
 International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 1-8

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

1

Accurate cost estimation for software with volatile requirements

Ibrahim Hassan 1, *, Ayub Latif 1, Khalid Khan 1, Fadzil Hassan 2, Muhammad Saeed 3

1Department of Computer and Information Sciences, PAF KIET University, Karachi, Pakistan
2Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
3Department of Computer and Information Sciences, University of Karachi, Karachi, Pakistan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 11 July 2019
Received in revised form
20 December 2019
Accepted 22 December 2019

Requirements volatility in the software development lifecycle is considered
to be one of the biggest risks during development. Countering this is
mandatory in order to achieve success in a software project. Such
requirements if they exist and not handled at an appropriate time can also
result in a huge amount of error in estimation, whether it relates to cost or
time. This paper first provides a clear understanding of requirements
volatility along with its major contributors. The paper then mentions some
widely-used techniques to achieve maximum accuracy in software costing. In
section 4, the paper highlights how costing accuracy can be achieved if the
software has volatile requirements by measuring an existing survey’s result
costing impact on the project. Finally, the paper concludes that volatile
requirements cannot be eliminated but can be minimized using the
approaches mentioned in the paper.

Keywords:
Volatile requirements
Software costing
Software estimation
Accuracy

© 2020 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*The achievement of a software product depends
on how accurately the requirements of the client
have been understood and implemented into the
software. If the requirements are not well
understood, this would result in ambivalence in the
SRS (Shah and Jinwala, 2015). Requirements
volatility, which has been elaborated as the change
in requirements (in terms of the number of
additions, modifications, and deletions) during
software project development. It creates
supplementary tasks in architecture and code which
leads to the increase in software development
timeline and cost (Abd Elwahab et al., 2016) causing
the system size to expand and extensive rework and
effort (Peña and Valerdi, 2015).

The rest of the paper is structured like this;
Section 2 gives a detailed understanding of volatile
requirements. Section 3 talks about the major
focusing areas that are mandatory for achieving
estimation accuracy. In Section 4 we discuss the idea
of getting an accurate estimate but for a software
development project which comprises unstable
(volatile) requirements and finally, we conclude our

* Corresponding Author.
Email Address: ibrahim_hassan@live.co.uk (I. Hassan)

https://doi.org/10.21833/ijaas.2020.03.001
 Corresponding author's ORCID profile:

https://orcid.org/0000-0003-4757-6800
2313-626X/© 2020 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

paper in Section 5 by also giving future directions for
research. Most of the authors have not discussed
how to achieve costing accuracy when the
requirements are volatile in the project. So, our
paper tries to highlight this major problem.

2. Volatile requirements

Requirements that arise after software
application has been implemented and deployed
remain valid for some period of time after which
they are removed to be reactivated later or to
disappear forever. We call such requirements
“Volatile Requirements” and the associated
functionalities as “Volatile Functionalities” (Urbieta
et al., 2013).

2.1. Costing and volatile requirements

It is obvious that the main cause for huge cost and
time delay is a reliance on the human factor which
has many drawbacks. In practice, when an
application size of 50KLOC requires a high level of
rework, research shows that a simple change can
require 1.5 KLOC updates and which can constitute
as much as 25-person-days of average work. Another
discovery is that when components are added to a
system after the project has finished and deployed,
the costs are higher as compared to the costs that
would have been incurred if the functionalities were
suggested before the software was developed
(Kalbani and Nguyen, 2010). It is notable that

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ibrahim_hassan@live.co.uk
https://doi.org/10.21833/ijaas.2020.03.001
https://orcid.org/0000-0003-4757-6800
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2020.03.001&domain=pdf&

Hassan et al/International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 1-8

2

delaying time to implement a change will decrease
profits, increase costs and hold back potential
business opportunities in a competitive world.

2.2. Causes of volatile requirements

The identified causes of volatile requirements
include:

 Conflicts of unambiguity among requirements

(Nurmuliani et al., 2004).
 User/customer knowledge evolutions (Al-Saiyd

and Zriqat, 2015).
 Change of user/customer priorities (Al-Saiyd and

Zriqat, 2015).
 Schedule, technical or cost-related problems (Al-

Saiyd and Zriqat, 2015).
 Work environment change (Al-Saiyd and Zriqat,

2015).

 Selection of process model (Madachy and
Khoshnevis, 1994).

2.3. Effects of volatile requirements

The identified effects of volatile requirement
include:

 Effort and schedule overruns (Nurmuliani et al.,

2004).
 A decrease in productivity (Zowghi et al., 2000)

(Zowghi and Nurmuliani, 2002).
 Increase in a number of defects (Javed and Durrani,

2004).

2.4. Types of volatile requirements

Harker et al. (1993) have classified the volatile
requirements into four major classes and they are
depicted in Table 1.

Table 1: Classes of volatile requirements
Requirement Type Description

Mutable
requirements

This category of requirements change is a result of an operational environment changes in an organization.

Emergent
requirements

It has been witnessed that as the software development process progresses, the customer gains more insight into the
software and this improves his/her understanding of the software and that’s why they request a change. This can also

be referred to as the transformation or evolvement of the user and customer.
Consequential
requirements

The requirements which come up after the system deployment because of a change in the working procedures of the
organization where the software was deployed.

Compatibility
requirements

Requirements popping up because of changes in the business processes of an organization. The new and altered
processes now want the deployed system to change as well.

2.5. Process models and volatile requirements

Process models are the reason behind
requirement volatility in projects, a little prior
analysis in their selection can prompt the developers
about the type of requirement change that a project
will undergo. Also, process models are used to
manage volatility and by carefully selecting the most

suitable process model, control over the project can
be maximized.

Sudhakar (2005) discussed a few process models
and summarizes their pros and cons while handling
project volatility in Table 2. Based on Chari and
Agrawal (2018), the waterfall model is seen as a
static and inflexible model when faced with changing
requirements.

Table 2: Classification of process models
Process Models Definition

Waterfall Model
In this model development is sequential, moves from one phase to another and only has one iteration/phase. The entire

iteration revolves around the traditional phases which are requirements analysis, design, coding, testing, integration,
and implementation.

Prototyping
Model

In this, the development process starts with requirement collection, moves to prototype and ends with user evaluation

Incremental-
Iterative Model

A project gets divided into mini-project; each mini-project being iteration represents a mini-waterfall model and results
in an increment.

Agile
Methodologies

These approaches are revolutionary and are often undertaken in places where teams collaborate rigorously to
accomplish smaller tasks that are divided in a way so that they can be achieved in a small duration of time. These small
iterations or cycles are also cost-effective. Many agile methodologies are proposed but Extreme Programming (XP) and

Scrum are very popular in agile methodologies.

3. Achieving costing accuracy

We have several types of software costing and
estimation models. Function points stay as the very
classical regression approach for software costing. It
is dependent on the analysis of system requirements
(Sheta et al., 2015). These estimation models based
on regression techniques conventionally function the
estimates based on the historical data, collected on
the completed projects by equating various variables
and relationships therein (Fairley, 1992). The other
widely used parametric models for software cost

estimation comprises of COCOMO-II (Boehm et al.,
2000), SLIM (Putnam and Myers, 2013), SEER-SEM
(Galorath and Evans, 2006) and ESTIMACS (Rubin,
1983). These software estimation models churn the
tentative cost, duration and efforts required for
completing the software development. They include
factors like the desired functional needs of the
software and the size of the product. Along with
these regression and parametric approaches,
software engineering practitioners have also
employed machine learning (ML) techniques for

Hassan et al/International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 1-8

3

predicting software cost estimates (Latif et al.,
2018).

In software development one of the most
important yet difficult activities is effective software
project estimation. In the absence of reliable
estimates, project planning and control is impossible
and generally, the whole software industry fails to
either estimate projects accurately or make use of
the estimates in a fruitful manner. Because of this,
the industry suffers needlessly and it is very vital
that these problems are addressed. We have divided
this section into two more subsections that can help
us in achieving accuracy in software costing.

3.1. Estimating software size

While the magnitude or size of a project is not
everything, it undoubtedly holds an overwhelming
influence over most aspects of development
particularly that relates to the cost and resources
that are required for developing software.

Without an accurate estimation of project size,
planning is exceptionally difficult. We shall discuss
four size estimating approaches:

 The consensus agreed by experts, a very popular

technique for this approach is Wideband-Delphi.
 The proxy-based technique that utilizes the use of

components for costing and estimation known as
the standard components technique.

 The classical Function Points technique
 An algorithmic technique using constants and

factors, very popular among which is COCOMO

3.1.1. Wideband Delphi

This technique invites experts generally from a
similar domain to predict the cost and effort of a
software system that is under development. The idea
is that they all ultimately form a consensus after
arguing with each other to reach a conclusion. The
generic sequence of actions for wideband Delphi
method is as under:

1. Different experts from a similar domain are

identified and called.
2. They all meet to discuss the project at a specific

location or meet through video conferencing.
3. Each member of the meeting gives a cost that

he/she feels is appropriate.
4. All of them can see the costs that are given by each

individual.
5. If all the estimates are close then this process is

stopped else, they continue again from step
number 2.

It is useful to show all the rounds of estimates;

around means the first accepted change by everyone
after their initial estimates. This helps the estimators
in observing how their estimates are converging or
diverging. Fig. 1 shows a case where data has been
collected from 25 different groups; it is evident that
the error rate is much higher from simple averaging

of their initial estimates compared to the error rate
from Wideband Delphi estimating.

Fig. 1: Estimation accuracy of simple averaging compared
to Wideband Delphi estimation. Wideband Delphi reduces

estimation error in about two-thirds of cases

Fig. 1 shows that averaging the estimates of all
experts can never give an accurate result which can
be yielded by coming to a consensus for an estimate
between all experts. This is the essence of success
and accuracy in the Wideband Delphi technique.

3.1.2. Components estimating

Components estimating falls in the category of
proxy-based technique. Proxy-based techniques are
used when we use some artifacts related to the
software that can help us in getting the expected cost
and time duration of the software. In this technique,
the components of the software system are used as a
proxy. The number of components and their size is
predicted by using the components information of
some previous software system. Therefore, it is clear
that this technique utilizes historical data or
industrial data for calculating the size and the cost of
the software. This technique works like this:

1. Collect data that is historically related to

components of previous software developed by the
same organization. If the data is of the developing
organization, then its historical data whereas if it is
of some other organization then its industrial data.
It is a known fact that historical data will give a
more accurate result than compared to industrial
data.

2. Predict the most likely value for the total number
of components for the software that is under
development. We will call it (M).

3. Predict the optimistic and pessimistic values for
the number of components. Obviously, the
pessimistic value will have a large number of
components and optimistic value will be of a lesser
number of components. We denote the optimistic
value by (S) and pessimistic value by (L).

4. The expected value formula can now be used to
calculate the number of components required for
the software to be developed.

𝐸 =
(𝑆+(4∗𝑀))+𝐿

6
 (1)

-100%

0%

100%

200%

300%

400%

500%

600%

700%

800%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Delphi Estimates Group Averages

Hassan et al/International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 1-8

4

5. Once the total numbers of components are known
again historical data that has the LOC/component
can be used to calculate the total number of Lines
of Code (LOC) for the entire software system.

6. A variant can be done to this technique and
components can be classified differently with
respect to their functionality. For example, the GUI
component, database components, business logic
components, etc. In this case, different categories of
components will have a different number of LOC.
This variant can be used in organizations that have
a higher level of maturity.

This is a simple direct approach related to the end

product. Generally, this technique only helps in
identifying the total number of LOC for the software
system.

3.1.3. Function points

A number of costing models have adopted the FP
approach (SPQR/20, ESTIMACS). One correlation is
between the size and functionality of the software
which is often directly proportional. Software with
larger functionality is just as big in size and function
point estimation uses this relation. The weighted
count of a common function of the software is used
to estimate a software size. These functions are
usually:

 The number of inputs: Any data supplied by the

user is input.
 Number of outputs: The data which is produced

by the software be it for the user of some other
software is classified as an

 The number of inquiries: The output that is
generated on the basis of some input by the user is
regarded as an inquiry.

 The number of data files: The overall number of
files which are expected to be generated by the
system.

 The number of interfaces: The interface with
which the software communicates with other
software systems or even hardware devices.

The total estimate for software by function point

analysis is based on the number of times a single
function occurs; weight is based on its complexity in
the given project. For example Table 3 shows an
estimation case using the function points technique.

Table 3: An estimation case using function points
technique

Function Count Weight Total
Inputs 8 4 32

Outputs 12 5 60
Inquiries 4 4 16
Data Files 2 10 20
Interfaces 1 7 7

Total 135

Function point analysis has a straightforward and
elaborate method such as adjusting the function
point total using influence factors. This makes the

estimation and correlation more useful and there are
better chances of achieving more accurate
estimation results.

3.1.4. COCOMO model

When a mean between variables is derived, using
statistical interpretation on historical data, it is
called a regression model. COCOMO exists in three
forms that are hierarchal in nature. It is simple to
estimate the cost of this model (Shekhar and Kumar,
2016). The first or basic COCOMO foregoes the Cost
Drivers so it is valuable for quick, cursory and fast
estimates of software costs but not more. The
intermediate COCOMO takes these project attributes
aka cost drivers into account and is far more
detailed. Lastly, detailed COCOMO also factors in the
effects of each project phase to estimate software
costs.

3.2. Estimating software effort, schedule, and
cost

We discuss estimating the effort, schedule and
cost separately. The metric for the effort is persons-
month, which means that an effort of 4 persons-
months means that if four people work for a month
on a particular project the project will be completed
in a month. The schedule is always in calendar
months and finally, the cost is always in terms of
some currency, the actual expected amount that will
spend on the project.

3.2.1. Estimating software effort

When you have a measure of the size of your
product, you can calculate the effort estimate. The
calculated effort will need some form of data along
with the software costing model which has already
been discussed in section 3.1. The evolvement of the
process to acquire the cost of the software system
from the size and effort requires the existence of a
defined process that has major activities well defined
and followed. The product is already known does not
only constitute the code, but it has also been argued
by researchers that coding is actually 15% to 25% of
the total software development process. The other
activities can be but not restricted to composing and
reviewing documentation, making prototypes,
structuring the deliverables, testing the code etc.,
takes up the bigger part of your overall effort. The
ultimate goal is to develop the software which is
equivalent to the estimate that was initially made.
There are a couple of fundamental approaches to get
an accurate effort and size:

1) the most ideal route is to utilize your
organization’s own recorded information to decide
how much effort has past projects of almost the
same estimated size have taken. This, obviously, is
based on the premise that your organization has
been reporting genuine outcomes from past

Hassan et al/International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 1-8

5

ventures; it is better if you have a few tasks of
comparative size as this strengthens you reliability
and highlights that you require specific resources to
build the products of a given size; lastly it is also
important that you will pursue a similar project
lifecycle, utilize a comparable development strategy,
utilize similar tools, and utilize a group with similar
abilities and experience for the new project.
2) The other approach can come into play when an
organization has not been collecting historical data
as the processes were not so strong and
management never focused on the collection of data
to improve the effort estimation process. Another
reason for this could be that you are developing a
new kind of software for the first time, the likes of
which have not been made by your organization
before. For such a case algorithmic approach such as
Boehm et al. (2000) COCOMO model or the Putnam
Methodology can be used to achieve an accurate
effort estimate. These models have been derived by
studying a significant number of completed projects
and hence can give good results if they are used with
proper analysis. But it should be clear that such a
model can never achieve accuracy equal to models
that based on historical data and they will always be
less accurate. Still, they can give a good starting
estimate when much of the things about the software
which are under development are not known.

3.2.2. Estimating software schedule

From the effort estimate, if we combine the
staffing profile and the work breakdown structure,
we can get the overall project schedule. This contains
the complete details of all the practitioners who will
be working for a particular project distributed with
respect to time duration. When you fill in these
details you can acquire the project plan of the
software which is under development. The project
plan of the software will show the actual time for
which the team will stay together working on a
specific problem. The estimation of the schedule can
also make use of historical data. Historical data with
respect to productivity for individuals can further
help the management is generating an accurate
software schedule. In case if your organization does
not follow a well-defined process for the estimate of
a software schedule a rule of thumb is if you have the
specified effort in staff month, you can divide that
value of the effort with the team size which you wish
to designate to a particular project. This will give you
the completion times in months if the effort was in
persons-month. For a simple example assume that if
particular software has been estimated to have the
effort of 60 staff-months and a team size of 10 will be
used for developing the software a rough idea is that
the project will require about 6 calendar months to
complete.

3.2.3. Estimating software cost

We all know that the easiest way to calculate the
labor cost is by multiplying the effort hours by the

hourly rate of the labor. If we can add some more
details and have salaries with respect to the
designations and the effort in staff-hours with
respect to the designations, then it can lead towards
a much more accurate cost estimate of the software.
The different wage structures can be with respect to
the following designations like Technical, QA, Project
Management, Documentation, Support, Junior
Programmer, Senior Programmer etc. It also clearly
shows the use of historical data.

In this section, we have just talked about the cost
that is incurred on personnel which is the
practitioners who are involved in developing the
software. There are many other factors that need to
be incorporated for calculating the correct estimate
of a software project. So, all the factors that can be
considered for the calculation of overall project cost
include the human capital cost, hardware equipment
and programming resources, travel for the meeting
or testing purposes, communications costs (e.g.,
long-distance telephone calls, video-conferences,
etc.), instructional classes, office space, etc. Precisely
how you add up total project cost will rely upon how
your company designates costs. Maybe the
organization does not dispense a few expenses to a
single project and might deal with it by increasing
the value of work rates ($ every hour). The most
basic cost can be estimated by multiplying the
project’s effort estimate (in hours) by a general work
rate ($ every hour).

4. Accurate estimates for software with volatile
requirements

This section is divided into three subsections; the
first section discusses the strategies which are used
to handle volatile requirements. The second
subsection highlights the reality about costing
impact for using the strategies for handling volatile
requirements and the third subsection goes in detail
of the software costing models that accommodates
volatile requirements.

4.1. Existing strategies to handle volatile
requirements

Thakurta and Ahlemann (2010), interviewed 11
software project managers in Germany and the
results of their survey findings are given in Table 3.
The conducted interviews helped in identifying nine
approaches to handle requirement volatility. The
queries were based on Morehouse's (1994)
guidelines and included questions regarding the
managers’ demographics, SDLC methods, success
rates, requirement volatility awareness,
organizational setting, patterns of requirement
change, background information on the project and
the impact of requirement volatility on the project.

Table 4 shows the nine approaches which were
used by the authors and they added four more
approaches and suggested a total of 13 approaches.
They have also identified the frequency of a
particular approach. The frequency shows what

Hassan et al/International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 1-8

6

percentage of a particular approach is used by the
management to handle volatile requirements. As our
paper gives a strategy to accurately estimate
software with volatile requirements, we have added
another column to show the costing impact of each
approach. The costing impact shows that when we
follow a particular approach for handling volatile
requirements whether it will increase the overall
cost of the software or will decrease it.

One important factor here to observe is that the
costing impact listed in Table 4 is the illusion in the
management’s mind for incorporating a particular
approach during software development. The actual
impact can be different than as to what the
management initially feels. In fact, we believe that
the costing factor given in terms of implementing a
particular approach is a myth that is there in
management’s mind and the reality can be different
from the stated cost impact.

Table 4: Strategies of Thakurta and Ahlemann (2010) to handle volatile requirements for software

Number List of Approaches Freq (%) Costing Impact
1 Involving the business side in the project 11.3 Increase
2 Negotiating the project scope 9.8 Decrease
3 Rescheduling the project deadlines 9.0 Increase
4 Active involvement in requirements management activities 8.3 Increase
5 Proper documentation of procedures, activities, etc. 6.8 Increase
6 Adjustment in the human resource of a project 6.4 Decrease
7 Taking and Using Expert’s knowledge 5.6 Increase
8 Making the project communications effective 5.3 Decrease
9 Reducing the complexity factors of project 4.1 Decrease

10 Readjustment of the overall project effort 8.6 Decrease

11
Including an additional variable in cost for additional

requirements
4.1 Increase

12 Making a robust software architecture to withstand change 3.4 Increase
13 Running training programs for the workforce 2.3 Increase

As per the data in Table 4 an interesting

phenomenon here is to notice that even a costing
impact that management feels will increase the
overall cost of the software will end up is decreasing
the overall cost. Before going into the elaboration of
a specific strategy from Table 4 as an example a brief
reality about software reviews needs to be
investigated. It is a known fact that reviews help in
uncovering 60% of the overall software error and
static testing is considered as a best practice in
software development. It is again proved that
investing a single dollar on review will help the
organization save many dollars later. The same goes
for the strategies to handle volatile requirements. If
we look at the strategy number eleven from Table 4,
the management feels that a robust architecture will
increase the overall cost of the software. The reality
is if a robust architecture is in place at the right time
this can help in saving the cost later that is a huge
amount of cost can be saved in programming and the
testing phase.

On the other hand, management feels that
negotiating the project schedule or adjustment in the
human resource of a project will lessen down the
overall development cost. Well, this varies from case
to case, if while negotiating the project’s scope
management is able to get the scope lesser than to
actually what it was initially then it will surely
decrease the cost, otherwise if the customer is
stringent about the project scope, it will end up in
increasing the overall cost of the software. The other
strategy here is adjustment in human resource of a
project; management feels that they will be able to
reduce the human resources allocated for a project
and this will decrease the overall cost or will change
the star performing people from this project that is
under development and use the star performers in
some other generally newer projects.

Both cases that are either the lessening of human
resources for a particular project or changing the
practitioners of an ongoing project can lead to an
increase in the overall cost.

4.2. The reality about costing impact on using
strategies to control volatile requirements

As discussed in the previous subsection the
reality of the costing impact of using a particular
strategy to control volatile requirements can be
different as to what the management perceives
about a specific strategy. The management feels that
some of the strategies can lead to an increase in the
overall cost of the software which is undergoing
development. We strongly believe and it has been
witnessed in the case of software reviews also that if
the strategies to handle the volatile requirements are
performed at the right time, this will ultimately help
in reducing the overall cost and effort of the
software. However, the right time to use a particular
strategy can vary from project to project and also on
other factors whether they are internal or external to
the software development activity.

We form the opinion that if estimating effort,
schedule and cost procedures are followed in a way
as discussed in section 3 and handling volatile
requirements strategy of section 4 are used
intelligently then organizations can control the
impact of volatile requirements which will lead them
to achieve accuracy in their estimates.

4.3. Existing software cost models that
accommodate volatile requirements

Organizations which are at lesser maturity level
and where proper systems are not implemented

Hassan et al/International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 1-8

7

generally will not use the discussed approaches of
section 4.1. They can still use the Post Architecture
Model of COCOMO II. This model estimates in
advance the amount of code you might need to
discard and adjusts your product size due to
requirement change by using a REVL factor which is
(Requirements Evolution and Volatility).

As we already know that neural net algorithms
constantly change, so do fault diagnostic
requirements and we can reduce this risk by adding
20% to the project size based on REVL while the
development code is being written. This helps to
cope up with program growth and volatility. The
impact of the increased size can be estimated in the
COCOMO II model to compute project duration and
delta effort. When the effort is adjusted at the
appropriate time, the cost increase would have been
included in the initial calculated cost. During the
project development if volatile requirements creep
in, so it will not affect the management as they must
have calculated the overall cost of the software
including the volatile factor.

5. Conclusion

Change of requirements can occur at any phase of
development. Requirements Volatility is the measure
of the rate of change of requirements not only in the
development phase but in the operational phase too.
It has a great influence on the software project
schedule, cost and effort (Al-Saiyd, 2016). This
cannot be completely eliminated but minimized. In
this paper, we studied the impact of volatile
requirements on a software project. We investigated
their causes and suggested measures for handling
them.

As the focus of the paper was to accurately
estimate software with volatile requirements, we
presented approaches to correctly estimate software
which has a volatile requirement. The paper also
reviewed the important process models and also the
software estimation techniques and models. Existing
work exists to handle volatile requirements and we
extending that by including the cost impact to the
suggested strategies. The cost impact of using a
strategy was given from the viewpoint of the
management of the software developing
organization.

We intend to extend this study and would
investigate case studies where the strategies for
handling volatile requirements are used. It will help
us in noticing the impact of those strategies on the
overall cost of the software. We would also like to
investigate the factors that help in identifying the
right time in an ongoing software process to use
different strategies for handling volatile
requirements. Volatile requirements are a reality
and they exist in almost all software projects. Lastly,
the classification of volatile requirements with
respect to different types of software can be another
future direction for research and it can help the
software community.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of
interest.

References

Abd Elwahab K, Abd El Latif M, and Kholeif S (2016). Identify and
manage the software requirements volatility proposed
framework and casestudy. International Journal of Advanced
Computer Science and Applications, 7(5): 64-71.
https://doi.org/10.14569/IJACSA.2016.070510

Al-Saiyd NA (2016). A multistep approach for managing the risks
of software requirements volatility. Computer and
Information Science, 9(1): 101-112.
https://doi.org/10.5539/cis.v9n1p101

Al-Saiyd NA and Zriqat IA (2015). Analyzing the impact of
requirement changing on software design. European Journal
of Scientific Research, 136(1): 62-73.

Boehm BW, Madachy R, and Steece B (2000). Software cost
estimation with Cocomo II. Prentice-Hall, New York, USA.

Chari K and Agrawal M (2018). Impact of incorrect and new
requirements on waterfall software project outcomes.
Empirical Software Engineering, 23(1): 165-185.
https://doi.org/10.1007/s10664-017-9506-4

Fairley RE (1992). Recent advances in software estimation
techniques. In the 14th International Conference on Software
Engineering, Association for Computing Machinery, New York,
USA: 382-391.
https://doi.org/10.1145/143062.143155

Galorath DD and Evans MW (2006). Software sizing, estimation,
and risk management: When performance is measured
performance improves. Auerbach Publications, Boca Raton,
USA.
https://doi.org/10.1201/9781420013122

Harker SD, Eason KD, and Dobson JE (1993). The change and
evolution of requirements as a challenge to the practice of
software engineering. In the IEEE International Symposium
on Requirements Engineering, IEEE, San Diego, USA: 266-272.
https://doi.org/10.1109/ISRE.1993.324847

Javed T and Durrani QS (2004). A study to investigate the impact
of requirements instability on software defects. ACM SIGSOFT
Software Engineering Notes, 29(3): 1-7.
https://doi.org/10.1145/986710.986727

kalbani AA and Nguyen K (2010). Designing flexible business
information system for modern-day business requirement
changes. In the 2nd International Conference on Software
Technology and Engineering, IEEE, San Juan, USA, 2: V2-112.
https://doi.org/10.1109/ICSTE.2010.5608774

Latif MA, Khan MY, and Bashir K (2018). Practices for achieving
accuracy in software costing and estimation. In the 2nd
International Conference on Computing and Information
Sciences, At Karachi, Pakistan.

Madachy RJ and Khoshnevis B (1994). A software project
dynamics model for process cost, schedule and risk
assessment. Ph.D. Dissertation, University of Southern
California, Los Angeles, USA.

Morehouse RE (1994). Beginning qualitative research: A
philosophic and practical guide. Psychology Press, UK.

Nurmuliani N, Zowghi D, and Powell S (2004). Analysis of
requirements volatility during software development life
cycle. In the Australian Software Engineering Conference,
IEEE, Melbourne, Australia: 28-37.
https://doi.org/10.1109/ASWEC.2004.1290455

https://doi.org/10.14569/IJACSA.2016.070510
https://doi.org/10.5539/cis.v9n1p101
https://doi.org/10.1007/s10664-017-9506-4
https://doi.org/10.1145/143062.143155
https://doi.org/10.1201/9781420013122
https://doi.org/10.1109/ISRE.1993.324847
https://doi.org/10.1145/986710.986727
https://doi.org/10.1109/ICSTE.2010.5608774
https://doi.org/10.1109/ASWEC.2004.1290455

Hassan et al/International Journal of Advanced and Applied Sciences, 7(3) 2020, Pages: 1-8

8

Peña M and Valerdi R (2015). Characterizing the impact of
requirements volatility on systems engineering effort.
Systems Engineering, 18(1): 59-70.
https://doi.org/10.1111/sys.21288

Putnam LH and Myers W (2013). Five core metrics: The
intelligence behind successful software management. Pearson
Education, London, UK.

Rubin HA (1983). Macro estimation of software development
parameters: The ESTIMACS system. In the SOFTFAIR
Conference on Software Development Tools, Techniques and
Alternatives, IEEE, Arlington, USA: 109-118.

Shah US and Jinwala DC (2015). Resolving ambiguities in natural
language software requirements: A comprehensive survey.
ACM SIGSOFT Software Engineering Notes, 40(5): 1-7.
https://doi.org/10.1145/2815021.2815032

Shekhar S and Kumar U (2016). Review of various software cost
estimation techniques. International Journal of Computer
Applications, 141(11): 31-34.
https://doi.org/10.5120/ijca2016909867

Sheta A, Rine D, and Kassaymeh S (2015). Software effort and
function points estimation models based radial basis function
and feedforward artificial neural networks. International
Journal of Next-Generation Computing, 6(3): 192-205.

Sudhakar M (2005). Managing the impact of requirements
volatility. M.Sc. Thesis, Umeå University, Umeå, Sweden.

Thakurta R and Ahlemann F (2010). Understanding requirements
volatility in software projects-an empirical investigation of
volatility awareness, management approaches and their
applicability. In the 43rd Hawaii International Conference on
System Sciences, IEEE, Honolulu, USA: 1-10.
https://doi.org/10.1109/HICSS.2010.420

Urbieta M, Rossi G, Distante D, and Schwinger W (2013).
Managing volatile requirements in web applications. In the
15th IEEE International Symposium on Web Systems
Evolution, IEEE, Eindhoven, Netherlands: 77-82.
https://doi.org/10.1109/WSE.2013.6642420

Zowghi D and Nurmuliani N (2002). A study of the impact of
requirements volatility on software project performance. In
the 9th Asia-Pacific Software Engineering Conference, IEEE,
Gold Coast, Australia: 3-11.
https://doi.org/10.1109/APSEC.2002.1182970

Zowghi D, Offen R, and Nurmuliani N (2000). Impact of
requirements volatility on the software development lifecycle.
In the 16th IFIP World Computer Conference: Software Theory
and Practice, Publishing House of Electronics Industry,
Beijing, China: 19-27.

https://doi.org/10.1111/sys.21288
https://doi.org/10.1145/2815021.2815032
https://doi.org/10.5120/ijca2016909867
https://doi.org/10.1109/HICSS.2010.420
https://doi.org/10.1109/WSE.2013.6642420
https://doi.org/10.1109/APSEC.2002.1182970

	Accurate cost estimation for software with volatile requirements
	1. Introduction
	2. Volatile requirements
	2.1. Costing and volatile requirements
	2.2. Causes of volatile requirements
	2.3. Effects of volatile requirements
	2.4. Types of volatile requirements
	2.5. Process models and volatile requirements

	3. Achieving costing accuracy
	3.1. Estimating software size
	3.1.1. Wideband Delphi
	3.1.2. Components estimating
	3.1.3. Function points
	3.1.4. COCOMO model

	3.2. Estimating software effort, schedule, and cost
	3.2.1. Estimating software effort
	3.2.2. Estimating software schedule
	3.2.3. Estimating software cost

	4. Accurate estimates for software with volatile requirements
	4.1. Existing strategies to handle volatile requirements
	4.2. The reality about costing impact on using strategies to control volatile requirements
	4.3. Existing software cost models that accommodate volatile requirements

	5. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References

