): 157-192.  

Kasypi M (2013). Technical efficiency of container terminal 
operations: A DEA approach. Journal of Operations and Supply 
Chain Management (JOSCM), 6(2): 1-19.  
https://doi.org/10.12660/joscmv6n2p1-19 

Kazan H and Baydar M (2013). Performance measurement with 
data envelopment analysis in service industry: Banking 
application. Business Management Dynamics, 3(5): 37-50.  

Kennedy VS, Breitburg DL, Christman MC, Luckenbach MW, 
Paynter K, Kramer J, Sellner KG, Dew-Baxter J, Keller C, and 
Mann R (2011). Lessons learned from efforts to restore oyster 
populations in Maryland and Virginia, 1990 to 2007. Journal 
of Shellfish Research, 30(3): 719-731.  
https://doi.org/10.2983/035.030.0312 

https://doi.org/10.1287/mnsc.30.9.1078
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1016/j.omega.2013.05.001
https://doi.org/10.1007/978-0-387-45283-8
https://doi.org/10.1080/030888300286581
https://doi.org/10.1016/j.tra.2005.07.003
https://doi.org/10.1016/j.measurement.2013.11.043
https://doi.org/10.1007/978-94-015-7721-2
https://doi.org/10.2307/2343100
https://doi.org/10.1016/0305-0483(89)90029-7
https://doi.org/10.12660/joscmv6n2p1-19
https://doi.org/10.2983/035.030.0312


Mokhtar et al/International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 89-103 

103 
 

Koopmans TC (1951). An analysis of production as an efficient 
combination of activities. In: Koopmans TC (Ed.), Activity 
analysis of production and allocation: 33-97. John Wiley and 
Sons, Hoboken, USA. 

Liu Z (1995). The comparative performance of public and private 
enterprises. Journal of Transport Economics and Policy, 29(3): 
263-274.  

Lu B and Wang XL (2013). A comparative study on increasing 
efficiency of Chinese and Korean major container terminals. 
In: Zhang Z, Zhang R, and Zhang J (Eds.) LISS 2012: 163-168. 
Springer, Berlin, Heidelberg, Germany.  
https://doi.org/10.1007/978-3-642-32054-5_24 

Martic M, Novaković M, and Baggia A (2009). Data envelopment 
analysis-basic models and their utilization. Organizacija, 
42(2): 37-43.                                         
https://doi.org/10.2478/v10051-009-0001-6 

Merk O and Dang TT (2012). Efficiency of world ports in container 
and bulk cargo (oil, coal, ores and grain). OECD Regional 
Development Working Papers, 2012/09, OECD Publishing, 
Paris, France. 

Munisamy S and Jun OB (2013). Efficiency of Latin American 
container seaports using DEA. In The 3rd Asia-Pacific Business 
Research Conference, Kuala Lumpur, Malaysia: 25-26.  

Notteboom T, Coeck C, and Van Den Broeck J (2000). Measuring 
and explaining the relative efficiency of container terminals by 
means of Bayesian stochastic frontier models. International 
Journal of Maritime Economics, 2(2): 83-106.  
https://doi.org/10.1057/ijme.2000.9 

Noura AA, Lotfi FH, Jahanshahloo GR, and Rashidi SF (2011). 
Super-efficiency in DEA by effectiveness of each unit in 
society. Applied Mathematics Letters, 24(5):623-626.  
https://doi.org/10.1016/j.aml.2010.11.025 

Noura AA, Lotfi FH, Jahanshahloo GR, Rashidi SF, and Parker BR 
(2010). A new method for measuring congestion in data 
envelopment analysis. Socio-Economic Planning Sciences, 
44(4): 240-246.                   
https://doi.org/10.1016/j.seps.2010.06.003 

Thangasamy R and Deo M (2013). Measuring the operational 
efficiency of selected Major Ports in India. Mexican Journal of 
Operations Research, 2(2): 29-41.  

Vincova K (2005). Using DEA models to measure efficiency. Biatec, 
13(8): 24-28. 

Wang TF, Song DW, and Cullinane K (2003). Container port 
production efficiency: A comparative study of DEA and FDH 
approaches. Journal of the Eastern Asia Society for 
Transportation Studies, 5(10): 698-713.  

Zamorano MLR (2004). Economic efficiency and frontier 
techniques. Journal of Economic Surveys, 18(1): 33-77.  
https://doi.org/10.1111/j.1467-6419.2004.00215.x 

Zhu J (2014). Quantitative models for performance evaluation and 
benchmarking: Data envelopment analysis with spreadsheets. 
Vol. 213, Springer, Berlin, Germany.  
https://doi.org/10.1007/978-3-319-06647-9   

 

https://doi.org/10.1007/978-3-642-32054-5_24
https://doi.org/10.2478/v10051-009-0001-6
https://doi.org/10.1057/ijme.2000.9
https://doi.org/10.1016/j.aml.2010.11.025
https://doi.org/10.1016/j.seps.2010.06.003
https://doi.org/10.1111/j.1467-6419.2004.00215.x
https://doi.org/10.1007/978-3-319-06647-9

	Measuring terminal efficiency: Case of fishing ports in Malaysia
	1. Introduction
	2. Operation of fishing port terminal
	2.1. Efficiency in fishing terminal
	2.2. Previous studies on DEA and fishing terminal

	3. Formulating methodology
	3.1. CCR input-oriented model
	3.2. DEA BCC input-oriented model

	4. Data source
	4.1. Correlation between input and output variables
	4.2. Score result of DEA-CCR (Input-oriented rating)
	4.2.1. The reference set of best practice
	4.2.2. Return to scale
	4.2.3. Slack variable analysis

	4.3. Score result of DEA-BCCI (Input-oriented rating)
	4.3.1. The reference set of best practice
	4.3.2. Return to scale (RTS)
	4.3.3. Slack variable analysis
	4.3.4. Efficiency and size of the fishing terminal


	5. Conclusion
	Funding
	Compliance with ethical standards
	Conflict of interest
	References


