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This study aims to solve the problem of contradiction between the statistical 
significance and real significance of regression parameters when using 
multiple linear regression analysis. In this regard, an algorithm was 
presented based on the simple and multiple of determination coefficient, and 
the sum of averages to estimate multiple outliers when outliers are real. 
Regression analysis was applied to a phenomenon, whose results are known 
in advance (The relationship between Semester average and Cumulative 
average). The results were misleading, and we cannot firmly stand on 
analysis results. Also, the regression model did not improve much when an 
increased sample size more than doubled, so the study presents an algorithm 
for finding a solution to this contradiction. After checking Ordinary Least 
Squares (OLS) assumptions, outliers were identified, based on Cook's 
distance because it was the best. The proposed algorithm was compared with 
some robust regression methods, [Weighted Least Squares, Fully Modified 
Least Squares, and Least Median of Squares]. The results proved that the 
proposed method is a robust solution for outliers’ estimation. Therefore, it is 
recommended to use the proposed algorithm to estimate multiple outliers on 
other similar phenomena (e.g., The algorithm can be applied to a credit card 
transaction control system in a bank), and also software Packages statistical 
for the proposed algorithm. Also, the novelty of this study can be observed by 
investigating testing the significance of outliers as most of the previous 
researchers were interested in diagnosing the outliers without checking its 
significance. 
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1. Introduction 

*The Ordinary Least Squares (OLS) method is the 
most common way to fit the regression model, but 
this method fails in dealing with data that contains 
outliers. Therefore, one cannot firmly stand on 
regression analysis results because OLS is said to be 
not robust to violations of its assumptions. All major 
software packages (SAS, SPSS, R, MINITAB, and 
STATA) provide both the model estimates and the 
diagnostic of the model fit. However, the wide 
popularity and routine use of linear regression 
create some problems. The problems of multiple 
linear regression models arise when there is an 
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outlier in the data. Identifying and estimating 
outliers is an important step in building the 
regression model. If outliers are identified and 
estimated, they will lead to a different model 
(Rahman et al., 2012). Sometimes, when natural 
phenomena are studied, an effect of one or more 
independent variables is insignificant, although it is 
known that these variables only effect on the 
dependent variable. For example, the balance of any 
person in the bank depends on only two variables 
(Addition and withdrawal), so the relationship 
between them strong and significant will be 
expected. Any behavior other than this expectation is 
due to one or several outliers. One should be worried 
about outliers because it can distort estimates of 
regression coefficients, can produce misleading 
results, and the interpretation of the results may be 
in doubt. It is possible that another researcher could 
analyze these data and question these results 
showing an improved analysis that may contradict 
these results and undermine the conclusions (Gad 
and Qura, 2016). In this regard, a new algorithm is 
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presented based on the partial and multiple 
correlation coefficient, coefficient of determination, 
and the sum of averages for predictors to estimate 
multiple outliers in the multiple linear regression 
model. One of the conditions for estimating multiple 
outliers is the true presence of outliers, which cannot 
be presented in the form of errors. The novelty of 
this study can be observed by investigating testing 
the significance of outliers as most of the previous 
researchers were interested in detecting and 
addressing the outliers, without checking its 
significance. The importance of research is to 
present a new idea for estimating outliers in 
independent variables and dependent variables, 
using an easy algorithm, to obtain the reliable model 
of prediction when only these variables affect the 
dependent variable.  

1.1. Multiple linear regression models 

Multiple linear regression helps to predict the 
values of a dependent variable by knowing the 
values of independent variables with statistical 
significance. It can be expressed in the following 
form (Salleh et al., 2015; Park et al., 2012); 
 
 𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑛 + 𝑒𝑛                                              (1) 

 

Fit multiple linear regression model (Neter et al., 
1996); 
 
�̂� = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑛 ,                                                        (2) 

 

where,  ŷ is Fitted response, 𝑥n is independent 
variables; n is Number of observations; p is Number 
of model parameters; βn is a regression coefficient; 
en is i th residual. 

Estimation of Parameters with Ordinary Last 
Square OLS (Freund et al., 2006): 
 
β=(x\x)-1x\y                                                                                    (3) 

1.2. The goodness-of-fit (OLS) regression 

R-Sq→R2 is known as the coefficient of 
determination. A commonly used measure of 
goodness of fit of a linear model can be measured as 
(Altland, 1999); 
 

Formula → 𝑅2 = 1 −
SS Error

𝑆𝑆 𝑇𝑜𝑡𝑎𝑙
= 1 −

∑(𝑦𝑖−�̂�𝑖)2

∑(𝑦𝑖−�̅�𝑖)2                        (4) 

Formula → 𝐴𝑑𝑗. 𝑅2 = 1 −
MS Error

𝑀𝑆 𝑇𝑜𝑡𝑎𝑙
= 1 −

(
∑(𝑦𝑖−�̂�𝑖)2

∑(𝑦𝑖−�̅�𝑖)2) (
𝑛−1

𝑛−𝑝−1
)                                                                        (5) 

1.3. Unusual and Influential observations 

1.3.1. Outliers 

Which are extreme values in the y-direction 
relative to the fitted regression line, or as an 
observation that has a large residual (Kim, 2000; 
Adikaram et al., 2014; Weisberg, 2013). Rousseeuw 
(1987) explained how the single outlier changed 

from the direction of the lower squares. Huber and 
Ronchetti (1981) explained the effect of outliers on 
the OLS estimates by destroying the least squares. 

1.3.2. Leverage 

Extremes values are in the x-direction, which will 
pull the regression line towards it and can have a 
large effect on regression coefficients (Cerioli et al., 
2013). 

1.3.3. Influential observations 

Influential observations can change the slope of 
the line, and it has a large influence on the fit of the 
model. On the other hand, an observation is said to 
be influential if removing the observation 
substantially changes the estimate of regression 
coefficients (Alguraibawi et al., 2015). 

1.4. Identification of unusual observations 

To identify unusual observations, the study has 
used diagnostic measures, which include Residuals, 
standardized residual, Studentized Deleted 
Residuals, leverage values, and Cook’s D. Formulas of 
diagnostic measures are as following (Cook, 1977; 
Turkan et al., 2012); 

1.4.1. Residuals 

Residuals are the distance between observed 
values and the predicted values (Rahmatullah Imon 
and Ali, 2005; Richard et al., 2019). The residual is 
defined as 

 
𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 .  

 
Studentized Deleted Residuals (Greenwell et al., 

2018; Cook and Weisberg, 1982): 
 

𝑡𝑖 = 𝑒𝑖 (
𝑛−𝑝−1

𝑆(1−ℎ𝑖 )−𝑒𝑖
2)

1

2
                                                                      (6) 

1.4.2. Cook’s distance 

It combines information on residual and leverage 
(Judd et al., 2017; Belsley et al., 1980). It identifies 
influential cases as it considers changes in all 
residuals when a case is omitted. It is calculated from 
the following relationship: 
 

𝐷𝑖 =
∑ (�̂�𝑗−�̂�𝑗(𝑖))

2
𝑛
𝑗=1

(𝑘+1)𝑆2 =  
𝑒𝑖

2

𝑝𝑠2 [
ℎ𝑖 

(1−ℎ𝑖 )
2] =

(𝑏−𝑏(𝑖 ) )
′
𝑥′𝑥(𝑏−𝑏(𝑖 ))

𝑝𝑠2      (7) 

 

where, b(i) is a coefficient vector calculated after 
deleting the ith observation. 

DFFITS is as follows: 
 

𝐷𝐹𝐹𝐼𝑇𝑆 =
�̂�𝑖−�̂�𝑖(𝑖)

√𝑆2
(𝑖)ℎ𝑖𝑖 

= 𝑒𝑖 (
𝑛−𝑝−1

𝑆2(1−ℎ𝑖 )−𝑒𝑖
2)

1 2⁄

(
ℎ𝑖

1−ℎ𝑖
)

1 2⁄

=

𝑡𝑖 (
ℎ𝑖

1−ℎ𝑖
)

1 2⁄

                                                                                      (8) 
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where,  �̂�𝑖(𝑖) is fitted value calculated without the ith 

observation (Srivastava and Lee, 1984). 
COVRATIO is as follows:  
 

COVRATIO𝑖 =
det [(𝑋(𝑖)

′ 𝑋(𝑖))
−1

 𝑆(𝑖) 
2 ]

det  [(𝑋′𝑋)−1𝑆2]
= (

1

1−ℎ𝑖𝑖
) (

𝑆(𝑖) 
2

𝑆2 )
𝑝

                (9) 

 

where,  det [(𝑋(𝑖)
′ 𝑋(𝑖))−1  𝑆(𝑖) 

2 ] is determinant of the 

coefficient covariance matrix with observation i. 
det  [(𝑋′𝑋)−1𝑆2] is determinant of the covariance 
matrix for the full model (Valliant, 2012). 

2. Proposed work 

Influential observations should be examined 
carefully both in the dependent variable and 
independent variables, before applying the proposed 
algorithm in 𝑥𝑖  and y. 

2.1. Estimating the outliers in the independent 
variables 

If 𝑥𝑖  is an independent variable and it is 
regression coefficient is not statistical significant, 
then independent variable contains one or multiple 
outliers, the algorithm will be as follows; The 
coefficient of determination (𝑅𝑦𝑥

2 ) is calculated in the 

simple linear regression, and calculating the sum of 
the averages of the independent variables for the 
same observation (∑ 𝒙𝒊𝒎

𝒑
𝒊=𝟏 ), using the following 

formula: 
 

𝑥𝑖𝑚

∗ = ∑ �̅�𝑖𝑚

𝑝
𝑖=1 (𝑅𝑦𝑥

2    )                                                              (10) 

 

where, 𝑥𝑖𝑚

∗  is The outlier estimation; �̅�𝑖𝑚
 is Average 

independent variables for the outlier (𝑚); 𝑅𝑦𝑥
2  is the 

coefficient of determination in the simple linear 
regression. 

2.2. Estimating the outliers in the dependent 
variable 

If  yi is a dependent variable and this variable 
contains one or multiple outliers, then the algorithm 
will be as follows: 
 

𝑦j
∗ = ∑ �̅�𝑖𝑗

𝑝
𝑖=1 ( 𝑅𝑦𝑥𝑖

2 )                                                                  (11) 

 

where,  𝑦j
∗ is Outlier estimation;  𝑅𝑦𝑥𝑖

2  is multiple 

determinant coefficient; �̅�𝑖𝑗  is average independent 

variables for the outlier (j). 

3. Empirical results 

3.1. Overview of data 

The data was obtained from the academic record 
of the student from the Prince Sattam Bin Abdulaziz 
university website. Independent variables used in 
this study are represented as (xi); from the semester 
average for the first level to the semester average for 
the sixth level. Dependent Variable(y): Cumulative 
Grade Point Average (GPA). 

3.2. Fitting the regression model using (OLS) 
before regression diagnosis  

Table 1 shows that the parameter for the third 
level has a probability value of less than 0.05. This 
result indicates that this variable has a statistically 
significant effect on the cumulative average. But a 
probability value for the other parameters indicates 
that there is not a statistically significant effect on 
the cumulative average (This contradicts reality). 
Although the cumulative average of the student is 
affected only by the semesters average, these results 
are misleading, so the study makes efforts to find a 
solution to this contradiction. 

 

Table 1: Fitting the regression model using (OLS) before regression diagnosis 
Model Summary and Coefficients 

S.E. of regression Adjusted R2 F-statistic Prob. (F-statistic) Durbin-Watson 
0.42193 0.733188 27.56363 0.000 2.889955 

𝜷𝒊 Coefficient Std. Error t-Statistic Prob. 
𝜷𝟎 0.550095 0.238249 2.308905 0.0250 
𝜷𝟏 0.088475 0.070860 1.248589 0.2174 
𝜷𝟐 0.109720 0.101698 1.078886 0.2856 
𝜷𝟑 0.315284 0.095071 3.316299 0.0017 
𝜷𝟒 0.105943 0.110328 0.960255 0.3414 
𝜷𝟓 0.152190 0.097423 1.562159 0.1243 
𝜷𝟔 0.060783 0.083192 0.730638 0.4683 

 

3.3. Assumptions of the OLS estimator 

Many graphical methods and numerical tests 
have been developed over the years for regression 
diagnostics (Abuzaid et al., 2011). Statistical 
Software makes many of these methods easy to 
access and use. Consider the following assumptions. 

3.3.1. Linearity and multicollinearity 

Checking the linearity assumption is not so 
straightforward in the case of multiple regression. 

The study has fitted the best fit line, known as the 
Loess Curve through the scatterplot to see if any 
nonlinear relationship can be detected. And to verify 
the absence of multiple linearities between the 
predictors was used Variance Inflation Factor (VIF). 
The values of the inflation factor should be less than 
10 (Müller, 1992; Ibrahim and Yahya, 2017). From 
the Loess curve, it appears that the relationship of 
fitted value against residuals is roughly linear. And 
this indicates that the linearity assumption is 
satisfied. And also, it has been observed that the 
Variance Inflation Factor (VIF) is less than 10. This is 
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evidence of the absence of multicollinearity between 
predictors. This is confirmed by the matrix plot. See 
(Fig. 1). 

3.3.2. Normality and heteroscedasticity for 
residuals 

Fig. 2 shows for probability plot that the points 
do not cluster around the line; this indicates that the 
residues are not normality. This is confirmed by the 
Kolmogorov-Smirnov test. Also, Levene's test clearly 
indicates that the residuals have a constant variance. 

3.3.3. Independence residuals and stability of the 
regression model 

Table 2 shows that the Durbin-Watson statistic 
(D.W=2.89955) is far from a tabulated value 
(D.W=1.639). We will use the Breusch-Godfrey Serial 
Correlation LM Test to make sure there is no 
autocorrelation, and this test indicates there is 
autocorrelation between the residues and also the 
model is not stability. 

 

  
Fig. 1: Checking linearity and multicollinearity 

 

  
  

Fig. 2: Checking normality and homogeneity of variance for residuals 

 
Table 2: Check independence residuals and the stability of the regression model 

Breusch-Godfrey Serial Correlation LM Test 

 

F-statistic = 11.43413 
ProF(2,50) = 0.0001 

Durbin-Watson = 2.889955 

 

From Tables 1-2 and Figs. 1-2 the above, we 
conclude that four assumptions have not achieved 
(Statistical significance for five regression 

coefficients, normality, the independence of 
residuals, and the stability of the model). 
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3.4. Fitting the regression model when the 
sample size is doubled 

Table 3 shows that the regression model did not 
improve much when increasing the size of the 
sample, where still a parameter 4 and a parameter 6 
are not statistically significant. Also, there is 
autocorrelation between the residues. The resulting 

probability plot shows in Fig. 3 that the points no 
cluster around the line, this indicates that the 
residues are not distributed according to normal 
distribution. This is confirmed by Jarque-Bera and 
Kolmogorov-Smirnov test, and also the regression 
model hasn't stability. After fitting the regression 
model, when the sample size is doubled. 

 

Table 3: Fitting the regression model when the sample size is doubled 
Model Summary and Coefficients 

S.E. of regression Adjusted R2 F-statistic Prob. (F-statistic) Durbin-Watson 
0.34327 0.815929 82.00458 0.0000 2.879763 

𝜷𝒊 Coefficient Std. Error t-Statistic Prob. 
𝜷𝟎 0.328262 0.148356 2.212660 0.0290 
𝜷𝟏 0.155687 0.046806 3.326223 0.0012 
𝜷𝟐 0.131489 0.065369 2.011500 0.0467 
𝜷𝟑 0.228933 0.059941 3.819301 0.0002 
𝜷𝟒 0.125195 0.063184 1.981433 0.0500 
𝜷𝟓 0.188672 0.059169 3.188693 0.0019 
𝜷𝟔 0.077556 0.052567 1.475382 0.1429 

 

 

 

Breusch-Godfrey Serial Correlation LM Test=Prob. F(2.109)=0.0000; Normality Test: Jarque-bera =302.0571 (Prob.=0.0000 

Fig. 3: Checking assumptions (OLS) 
 

3.5. Diagnosis of outliers 

In commencing, one should get familiar with the 
data file and looking for errors to collect and input 
data using the Moses test (Nussbaum, 2014). Table 4 
shows that there are no errors in data collection. 

 

Table 4: Identifying outliers using Moses test 

3.6. Identifying outliers using the residuals 

The goal is to detect the cases which have large 
residuals (outliers) and the cases that, if they are 
removed, lead to a different result. The distinction 
between these two kinds of cases is not always 
obvious. Both types of points are of great concern. 
(Choonpradub and McNeil, 2005). Not necessarily 
that all outliers are influential. In this regard, a box 
plot will be used by overall measures of influence 

(DFFITS, COVRATIO, and Cook’s D) to discover 
influential cases. 

Fig. 4 shows that Star-shaped states are 
influential, while circle cases are not influential (For 
example, Cook’s Distance indicates that case number 
32 is one that has a large residual, which suggests 
that it may be influential, and the observations (37, 
34, 33,36,6,41, 29) are outliers, but cases (32, 
37,36,34,33,6) is are an influential case. And these 
cases require more attention as they stand out from 
all other points. 

3.7. Significance test of outliers 

Fig. 5 shows that the cases diagnosed as outliers 
through the Grubbs’ test had a significant effect on 
the regression coefficients. But cases that have been 
diagnosed as outliers through the Dixon’s test had 
not any effect. 

4. Application proposed work 

4.1. Application of the proposed algorithm  

Application of the proposed algorithm according 
to overall measures of influence. Cook distance was 

Test Statistics (Moses Test) 
 Observed Control (Sig) Trimmed Control (Sig) 

y 1.000 1.000 
x1 1.000 0.940 
x2 1.000 1.000 
x3 1.000 0.940 
x4 1.000 0.813 
x5 0.746 0.940 
x6 0.293 0.648 
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relied on to identify influential outliers because it is the best (Table 5). 
 

   

Fig. 4: Box plot for overall measures to identify an influential case in y 
 

 
Fig. 5: Significance test of outliers 

 
Table 5: Comparison between overall measures of influence 

 OVRATIO Cook’s distance DFFITS 

S.E Norm. R2 
D-
W 

S.E Norm. R2 
D-
W 

S.E Norm. R2 
D-
W 

.264 . .036 .931 2.09 .198 0.062 0.94 1.96 .264 0.00 0.894 1.82 
Heteroskedasticity Test ARCH = 0.79 Heteroskedasticity Test ARCH = 0.835 Heteroskedasticity Test ARCH = 0.808 

Breusch-Godfrey Serial 
Correlation 

= 0.42 
Breusch-Godfrey Serial 

Correlation 
= 0.884 

Breusch-Godfrey Serial 
Correlation 

= 0.636 

 

4.2. Fitting the regression model using the 
proposed algorithm 

The resulting probability plot shows in Fig. 6 that 
the points cluster around the line; this indicates that 
the residues are distributed according to normal 
distribution. 

This is confirmed Kolmogorov-Smirnov and 
Jarque-Bera test. And we observe there is no 
autocorrelation between the residues, and also 
regression model has stability. Formula (10 and 11) 
was used to estimate regression parameters. The 
result indicates in Table 6 that all the variables have 
a statistically significant effect on the cumulative 
average (This no contradicts reality). 

 

 

 

Fig. 6: Checking assumptions (OLS) after using the proposed algorithm 
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Table 6: Fitting the regression model using the proposed algorithm 
Model Summary and Coefficients 

S.E. of regression Adjusted R2 F-statistic Prob. (F-statistic) Durbin-Watson 
0.198 0.9402 153.0416 0.000 1.956232 

𝜷𝒊 Coefficient Std. Error t-Statistic Prob. 
𝜷𝟎 0.248595 0.103724 2.396707 0.0202 
𝜷𝟏 0.103035 0.035985 2.863261 0.0060 
𝜷𝟐 0.123082 0.047601 2.585721 0.0126 
𝜷𝟑 0.193795 0.042387 4.572048 0.0000 
𝜷𝟒 0.252619 0.051842 4.872848 0.0000 
𝜷𝟓 0.104303 0.049882 2.090995 0.0414 
𝜷𝟔 0.140472 0.046339 3.031399 0.0038 

 

4.3. Comparison of the proposed algorithm with 
some Robust Regression methods 

The proposed algorithm will be compared with 
some robust regression methods, [Weighted Least 
Squares (WLS), Fully Modified Least Squares 
(FMOLS), and Least Median of Squares (LMS)]. From 
Table 7.  

The statistically significant was achieved for all 
regression parameters, and the normality hypothesis 
for residues was achieved by using the proposed 
method only. In addition, the proposed method has 
the highest coefficient of determination was (Adj 
R2=0.9402) and the lest standard error (S.E.= 0.198). 

 

Table 7: Comparison of the proposed algorithm with some Robust Regression methods 
Proposed Method WLS FMOLS LMS 

𝛽𝑖 Prob. Parameters Accuracy Prob. Parameters Accuracy Prob. Parameters Accuracy Prob. Parameters Accuracy 

𝛽1 0.0202 
Adj. R2= 
0.9402 

0.001 
Adj. R2= 

0.937 
0.1332 

Adj. R2= 
0.730791 

0.0695 
Adj. R2= 

0.638659 
𝛽2 0.0060 

S.E. =0.198 
0.127 

S.E.=1.3152 
0.1192 

S.E.=0.4273 
0.0008 

S.E.= 0.4376 
𝛽3 0.0126 0.000 0.0000 0.1257 
𝛽4 0.0000 Norm=0.06 0.016 Norm=0.010 0.1691 Norm= 0.00 0.0084 Norm=0.000 
𝛽5 0.0000 

Stability 
0.033 

No Stability 
0.0077 

No Stability 
0.1213 

No Stability 
𝛽6 0.0414 0.005 0.0769 0.0388 

 

5. Conclusion 

The study has used MINITAP, SPSS, and EVIEWS 
to perform the computations. All methods of 
estimation were compared using three standards 
[The significant of regression parameters, adjusted 
determination coefficient (Adj.R^2), Standard Error 
(S.E.) of regression and achieve the assumptions of 
OLS]. Regression analysis was applied to a 
phenomenon, whose results are known in advance 
(The relationship between Semester average and 
Cumulative average). Since there is no method could 
correctly treat outliers 100%. 

The results of this study proved that the 
proposed method is a robust solution for outliers 
estimation. Most importantly, the method is a 
solution for estimating multiple significant outliers 
in the data set. The study has found that the 
proposed algorithm performs well to obtain highly 
efficient estimates of regression coefficients. The 
proposed method can be applied on others similar 
phenomena (e.g., The proposed method can be 
applied to a credit card transaction control system in 
a bank, which aims to detect fraud, to detect unusual 
purchases, as an outlier, compared to the normal 
behavior of the customer of the cardholder. Another 
example delays in the delivery of orders to homes, 
such as when there is a delay in the delivery of 20 
orders in one day, and therefore restaurant 
management can use the algorithm to solve the 
problem). Also, the novelty of this study can be 
observed by investigating testing the significance of 
outliers as most of the previous researchers were 
interested in detecting and addressing the outliers, 

without checking its significance. The research also 
found that the cause of the existence of outliers in 
the data was errors in the university website, and 
also the data has a high torsion to the right. 
Therefore, it is recommended to using the proposed 
algorithm to estimate multiple outliers on any 
phenomenon, whose results are known in advance, 
and also doing designing software Packages 
statistical for the proposed algorithm. 
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