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In the present paper, we introduce the notions of 𝑟-fuzzy ⋆-open and 𝑟-fuzzy 
⋆-closed sets in Šostak's fuzzy topological spaces. Also, we study some 
properties of these notions. Moreover, we give the concept of fuzzy ideal ⋆-
irresolute mapping in Šostak's fuzzy topological spaces. Finally, we study 
some kinds of separation axioms namely r − FIR𝑖 where i={0. 1. 2. 3} and 

r − FIT𝑗  where j={1. 2. 2
1

2
. 3. 4} and the relations between them. Also, some of 

their characterizations and several of fundamental properties have been 
established. 
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1. Introduction 

*The concept of fuzzy topology was first defined 
by Chang (1968) and later redefined in a somewhat 
different way by Lowen (1976) and by Hutton and 
Reilly (1980). According to Hohle and Sostak (1999), 
in all these definitions, a fuzzy topology is a crisp 
subfamily of fuzzy sets and fuzziness in the concept 
of openness of a fuzzy set has not been considered, 
which seems to be a drawback in the process of 
fuzzification of the concept of topological spaces. 
Therefore Šostak (1985) introduced a new definition 
of fuzzy topology. Later on, he developed the theory 
of fuzzy topological spaces in Šostak (1989). After 
that several authors (Chattopadhyay et al., 1992; 
Chattopadhyay and Samanta, 1993; El Gayyar et al., 
1994; Kim and Ko, 2001; Ramadan, 1992; Ramadan 
et al., 2001) have introduced the smooth definition 
and studied smooth fuzzy topological spaces being 
unaware of Sostak (1985) works. In fuzzy topology, 
by introducing the notion of ideal, (Sarkar, 1997), 
and several other authors (Hatir and Jafari, 2007; 
Nasef and Mahmoud, 2002; Saber and Abdel-Sattar, 
2014; Zahran et al., 2009; Alsharari and Saber, 2019; 
Saber and Alsharari, 2018) carried out such analysis. 
Throughout this paper, let X be a nonempty set, 𝐼 =
[0.1], 𝐼0 = (0.1] and 𝐼𝑋 denote the set of all fuzzy 
subsets of 𝑋. For each 𝛼 ∈ 𝐼, 𝛼(𝑥) = 𝛼 for very 𝑥 ∈ 𝑋. 
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A fuzzy point 𝑥𝑡  is said to be quasi-coincident with a 
fuzzy set 𝒜 ∈ 𝐼𝑋 denoted by 𝑥𝑡𝑞𝒜, if 𝑡 + 𝒜(𝑥) > 1. 
For 𝒜.ℬ ∈ 𝐼𝑋, 𝒜 is quasi-coincident with ℬ denoted 
by 𝒜𝑞ℬ, if there exists 𝑥 ∈ 𝑋 such that 𝒜(𝑥) +
ℬ(𝑥) > 1. If 𝒜 is not quasi-coincident with ℬ, we 
denoted 𝒜𝑞ℬ (Pao-Ming and Ying-Ming, 1980). 

 
Definition 1.1: A fuzzy topological space (fts, for 
short) is an ordered pair (𝑋. 𝜏), where 𝜏: 𝐼𝑋 → 𝐼 is a 
mapping satisfying the following axioms (Šostak, 
1985): 
 
(O1) 𝜏(0) = 𝜏(1) = 1.  

(O2) 𝜏(𝒜 ∩ ℬ) ≥ 𝜏(𝒜) ∩ 𝜏(ℬ) for any 𝒜.ℬ ∈ 𝐼𝑋 . 
(O3) 𝜏(∪𝑖∈Γ 𝒜𝑖) ≥∩𝑖∈Γ 𝜏(𝒜𝑖) for any {𝒜𝑖}𝑖∈Γ ∈ 𝐼

𝑋 . 
 

Theorem 1.1: Let (𝑋. 𝜏) be a fts. Then for each 𝑟 ∈ 𝐼0 
and 𝒜 ∈ 𝐼𝑋. We define the operator 𝐶𝜏: 𝐼

𝑋 × 𝐼0 → 𝐼𝑋 
as follows (Chattopadhyay and Samanta, 1993):  
 
𝐶𝜏(𝒜. 𝑟) =∩ {ℬ ∈ 𝐼

𝑋|𝒜 ≤ ℬ. 𝜏(1 − ℬ) ≥ 𝑟}.  

 
For each 𝒜.ℬ ∈ 𝐼𝑋 and 𝑟. 𝑠 ∈ 𝐼0. the operator 𝐶𝜏 

satisfies the following conditions: 
 
(C1) 𝐶𝜏(0. 𝑟) = 0. 

(C2) 𝒜 ≤ 𝐶𝜏(𝒜. 𝑟). 
(C3) 𝐶𝜏(𝒜. 𝑟) ∪ 𝐶𝜏(ℬ. 𝑟) = 𝐶𝜏(𝒜 ∪ ℬ. 𝑟). 
(C4) 𝐶𝜏(𝒜. 𝑟) ≤ 𝐶𝜏(𝒜. 𝑠) if 𝑟 ≤ 𝑠. 
(C5) 𝐶𝜏(𝐶𝜏(𝒜. 𝑟). 𝑟) = 𝐶𝜏(𝒜. 𝑟). 
(C6) If 𝑠 =∪ {𝑟 ∈ 𝐼0|𝐶𝜏(𝒜. 𝑟) = 𝒜}. then 𝐶𝜏(𝒜. 𝑠) = 𝒜. 

 
Theorem 1.2: Let (𝑋. 𝜏) be a fts. Then for each 𝑟 ∈ 𝐼0 
and 𝒜 ∈ 𝐼𝑋. we define the operator 𝑖𝑛𝑡𝜏: 𝐼

𝑋 × 𝐼0 →
𝐼𝑋 as follows (Hohle and Sostak, 1999):  
𝑖𝑛𝑡𝜏(𝒜. 𝑟) =∪ {ℬ ∈ 𝐼

𝑋|𝒜 ≥ ℬ. 𝜏(ℬ) ≥ 𝑟}.  
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For each 𝒜.ℬ ∈ 𝐼𝑋 and 𝑟. 𝑠 ∈ 𝐼0 the operator 𝑖𝑛𝑡𝜏 
satisfies the following conditions: 

 
(I1) 𝑖𝑛𝑡𝜏(1 −𝒜. 𝑟) = 1 − 𝐶𝜏(𝒜/𝑟). 

(I2) 𝑖𝑛𝑡𝜏(1. 𝑟) = 1. 

(I3) 𝑖𝑛𝑡𝜏(𝒜. 𝑟) ≤ 𝒜. 
(I4) 𝑖𝑛𝑡𝜏(𝒜. 𝑟) ∩ 𝑖𝑛𝑡𝜏(ℬ. 𝑟) = 𝑖𝑛𝑡𝜏(𝒜 ∩ ℬ. 𝑟). 
(I5) 𝑖𝑛𝑡𝜏(𝒜. 𝑟) ≥ 𝑖𝑛𝑡𝜏(𝒜. 𝑠) if 𝑟 ≤ 𝑠. 
(I6) 𝑖𝑛𝑡𝜏(𝑖𝑛𝑡𝜏(𝒜. 𝑟). 𝑟) = 𝑖𝑛𝑡𝜏(𝒜. 𝑟). 
(I7) If 𝑠 =∪ {𝑟 ∈ 𝐼0|𝑖𝑛𝑡𝜏(𝒜. 𝑟) = 𝒜}.then 𝑖𝑛𝑡𝜏(𝒜. 𝑠) = 𝒜. 

 
Definition 1.2: A mapping ℐ: 𝐼𝑋 → 𝐼 is called a fuzzy 
ideal on X if it satisfies the following conditions 
(Saber and Abdel-Sattar, 2014): 
 
(𝐼1) ℐ(0) = 1. ℐ(1) = 0. 

(𝐼2) If 𝒜 ≤ ℬ then ℐ(ℬ) ≤ ℐ(𝒜) for 𝒜.ℬ ∈ 𝐼𝑋 . 
(𝐼3) ℐ(𝒜 ∪ ℬ) ≥ ℐ(𝒜) ∩ ℐ(ℬ) for 𝒜.ℬ ∈ 𝐼𝑋 . 

 
If ℐ1 and ℐ2 are fuzzy ideals on 𝑋. we say that ℐ1 is 

finer than ℐ2 (ℐ2 is coarser than ℐ1), denoted by ℐ2 ≤
ℐ1. iff ℐ1(𝒜) ≤ ℐ2(𝒜) for 𝒜 ∈ 𝐼𝑋. The triple (𝑋. 𝜏. ℐ) is 
called fuzzy ideal topological space (fits, for short). 
For 𝛼 ∈ 𝐼0. (𝑋. 𝜏𝛼 . ℐ𝛼) is fits in the sense of Sarkar. 

 
Definition 1.3: Let (𝑋. 𝜏. ℐ) be a fits and 𝒜 ∈ 𝐼𝑋. 
Then the r-fuzzy open local function 𝒜𝑟

⋆(𝜏. ℐ) of 𝒜 is 
the union of all fuzzy points 𝑥𝑡  such that if ℬ ∈
𝑄(𝑥𝑡 . 𝑟) and ℐ(𝒞) ≥ 𝑟 then there is at least one 𝑦 ∈ 𝑋 
for which ℬ(𝑦) + 𝒜(𝑦) − 1 > 𝒞(𝑦) (Saber and 
Abdel-Sattar, 2014). 
 

In other words, we say that a fuzzy set 𝒜 is r-
fuzzy open locally in ℐ at 𝑥𝑡  if there exists ℬ ∈
𝑄(𝑥𝑡 . 𝑟) such that for every 𝑦 ∈ 𝑋. ℬ(𝑦) + 𝒜(𝑦) −
1 ≤ 𝒞(𝑦). for some ℐ(𝒞) ≥ 𝑟. 𝒜𝑟

⋆(𝜏. ℐ) is the set of 
fuzzy points at which 𝒜 does not have the property 
r-fuzzy open locally. 

We will occasionally write 𝒜𝑟
⋆ or 𝒜𝑟

⋆(ℐ) for 
𝒜𝑟
⋆(𝜏. ℐ) and it will cause no ambiguity. 
 

Theorem 1.3: Let (𝑋. 𝜏) be a fts and ℐ1. ℐ2 be two 
fuzzy ideals of X. Then for each 𝑟 ∈ 𝐼0 and 𝒜.ℬ ∈ 𝐼𝑋: 
 
(1) If 𝒜 ≤ ℬ then 𝒜𝑟

⋆ ≤ ℬ𝑟
⋆ (Saber and Abdel-Sattar, 

2014).  
(2) If ℐ1 ≤ ℐ2 then 𝒜𝑟

⋆(ℐ1. 𝜏) ≥ 𝒜𝑟
⋆(ℐ2. 𝜏). 

(3) 𝒜𝑟
⋆ = 𝐶𝜏(𝒜𝑟

⋆. 𝑟) ≤ 𝐶𝜏(𝒜. 𝑟). 
(4) (𝒜𝑟

⋆)𝑟
⋆ ≤ 𝒜𝑟

⋆. 
(5) (𝒜𝑟

⋆ ∪ ℬ𝑟
⋆) = (𝒜 ∪ ℬ)𝑟

⋆ . 
(6) If ℐ(ℬ) ≥ 𝑟 then (𝒜 ∪ ℬ)𝑟

⋆ = 𝒜𝑟
⋆ ∪ ℬ𝑟

⋆ = 𝒜𝑟
⋆. 

(7) If 𝜏(ℬ) ≥ 𝑟 then (ℬ ∩ 𝒜𝑟
⋆) ≤ (ℬ ∧ 𝒜)𝑟

⋆ . 
(8) (𝒜𝑟

⋆ ∩ ℬ𝑟
⋆) ≥ (𝒜 ∩ ℬ)𝑟

⋆ . 
 
Theorem 1.4: Let (𝑋. 𝜏. ℐ) be a fits and {𝒜𝑖: 𝑖 ∈ 𝐽} ⊂
𝐼𝑋(Saber and Abdel-Sattar, 2014). Then: 
 
(1) (∪ (𝒜𝑖)𝑟

⋆ :  𝑖 ∈ 𝐽) ≤ (∪ 𝒜𝑖:  𝑖 ∈ 𝐽)𝑟
⋆ . 

(2) (∩∩𝒜𝑖:  𝑖 ∈ 𝐽)𝑟
⋆ ≤ (∩ (𝒜𝑖)𝑟

⋆ :  𝑖 ∈ 𝐽). 

 
Remark 1.1: For each (𝑋. 𝜏. ℐ) and 𝒜 ∈ 𝐼𝑋. we can 
define (Saber and Abdel-Sattar, 2014): 
 
𝐶𝑙⋆(𝒜. 𝑟) = 𝒜 ∨𝒜𝑟

⋆ .  

𝑖𝑛𝑡⋆(𝒜. 𝑟) = 𝒜 ∧ [1 − (1 −𝒜)𝑟
⋆]. 

 

Clearly, 𝐶𝑙⋆ is a fuzzy closure operator and 𝜏⋆(ℐ) 
is the fuzzy topology generated by 𝐶𝑙∗; i.e.,  

 
𝜏⋆(ℐ)(𝒜) =∪ {𝑟|  𝐶𝑙⋆(1 − 𝒜. 𝑟) = 1 −𝒜}.  

 

Now if, 
 
ℐ = ℐ0  
 

then 
 
𝐶𝑙⋆(𝒜. 𝑟) = 𝒜 ∪𝒜𝑟

∗ = 𝒜 ∪ 𝐶𝜏(𝒜. 𝑟) = 𝐶𝜏(𝒜. 𝑟).  
 

For 
 
𝒜 ∈ 𝐼𝑋 .  
 

So, 
 
𝜏⋆(ℐ0) = 𝜏. 

 
Properties 1.1: Let (𝑋. 𝜏. ℐ) be fits, 𝑟 ∈ 𝐼0 and 𝒜 ∈ 𝐼𝑋  
(Saber and Abdel-Sattar, 2014). Then 
 
(1) 𝑖𝑛𝑡⋆(𝒜 ∪ ℬ. 𝑟) ≤ 𝑖𝑛𝑡⋆(𝒜. 𝑟) ∪ 𝑖𝑛𝑡⋆(ℬ. 𝑟). 
(2) 𝑖𝑛𝑡𝜏(𝒜. 𝑟) ≤ 𝑖𝑛𝑡

⋆(𝒜. 𝑟) ≤ 𝒜 ≤ 𝐶𝑙⋆(𝒜. 𝑟) ≤ 𝐶𝜏(𝒜. 𝑟). 
(3) 𝐶𝑙⋆(1 − 𝒜. 𝑟) = 1 − 𝑖𝑛𝑡⋆(𝒜. 𝑟) 

 

and 
 
1 − 𝐶𝑙⋆(𝒜. 𝑟) = 𝑖𝑛𝑡⋆(1 −𝒜. 𝑟).  
(4) 𝑖𝑛𝑡⋆(𝒜 ∩ ℬ. 𝑟) = 𝑖𝑛𝑡⋆(𝒜. 𝑟) ∩ 𝑖𝑛𝑡⋆(ℬ. 𝑟). 
 

Definition 1.4: Let (𝑋. 𝜏) be a fts, 𝒜 ∈ 𝐼𝑋 and 𝑟 ∈
𝐼0 (Ramadan et al. , 2001).  Then: 
 
(1) 𝒜 is called r-fuzzy semiopen set (r-FSO, for 
short) iff 𝒜 ≤ 𝐶𝜏(𝑖𝑛𝑡𝜏(𝒜. 𝑟). 𝑟). 
(2) 𝒜 is called r-fuzzy semiclosed set (r-FSC, for 
short) iff 1 −𝒜 is r-FSO set on 𝑋. 
(3) 𝒜 is called r-fuzzy 𝛽-open (r-F𝛽O, for short) iff 
𝒜 ≤ 𝐶𝜏(𝑖𝑛𝑡𝜏(𝐶𝜏(𝒜. 𝑟). 𝑟). 𝑟).  

2. Fuzzy ideal ⋆-irresolute mapping 

Definition 2.1: Let (𝑋. 𝜏. ℐ) be a fits, 𝐴 ∈ 𝐼𝑋 and 𝑟 ∈
𝐼0. Then, 𝒜 is called r-fuzzy ⋆-closed set iff 
𝐶𝑙⋆(𝒜. 𝑟) = 𝒜. The complement of a r-fuzzy ⋆-closed 
set is said to be a r-fuzzy ⋆-open set. 

 
Proposition 2.1: Let (𝑋. 𝜏. ℐ) be a fits and 𝑟 ∈ 𝐼0,
𝒜 ∈ 𝐼𝑋. Then: 
 
(1) 𝒜 is a r-fuzzy ⋆-closed set iff 𝒜𝑟

⋆ ≤ 𝒜. 
(2) 𝒜 is a r-fuzzy ⋆-open set iff 1 −𝒜𝑟

⋆ ≥ 1 −𝒜. 

(3) If 𝜏(1 − 𝒜) ≥ 𝑟 (resp. 𝜏(𝒜) ≥ 𝑟, 𝒜 ), 

 
then 𝒜 is a r-fuzzy ⋆-closed (resp. r-fuzzy ⋆-open) 
set. 
(4) If 𝒜 is a r-FSC set (resp. r-F𝛽C), then 
𝑖𝑛𝑡𝜏(𝒜

⋆. 𝑟) ≤ 𝒜 (resp. 𝑖𝑛𝑡𝜏([𝑖𝑛𝑡𝜏(𝒜. 𝑟)]
⋆. 𝑟) ≤ 𝒜). 

 



Fahad Alsharari, Yaser. M. Saber/International Journal of Advanced and Applied Sciences, 7(2) 2020, Pages: 78-84 

80 
 

Proof: The proofs of (1) and (2) are obvious from 
Definition 2.1. Let 𝜏(1 − 𝒜) ≥ 𝑟. Then, 

 
𝒜 = 𝐶𝜏(𝒜. 𝑟) ≥ 𝐶𝑙

⋆(𝒜. 𝑟) = 𝒜 ∨𝒜𝑟
⋆ ≥ 𝒜𝑟

⋆. 

 
Hence 𝒜 is a r-fuzzy ⋆-closed set. Other cases are 
similarly proved. Let 𝒜 be a r-FSC set. Then,  

 
𝒜 ≥ 𝑖𝑛𝑡𝜏(𝐶𝜏(𝒜. 𝑟). 𝑟) ≥ 𝑖𝑛𝑡𝜏(𝐶𝑙

⋆(𝒜. 𝑟). 𝑟)  = 𝑖𝑛𝑡𝜏([𝒜 ∪𝒜𝑟
⋆]. 𝑟) ≥

𝑖𝑛𝑡𝜏(𝒜𝑟
⋆. 𝑟);   

 

The other case is similarly proved. 
 

Example 2.1: Define 𝜏. ℐ: 𝐼𝑋 → 𝐼 as follows: 
  

𝜏(ℬ) =

{
 

 
1.    𝑖𝑓  ℬ ∈ {0. 1}.

1

2
.    𝑖𝑓  ℬ ∈ {0 ⋅ 3. 0 ⋅ 7}.

0.        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

ℐ(ℬ) = {

1.    𝑖𝑓  ℬ = 0.

1

2
.    𝑖𝑓  0 ≤ ℬ < 0 ∙ 3.

0.        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(1) 0 ⋅ 6 is a 
1

2
-fuzzy ⋆-closed set but 𝜏(1 − 0 ⋅ 6) ≠

1

2
 . 

(2) 0 ⋅ 2 ≥ 𝑖𝑛𝑡𝜏(0 ⋅ 21
2

⋆.
1

2
) = 0, But 0 ⋅ 2 is not 

1

2
-FSC 

set. 
 
Lemma 2.1: Let (𝑋. 𝜏. ℐ) be a fits. Then, the following 
properties hold: 
 
(1) Any intersection of r-fuzzy ⋆-closed sets is a r-
fuzzy ⋆-closed set. 
(2) Any union of r-fuzzy ⋆-open sets is a r-fuzzy ⋆-
open set. 
 
Proof: (1) Let {𝒜𝑖}𝑖∈Γ be a class of r-fuzzy ⋆-closed 
sets. Then for any 𝑖 ∈ Γ. we have, 𝒜𝑖 = 𝐶𝑙

⋆(𝒜𝑖 . 𝑟) 
and by Theorem 1.5(2), we have  
 
∧
𝑖∈Γ

𝒜𝑖 = ∩
𝑖∈Γ

𝐶𝑙⋆(𝒜𝑖 . 𝑟) = ∩
𝑖∈Γ

[𝒜𝑖 ∪ (𝒜𝑖)𝑟
⋆] ≥ ∧

𝑖∈Γ
𝒜𝑖 ∪

∧
𝑖∈Γ

(𝒜𝑖)𝑟
⋆ ≥ ∩

𝑖∈Γ
𝒜𝑖 ∪ ( ∩

𝑖∈Γ
𝒜𝑖)𝑟

⋆ = 𝐶𝑙⋆( ∩
𝑖∈Γ

𝒜𝑖 . 𝑟).  

 
Hence, ∧𝑖∈Γ 𝒜𝑖  is a r-fuzzy ⋆-closed set. (2) It is easily 
proved in the same manner. 

 
Lemma 2.2: Let (𝑋. 𝜏. ℐ) be a fits, for each 𝑟 ∈ 𝐼0. 
Then 
 
(1) For each r-fuzzy ⋆-open set 𝒜 ∈ 𝐼𝑋. 𝒜𝑞ℬ iff 
𝒜𝑞𝐶𝑙⋆(ℬ. 𝑟). 
(2) 𝑥𝑡𝑞𝐶𝑙

⋆(ℬ. 𝑟) iff 𝒜𝑞ℬ. for each r-fuzzy ⋆-open set 
𝒜 ∈ 𝐼𝑋 with 𝑥𝑡 ∈ 𝒜. 

 
Proof: (1) Let 𝒜 be a r-fuzzy ⋆-open set and 𝒜𝑞ℬ. 
Then ℬ ≤ 1 −𝒜. Since 𝒜 is a r-fuzzy ⋆-open set, 

𝐶𝑙⋆(ℬ. 𝑟) ≤ 𝐶𝑙⋆(1 − 𝒜. 𝑟) = 1 −𝒜. It follows that 
𝒜𝑞𝐶𝑙⋆(ℬ. 𝑟). (2) Let 𝑥𝑡𝑞𝐶𝑙

⋆(ℬ. 𝑟). Then 𝒜𝑞𝐶𝑙⋆(ℬ. 𝑟) 
with 𝑥𝑡 ∈ 𝒜. By (1), ℬ𝑞𝒜, for each r-fuzzy ⋆-open set 
𝒜 ∈ 𝐼𝑋. On the other hand, let 𝒜𝑞ℬ. Then, ℬ ≤ 1 −

𝒜. Since 𝒜 is r-fuzzy ⋆-open set, 𝐶𝑙⋆(ℬ. 𝑟) ≤ 𝐶𝑙⋆(1 −

𝒜. 𝑟) = 1 −𝒜 and 𝒜𝑞𝐶𝑙⋆(ℬ. 𝑟). Since 𝑥𝑡 ∈ 𝒜. 
𝑥𝑡𝑞𝐶𝑙

⋆(ℬ. 𝑟). 
 

Definition 2.2: Let (𝑋. 𝜏. ℐ1) → (𝑌. 𝜂. ℐ2) be a 
mapping. Then, 𝑓 is said to be: 
 
(1) Fuzzy ideal ⋆-irresolute mapping (for short, 𝐹ℐ ⋆-
irresolute mapping) iff 𝑓−1(𝒜) is r-fuzzy ⋆-open set 
in 𝑋. for each r-fuzzy ⋆-open set 𝒜 in 𝑌. 
(2) Fuzzy ideal ⋆-irresolute open mapping (for short, 
𝐹ℐ ⋆-irresolute open mapping) iff 𝑓(𝒜) is r-fuzzy ⋆-
open set in 𝑌. for each r-fuzzy ⋆-open set 𝒜 in 𝑋. 
(3) Fuzzy ideal ⋆-irresolute closed mapping (for 
short, 𝐹ℐ ⋆-irresolute closed mapping) iff 𝑓(𝒜) is r-
fuzzy ⋆-closed set in 𝑌. for each r-fuzzy ⋆-closed set 
𝒜 in 𝑋. 

 
Theorem 2.1: Let (𝑋. 𝜏. ℐ1) → (𝑌. 𝜂. ℐ2) be a mapping. 
Then the following statements are equivalent: 
 
(1) 𝑓 is 𝐹ℐ ⋆-irresolute 
(2) 𝑓−1(𝒜) is a r-fuzzy ⋆-closed set, for each r-fuzzy 
⋆-closed set 𝒜 ∈ 𝐼𝑌 . 
(3) 𝑓(𝐶𝑙⋆(𝒜. 𝑟)) ≤ 𝐶𝑙⋆(𝑓(𝒜). 𝑟) for each 𝒜 ∈ 𝐼𝑋, 𝑟 ∈
𝐼0, 
(4) 𝐶𝑙⋆((𝑓−1(ℬ). 𝑟) ≤ 𝑓−1(𝐶𝑙⋆(ℬ. 𝑟)) for each ℬ ∈ 𝐼𝑌 , 
𝑟 ∈ 𝐼0. 

 
Proof: (1)⇒(2): Let 𝒜 be a r-fuzzy ⋆-closed set in 𝑌. 
Then, 1 −𝒜 is a r-fuzzy ⋆-open set in 𝑌. by (1), 

𝑓−1(1 − 𝒜) is a r-fuzzy ⋆-open set. But, 𝑓−1(1 −

𝒜) = 1 − 𝑓−1(𝒜). Then, 𝑓−1(𝒜) is a r-fuzzy ⋆-

closed set in 𝑋. (2)⇒(3): For each 𝒜 ∈ 𝐼𝑋 and 𝑟 ∈ 𝐼0. 
since 𝐶𝑙⋆(𝐶𝑙⋆(𝑓(𝒜). 𝑟) = 𝐶𝑙⋆(𝑓(𝒜). 𝑟). From 
Definition 2.1, 𝐶𝑙⋆(𝑓(𝒜). 𝑟) is a r-fuzzy ⋆-closed set 
in 𝑌. By (2), 𝑓−1(𝐶𝑙⋆(𝑓(𝒜). 𝑟)) is a r-fuzzy ⋆-closed 
set in 𝑋. Since,  
 
𝒜 ≤ 𝑓−1(𝑓(𝒜)) ≤ 𝑓−1(𝐶𝑙⋆(𝑓(𝒜). 𝑟)).  

 

By Definition 2.1, we have, 
 

𝐶𝑙⋆(𝒜. 𝑟) ≤ 𝐶𝑙⋆(𝑓−1(𝐶𝑙⋆(𝑓(𝒜). 𝑟)). 𝑟) =

𝑓−1(𝐶𝑙⋆(𝑓(𝒜). 𝑟)).  
 

Hence  
 
𝑓(𝐶𝑙⋆(𝒜. 𝑟)) ≤ 𝑓(𝑓−1(𝐶𝑙⋆(𝑓(𝒜). 𝑟))) ≤ 𝐶𝑙⋆(𝑓(𝒜). 𝑟). 

 

(3)⇒(4): For each ℬ ∈ 𝐼𝑌 and 𝑟 ∈ 𝐼0. Put 𝒜 =
𝑓−1(ℬ). By (3),  
 

𝑓(𝐶𝑙⋆(𝑓−1(ℬ). 𝑟)) ≤ 𝐶𝑙⋆(𝑓(𝑓−1(ℬ)). 𝑟) ≤ 𝐶𝑙⋆(ℬ. 𝑟).  

 

It implies 𝐶𝑙⋆(𝑓−1(ℬ). 𝑟) ≤ 𝑓−1(𝐶𝑙⋆(ℬ. 𝑟)). (4)⇒(1): 
Let ℬ be a r-fuzzy ⋆-open set in 𝑌. Then, 1 − ℬ is a r-

fuzzy ⋆-closed set in 𝑌. Hence, 𝐶𝑙⋆(1 − ℬ. 𝑟) = 1 − ℬ, 

and by (4) we have,  
𝑓−1(1 − ℬ) = 𝑓−1(𝐶𝑙⋆(1 − ℬ. 𝑟)) ≥ 𝐶𝑙⋆(𝑓−1(1 − ℬ). 𝑟). 

 

On the other hand, 𝑓−1(1 − ℬ) ≤ 𝐶𝑙⋆(𝑓−1(1 − ℬ). 𝑟). 

Thus, 𝑓−1(1 − ℬ) = 𝐶𝑙⋆(𝑓−1(1 − ℬ). 𝑟). implies that 
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𝑓−1(1 − ℬ) is a r-fuzzy ⋆-closed set in 𝑋. Hence 
𝑓−1(ℬ) is a r-fuzzy ⋆-open set in 𝑋. 

 
Theorem 2.2: Let (𝑋. 𝜏. ℐ1) → (𝑌. 𝜂. ℐ2) be a mapping. 
Then the following statements are equivalent: 
 
(1) 𝑓 is 𝐹ℐ ⋆-irresolute open. 

(2) 𝑓(𝑖𝑛𝑡⋆(𝒜. 𝑟)) ≤ 𝑖𝑛𝑡⋆(𝑓(𝒜). 𝑟) for each 𝒜 ∈ 𝐼𝑋, 

  𝑟 ∈ 𝐼0 
(3) 𝑖𝑛𝑡⋆((𝑓−1(ℬ). 𝑟) ≤ 𝑓−1(𝑖𝑛𝑡⋆(ℬ. 𝑟)) for each ℬ ∈
𝐼𝑌,  𝑟 ∈ 𝐼0. 
(4) For any ℬ ∈ 𝐼𝑌 and any r-fuzzy ⋆-closed set 𝒜 ∈
𝐼𝑋 with 𝑓−1(ℬ) ≤ 𝒜. there exists r-fuzzy ⋆-closed 
𝐶 ∈ 𝐼𝑌 with ℬ ≤ 𝒞 such that 𝑓−1(𝒞) ≤ 𝒜.  
 
Proof: (1)⇒(2): For each 𝒜 ∈ 𝐼𝑋 .  𝑟 ∈ 𝐼0 since 
𝑖𝑛𝑡⋆(𝒜. 𝑟) ≤ 𝒜 from Remark 1.1, we have 

𝑓(𝑖𝑛𝑡⋆(𝒜. 𝑟)) ≤ 𝑓(𝒜). By (1), 𝑓(𝑖𝑛𝑡⋆(𝒜. 𝑟)) is a r-

fuzzy ⋆-open set in 𝑌. Hence,  
 
𝑓(𝑖𝑛𝑡⋆(𝒜. 𝑟)) = 𝑖𝑛𝑡⋆(𝑓(𝑖𝑛𝑡⋆(𝒜. 𝑟))) ≤ 𝑖𝑛𝑡⋆(𝑓(𝒜). 𝑟)  

 
(2)⇒(3): For each ℬ ∈ 𝐼𝑌 and 𝑟 ∈ 𝐼0. Put 𝒜 = 𝑓−1(ℬ) 
from (2),  
 
𝑓(𝑖𝑛𝑡⋆(𝑓−1(ℬ), 𝑟)) ≤ 𝑖𝑛𝑡⋆(𝑓(𝑓−1(ℬ)). 𝑟) ≤ 𝑖𝑛𝑡⋆(ℬ. 𝑟).  

 

It implies  
 

𝑖𝑛𝑡⋆(𝑓−1(ℬ). 𝑟) ≤ 𝑓−1 (𝑓(𝑖𝑛𝑡⋆(𝑓−1(ℬ). 𝑟))) ≤ 𝑓−1(𝑖𝑛𝑡⋆(ℬ. 𝑟)).  

 

(3)⇒(4): Obvious. 
(4)⇒(1): Let 𝒟 be a r-fuzzy ⋆-open set in 𝑋. Put ℬ =
1 − 𝑓(𝒟) and 𝒜 = 1 −𝒟 such that 𝒜 is a r-fuzzy ⋆-
closed set in 𝑋. We obtain,  
 

𝑓−1(ℬ) = 𝑓−1(1 − 𝑓(𝒟)) = 1 − 𝑓−1(𝑓(𝒟)) ≤ 1 − 𝒟 = 𝒜. 

 

From (4), there exists r-fuzzy ⋆-closed set 𝐶 ∈ 𝐼𝑌 
with ℬ ≤ 𝒞 such that 𝑓−1(𝒞) ≤ 𝒜 = 1 − 𝒟. It implies 

𝒟 ≤ 1 − 𝑓−1(𝒞) = 𝑓−1(1 − 𝒞). Thus, 
 
𝑓(𝒟) ≤ 𝑓(𝑓−1(1 − 𝒞)) ≤ 1 − 𝒞. 

 

On the other hand, since, ℬ ≤ 𝒞. 𝑓(𝒟) = 1 − ℬ ≥ 1 −

𝒞. Hence, 𝑓(𝒟) = 1 − 𝒞. that is, 𝑓(𝒟) is a r-fuzzy ⋆-
open set in 𝑌. Theorem 2.3 is proved similarly to 
Theorem 2.2. 
 

Theorem 2.3: Let (𝑋. 𝜏. ℐ1) → (𝑌. 𝜂. ℐ2) be a mapping. 
Then the following statements are equivalent: 
 

(1) 𝑓 is 𝐹ℐ ⋆-irresolute closed. 
(2) 𝑓(𝐶𝑙⋆(ℬ. 𝑟)) ≤ 𝐶𝑙⋆(𝑓(ℬ). 𝑟) for each ℬ ∈ 𝐼𝑋, 𝑟 ∈
𝐼0. 
 

Theorem 2.4: Let (𝑋. 𝜏. ℐ1) → (𝑌. 𝜂. ℐ2) be a bijective 
mapping. Then the following statements are 
equivalent: 
(1) 𝑓 is 𝐹ℐ ⋆-irresolute closed. 
(2) 𝐶𝑙⋆(𝑓−1(𝒜). 𝑟) ≤ 𝑓−1(𝐶𝑙⋆(𝒜. 𝑟)) for each 𝒜 ∈
𝐼𝑌. 𝑟 ∈ 𝐼0. 
 

Proof: (1) ⇒ (2): Let 𝑓 be 𝐹ℐ ⋆-irresolute closed. 
From Theorem 2.3 (2), for each 𝒜 ∈ 𝐼𝑋 and 𝑟 ∈ 𝐼0.  
 
𝑓(𝐶𝑙⋆(ℬ. 𝑟)) ≤ 𝐶𝑙⋆(𝑓(ℬ). 𝑟).  

 
For all 𝒜 ∈ 𝐼𝑌.  𝑟 ∈ 𝐼0. put ℬ = 𝑓−1(𝒜). since 𝑓 is 
onto, 𝑓𝑓−1(𝒜) = 𝒜. Thus,  
 
𝑓(𝐶𝑙⋆(𝑓−1(𝒜). 𝑟)) ≤ 𝐶𝑙⋆(𝑓(𝑓−1(𝒜)). 𝑟) = 𝐶𝑙⋆(𝒜). 𝑟). 

 

Again since 𝑓 is onto we have  
 
𝐶𝑙⋆(𝑓−1(𝒜). 𝑟) = 𝑓−1(𝑓(𝐶𝑙⋆(𝑓−1(𝒜). 𝑟))) ≤
𝑓−1(𝐶𝑙⋆(𝒜. 𝑟)).  

 
(2) ⇒ (1): Put 𝒜 = 𝑓(ℬ). Since 𝑓 is injective,  
 
𝐶𝑙⋆(ℬ. 𝑟) = 𝐶𝑙⋆(𝑓−1(𝑓(ℬ)). 𝑟) ≤ 𝑓−1(𝐶𝑙⋆(𝑓(ℬ). 𝑟)).  

 
Since 𝑓 is onto,  
 
𝑓(𝐶𝑙⋆(ℬ. 𝑟)) ≤ 𝑓(𝑓−1(𝐶𝑙⋆(𝑓(ℬ). 𝑟))) = 𝐶𝑙⋆(𝑓(ℬ). 𝑟). 
 

3. Some types of separation axioms 

Definition 3.1: Let (𝑋. 𝜏. ℐ) be a fits and 𝑟 ∈ 𝐼0. Then 
𝑋 is said to be: 
 
(1) r − FIR0 iff 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟) implies 𝑦𝑠𝑞𝐶𝑙
⋆(𝑥𝑡 . 𝑟) for 

any 𝑥𝑡 ≠ 𝑦𝑠 . 
(2) r − FIR1 iff 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟) implies that there exist 
r-fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜, 𝑦𝑠 ∈
ℬ and 𝒜𝑞ℬ. 
(3) r − FIR2 iff 𝑥𝑡𝑞𝒟 = 𝐶𝑙⋆(𝒟. 𝑟) implies there exist 
r-fuzzy ⋆-open sets 𝒜,ℬ ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜, 𝒟 ≤
ℬ and 𝒜𝑞ℬ. 
(4)r − FIR3 iff 𝒟1 = 𝐶𝑙

⋆(𝒟1. 𝑟)𝑞𝒟2 = 𝐶𝑙⋆(𝒟2. 𝑟) 
implies that there exist r-fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 
such that 𝒟1 ≤ 𝒜. 𝒟2 ≤ ℬ and 𝒜𝑞ℬ. 
(5) r − FIT1 iff 𝑥𝑡𝑞𝑦𝑠 implies that there exists a r-
fuzzy ⋆-open set 𝒜 ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜 and 𝑦𝑠𝑞𝒜. 
(6) r − FIT2 iff 𝑥𝑡𝑞𝑦𝑠 implies that there exist r-fuzzy 
⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜, 𝑦𝑠 ∈ ℬand 
𝒜𝑞ℬ. 
(7) r − FIT

2
1

2

 iff 𝑥𝑡𝑞𝑦𝑠 implies that there exist r-fuzzy 

⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜, 𝑦𝑠 ∈ ℬ, and 
𝐶𝑙⋆(𝒜. 𝑟)𝑞𝐶𝑙⋆(ℬ. 𝑟), 
(8) r − FIT3 iff it is r-FIR 2 and r − FIT1, 
(9) r − FIT4 iff it is r-FIR 3 and r − FIT1. 
 
Theorem 3.1: Let (𝑋. 𝜏. ℐ) be a fits and 𝑟 ∈ 𝐼0. Then 
the following statements are equivalent: 
 
(1) (𝑋. 𝜏. ℐ) is r − FIR0, 
(2) If 𝑥𝑡𝑞𝒜 = 𝐶𝑙⋆(𝒜. 𝑟), then there exists a r-fuzzy ⋆-
open set ℬ ∈ 𝐼𝑋 , such that 𝑥𝑡𝑞ℬ and 𝒜 ≤ ℬ. 
(3) If 𝑥𝑡𝑞𝒜 = 𝐶𝑙⋆(𝒜. 𝑟), then 𝐶𝑙⋆(𝑥𝑡 . 𝑟)𝑞𝒜 =
𝐶𝑙⋆(𝒜. 𝑟), 
(4) If 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟), then 𝐶𝑙⋆(𝑥𝑡 . 𝑟)𝑞𝐶𝑙
⋆(𝑦𝑠 . 𝑟). 

 
Proof: (1)⇒(2): Let 𝑥𝑡𝑞𝒜 = 𝐶𝑙⋆(𝒜. 𝑟). Then 
𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠 . 𝑟) for each 𝑦𝑠 ∈ 𝒜. Since (𝑋. 𝜏. ℐ) is 
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r − FIR0,𝑦𝑠𝑞𝐶𝑙
⋆(𝑥𝑡 . 𝑟), by Lemma 2.2(2), there exists 

a r-fuzzy ⋆-open set 𝒟 ∈ 𝐼𝑋, such that 𝑥𝑡𝑞𝒟 and 𝑦𝑠 ∈
𝒟. Let ℬ =∪𝑦𝑠∈𝒜 {𝒟: 𝑥𝑡𝑞𝒟.  𝑦𝑠 ∈ 𝒟}, Form Lemma 

2.1(1), ℬ is a r-fuzzy ⋆-open set. Then 𝑥𝑡𝑞ℬ, 𝒜 ≤ ℬ. 
(2)⇒(3): Let 𝑥𝑡𝑞𝒜 = 𝐶𝑙⋆(𝒜. 𝑟). Then by (2), there 
exists a r-fuzzy ⋆-open set ℬ ∈ 𝐼𝑋 , such that 𝑥𝑡𝑞ℬ 
and 𝒜 ≤ ℬ. Since 𝑥𝑡𝑞ℬ, 
 
𝐶𝑙⋆(𝑥𝑡 . 𝑟) ≤ 𝐶𝑙

⋆(1 − ℬ. 𝑟) = 1 − ℬ ≤ 1 −𝒜. 

 
Therefore, 

 
𝐶𝑙⋆(𝑥𝑡 . 𝑟)𝑞𝒜 = 𝐶𝑙⋆(𝒜. 𝑟). 
 

(3)⇒(4): Let 𝑥𝑡𝑞𝐶𝑙
⋆(𝑦𝑠. 𝑟). Then, 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟) =
𝐶𝑙⋆(𝐶𝑙⋆(𝑦𝑠 . 𝑟). 𝑟). By (3), 𝐶𝑙⋆(𝑥𝑡 . 𝑟)𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟). 
(4)⇒(1): It is trivial. 

 
Theorem 3.2: Let (𝑋. 𝜏. ℐ) be a fits. Then: 
 
(1) (r − FIR3 and r − FIR0) ⇒(𝑎) r − FIR2 ⇒(𝑏) 
r − FIR1 ⇒(𝑐) r − FIR0 
(2) r − FIT2 ⇒ r − FIR1. 
(3) r − FIT3 ⇒ r − FIR2. 
(4)  r − FIT4 ⇒ r − FIR3. 
(5) r − FIT4 ⇒(𝑎) r − FIT3 ⇒(𝑏) r − FIT

2
1

2

 ⇒(𝑐) r − FIT2 

⇒(𝑑) r − FIT1. 
 

Proof: (1𝑎). Let 𝑥𝑡𝑞𝒟 = 𝐶𝑙⋆(𝒟. 𝑟). Then by Theorem 
3.1 (3), 𝐶𝑙⋆(𝑥𝑡 . 𝑟)𝑞𝒟 = 𝐶𝑙⋆(𝒟. 𝑟). Since (𝑋. 𝜏. ℐ) is 
r − FIR3 and 𝐶𝑙⋆(𝑥𝑡 . 𝑟) = 𝐶𝑙

⋆(𝐶𝑙⋆(𝑥𝑡 . 𝑟). 𝑟), there 
exist r-fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋such that 𝑥𝑡 ∈
𝐶𝑙⋆(𝑥𝑡 . 𝑟) ≤ 𝒜. 𝒟 ≤ ℬ and 𝒜𝑞ℬ. Hence (𝑋. 𝜏. ℐ) is 
r − FIR2. (1𝑏). For each 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟). By r − FIR2 of 
𝑋, there exist r-fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such 
that𝑥𝑡 ∈ 𝒜, 𝑦𝑠 ∈ 𝐶𝑙

⋆(𝑦𝑠. 𝑟) ≤ ℬ and 𝒜𝑞ℬ. Hence 
(𝑋. 𝜏. ℐ) is r − FIR1. (1𝑐). Let (𝑋. 𝜏. ℐ) be r − FIR1. 
Then for every 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟) and 𝑥𝑡 ≠ 𝑦𝑠 there exist 
r-fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜,𝑦𝑠 ∈
ℬ and 𝒜𝑞ℬ. Therefore, 𝑥𝑡 ∈ 𝒜 ≤ 1 − ℬ. Since ℬ is a 

r-fuzzy⋆-open set, 𝐶𝑙⋆(𝑥𝑡 . 𝑟) ≤ 𝐶𝑙⋆(1 − ℬ. 𝑟) = 1 −

ℬ ≤ 1 − 𝑦𝑠. Hence 𝑦𝑠𝑞𝐶𝑙
⋆(𝑥𝑡 . 𝑟) and (𝑋. 𝜏. ℐ) is 

r − FIR0. 
(2) Let 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠 . 𝑟). Then 𝑥𝑡𝑞𝑦𝑠. By r − FIT2 of 𝑋, 
there exist r-fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 
𝑥𝑡 ∈ 𝒜, 𝑦𝑠 ∈ ℬ and 𝒜𝑞ℬ. Hence (𝑋. 𝜏. ℐ) is r − FIR1. 
(3) and (4) are obvious. 
(5𝑎). It is easily proved from (1).  

(5𝑏). For each 𝑥𝑡𝑞𝑦𝑠. Since r-FIR 2 and r − FIT1, are 
both in 𝑋, then there exists a r-fuzzy ⋆-open set 𝒟 ∈
𝐼𝑋 such that 𝑥𝑡 ∈ 𝒟 and 𝑦𝑠𝑞𝒟. Then  
 
𝑥𝑡 ∈ 𝒟 = 𝑖𝑛𝑡

⋆(𝒟. 𝑟) ≤ 𝑖𝑛𝑡⋆(1 − 𝑦𝑠 . 𝑟) = 1 − 𝐶𝑙
⋆(𝑦𝑠. 𝑟). 

Hence, 𝑥𝑡𝑞𝐶𝑙
⋆(𝑦𝑠. 𝑟), By r − FIR2 of 𝑋, there exist r-

fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜 
𝐶𝑙⋆(𝑦𝑠. 𝑟) ≤ ℬ and 𝒜𝑞ℬ. Thus, 𝒜 ≤ 1 − ℬ and so,  

 
𝐶𝑙⋆(𝒜. 𝑟) ≤ 𝐶𝑙⋆(1 − ℬ. 𝑟) = 1 − ℬ ≤ 1 − 𝐶𝑙⋆(𝑦𝑠 . 𝑟). 

 
It implies 𝐶𝑙⋆(𝒜. 𝑟)𝑞𝐶𝑙⋆(𝑦𝑠 . 𝑟) with 𝑥𝑡 ∈ 𝒜 and 𝑦𝑠 ∈
𝐶𝑙⋆(𝑦𝑠. 𝑟), Thus, (𝑋. 𝜏. ℐ) is r − FIT

2
1

2

. 

(5𝑐). Let 𝑥𝑡𝑞𝑦𝑠. Then by r − FIT
2
1

2

 of 𝑋, there exist r-

fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜,𝑦𝑠 ∈ ℬ 
and 𝐶𝑙⋆(𝒜. 𝑟)𝑞𝐶𝑙⋆(ℬ. 𝑟) implies that 𝒜𝑞ℬ. Hence 
(𝑋. 𝜏. ℐ) is r − FIT2. 
(5𝑑). Let 𝑥𝑡𝑞𝑦𝑠. Then by r − FIT2 of 𝑋, there exist r-
fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ 𝒜,𝑦𝑠 ∈ ℬ 
and 𝒜𝑞ℬ, Hence, 𝑥𝑡 ∈ 𝒜 and 𝑦𝑠𝑞𝒜. Thus, (𝑋. 𝜏. ℐ) is 
 r − FIT1. 

 
Example 3.1: Define 𝜏𝑖 . ℐ𝑖: 𝐼

𝑋 → 𝐼, 𝑖 = {1.2} as 
follows:  

  

𝜏1(ℬ) =

{
 

 
1.    𝑖𝑓  ℬ ∈ {0. 1}.

1

2
.    𝑖𝑓  ℬ = 0 ⋅ 5.

0.        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

     

ℐ1(ℬ) = {

1.    𝑖𝑓  ℬ = 0.

2

3
.    𝑖𝑓  0 ≤ ℬ ≤ 0 ∙ 4.

0.            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝜏2(ℬ) =

{
 

 
1.    𝑖𝑓  ℬ ∈ {0. 1}.

1

2
.    𝑖𝑓  ℬ = 𝛼.  0 < 𝛼 < 1.

0.        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   

 ℐ2(ℬ) = {

1.    𝑖𝑓  ℬ = 0.

2

3
.    𝑖𝑓  0 < 𝐵 ≤ 0 ⋅ 9.

0.            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
(1) For 0 < 𝑟 ≤ 0 ⋅ 5, (𝑋. 𝜏1. ℐ1) is r − FIR0 but it is 
not r − FIR1. 
(2) For 0 < 𝑟 ≤ 0 ⋅ 5, (𝑋. 𝜏2. ℐ2) is r − FIT2 but it is 
not r − FIR

2
1

2

.  

 
Theorem 3.3: An ifts (𝑋. 𝜏. ℐ) is an r − FIR1 if and 
only if 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟), there exist r-fuzzy ⋆-open sets 
𝒜.ℬ ∈ 𝐼𝑋 such that 𝒜𝑞ℬ and 𝐶𝑙⋆(𝑥𝑡 . 𝑟) ≤
ℬ.  𝐶𝑙⋆(𝑦𝑠. 𝑟) ≤ 𝒜. 

 
Proof: (⇒) Let 𝑥𝑡𝑞𝐶𝑙

⋆(𝑦𝑠. 𝑟). Then by r − FIR1 of 
(𝑋. 𝜏. ℐ), there exist r-fuzzy ⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 
such that 𝑥𝑡 ∈ 𝒜, 𝑦𝑠 ∈ ℬ and 𝒜𝑞ℬ. Then, 𝑥𝑡𝑞1 −𝒜 

implies that 𝐶𝑙⋆(𝑥𝑡 . 𝑟) ≤ 1 −𝒜 ≤ ℬ. Also, 𝑦𝑠𝑞1 − ℬ 

implies that 𝐶𝑙⋆(𝑦𝑠. 𝑟) ≤ 1 − ℬ ≤ 𝒜. (⇐) It is trivial. 

 
Theorem 3.4: Let (𝑋. 𝜏. ℐ) be a fits. Then the 
following statements are equivalent: 
 
(1) (𝑋. 𝜏. ℐ) is r − FIR2, 
(2) If 𝑥𝑡 ∈ 𝒜 and 𝒜 is a r-fuzzy ⋆-open set, then 
there exists a r-fuzzy ⋆-open set ℬ ∈ 𝐼𝑋 , such that 
𝑥𝑡 ∈ ℬ ≤ 𝐶𝑙

⋆(ℬ. 𝑟) ≤ 𝒜. 
(3) If 𝑥𝑡𝑞𝒜 = 𝐶𝑙⋆(𝒜. 𝑟), then there exists r-fuzzy ⋆-
open sets ℬ𝑖 ∈ 𝐼

𝑋, 𝑖 = {1.2} such that 𝑥𝑡 ∈ ℬ1 , 𝒜 ≤
ℬ2 and 𝐶𝑙⋆(ℬ1. 𝑟)𝑞𝐶𝑙

⋆(ℬ2. 𝑟). 
 

Proof: (1)⇒(2): Let 𝒜 be a r-fuzzy ⋆-open set and 
𝑥𝑡 ∈ 𝒜. Then 𝑥𝑡𝑞1 −𝒜, By r − FIR2 of 𝑋. There exist 

r-fuzzy ⋆-open sets, ℬ. 𝒞 ∈ 𝐼𝑋 such that 𝑥𝑡 ∈ ℬ, 1 −

𝒜 ≤ 𝒞 and ℬ𝑞𝒞. Hence, 𝑥𝑡 ∈ ℬ ≤ 𝐶𝑙
⋆(ℬ. 𝑟) ≤ 1 −

𝒞 ≤ 𝒜. 
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(2)⇒(3): Let 𝑥𝑡𝑞𝒜 = 𝐶𝑙⋆(𝒜. 𝑟). Then 𝑥𝑡 ∈ 1 −𝒜. By 

(2), there exists a r-fuzzy ⋆-open set ℬ ∈ 𝐼𝑋, such 
that 𝑥𝑡 ∈ ℬ ≤ 𝐶𝑙⋆(ℬ. 𝑟) ≤ 1 −𝒜. Since ℬ is a r-fuzzy 
⋆-open set and 𝑥𝑡 ∈ ℬ. Again by (2), then there exists 
a r-fuzzy ⋆-open set ℬ1 ∈ 𝐼

𝑋, such that  
 
𝑥𝑡 ∈ ℬ1 ≤ 𝐶𝑙

⋆(ℬ1. 𝑟) ≤ ℬ ≤ 𝐶𝑙
⋆(ℬ. 𝑟) ≤ 1 −𝒜. 

 
It implies that 
 
𝒜 ≤ 1 − 𝐶𝑙⋆(ℬ. 𝑟) = 𝑖𝑛𝑡⋆(1 − ℬ. 𝑟) ≤ 1 − ℬ. 

 

Put 
 
ℬ2 = 𝑖𝑛𝑡

⋆(1 − ℬ. 𝑟).  

 
Then, 
 
𝐶𝑙⋆(ℬ2. 𝑟) ≤ 1 − ℬ ≤ 1 − 𝐶𝑙

⋆(ℬ1. 𝑟), 

 

that is, 
 
𝐶𝑙⋆(ℬ1 . 𝑟)𝑞𝐶𝑙

⋆(ℬ2. 𝑟). 

 
(3)⇒(1): Let 𝑥𝑡𝑞𝒜 = 𝐶𝑙⋆(𝒜. 𝑟). Then by (3), there 
exists r-fuzzy ⋆-open sets ℬ𝑖 ∈ 𝐼

𝑋 , 𝑖 = {1.2} such that 
𝑥𝑡 ∈ ℬ1 , 𝒜 ≤ ℬ2 and 𝐶𝑙⋆(ℬ1. 𝑟)𝑞𝐶𝑙

⋆(ℬ2. 𝑟). Hence, 
ℬ1𝑞ℬ2 and (𝑋. 𝜏. ℐ) is r − FIR2. The following 
theorem is similarly proved as in Theorem 3.4. 

 
Theorem 3.5: Let (𝑋. 𝜏. ℐ) be a fits. Then the 
following statements are equivalent: 
 
(1) (𝑋. 𝜏. ℐ) is r − FIR3, 
(2) If 𝒜1𝑞𝒜2 and 𝒜1. 𝒜2 are r-fuzzy ⋆-closed sets, 
then there exists a r-fuzzy ⋆-open set ℬ ∈ 𝐼𝑋 , such 
that 𝒜1 ≤ ℬ and 𝐶𝑙⋆(ℬ. 𝑟)𝑞𝒜2. 
(3) For any 𝒜1 ≤ 𝒜2 and 𝒜1 is a r-fuzzy ⋆-open set, 
𝒜2 is a r-fuzzy ⋆-closed set, there exists a r-fuzzy ⋆-
open set ℬ ∈ 𝐼𝑋  such that 𝒜1 ≤ ℬ ≤ 𝐶𝑙⋆(ℬ. 𝑟) ≤ 𝒜2. 

 
Theorem 3.6: Let 𝑓: (𝑋. 𝜏. ℐ) → (𝑌. 𝜂. ℐ) be 𝐹ℐ ⋆-
irresolute, bijective, 𝐹ℐ ⋆-irresolute open mapping 
and (𝑋. 𝜏. ℐ) is r − FIR2 (resp. r − FIR3). Then (𝑌. 𝜏. ℐ) 
is r − FIR2 (resp. r − FIR3). 

 
Proof: Let 𝑦𝑡𝑞𝒟 = 𝐶𝑙⋆(𝒟. 𝑟). Then, by definition 2.1, 
𝒟 is a r-fuzzy ⋆-closed set in 𝑌. By Theorem 2.1(2), 
𝑓−1(𝒟) is a r-fuzzy ⋆-closed set in 𝑋. Put 𝑦𝑠 = 𝑓(𝑥𝑠). 
Then 𝑥𝑠𝑞𝑓

−1(𝒟). By r-FIR 2 of 𝑋, there exist r-fuzzy 
⋆-open sets 𝒜.ℬ ∈ 𝐼𝑋 such that 𝑥𝑠 ∈ 𝒜, 𝑓−1(𝒟) ≤ ℬ 
and 𝒜𝑞ℬ. Since 𝑓 is bijective and 𝐹ℐ ⋆-irresolute 
open, 𝑦𝑠 ∈ 𝑓(𝒜), 𝒟 ≤ 𝑓(𝑓−1(𝒟)) ≤ 𝑓(ℬ) and 
𝑓(𝒜)𝑞𝑓(ℬ). Hence (𝑌. 𝜏. ℐ) is r − FIR2. The other 
case is similarly proved. 

4. Conclusion  

The study introduced the nations 𝑟-fuzzy ⋆-open 
and 𝑟-fuzzy ⋆-closed sets in Šostak's fuzzy 
topological spaces along with the examination of 
some of their properties. It also inspected the 
concept of fuzzy ideal ⋆- irresolute mapping. Finally, 

it investigated some kinds of separation axioms 
namely r − 𝐹𝐼𝑅𝑖  where i={0, 1, 2, 3} and r − 𝐹𝐼𝑅𝑗 

where j={1, 2, 2
1

2
 , 3, 4} as well as some of their 

characterizations and fundamental properties. 
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